1
|
Rhodes CH, Hong BV, Tang X, Weng CY, Kang JW, Agus JK, Lebrilla CB, Zivkovic AM. Absorption, anti-inflammatory, antioxidant, and cardioprotective impacts of a novel fasting mimetic containing spermidine, nicotinamide, palmitoylethanolamide, and oleoylethanolamide: A pilot dose-escalation study in healthy young adult men. Nutr Res 2024; 132:125-135. [PMID: 39549554 DOI: 10.1016/j.nutres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
This pilot dose-escalation study evaluated the absorption and metabolism of a novel fasting mimetic formulation containing spermidine, nicotinamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) taken as oral supplements in young adults. Five healthy men consumed a standardized breakfast, followed by control (wheat flour) or low, medium, or high doses of supplements containing spermidine, nicotinamide, PEA, and OEA 2 hours later. Blood was drawn at 0, 1, 2, and 4 hours after the supplement (2, 3, 4, and 6 hours postprandial). Plasma concentrations of spermidine, 1-methylnicotinamide, PEA and OEA were quantified by liquid chromatography-mass spectrometry. The secretion of tumor necrosis factor alpha and production of reactive oxygen species by stimulated macrophages incubated with plasma, and cholesterol efflux capacity of plasma were analyzed. Plasma 1-methylnicotinamide, PEA, and OEA concentrations increased after supplement intake (P < .05). Spermidine concentrations decreased in the control arm (P < .05) but not the supplement arms. Net incremental area under the curve for tumor necrosis factor alpha and reactive oxygen species in stimulated macrophages decreased when incubated with plasma following supplement intake (P < .05). Intake of the combined supplements showed they were bioavailable and increased in plasma in a dose-dependent manner and provide preliminary data showing enhanced plasma anti-inflammatory and antioxidant functions. This trial was registered at clinicaltrials.gov (NCT05017428).
Collapse
Affiliation(s)
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, California
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, California
| | - Cheng-Yu Weng
- Department of Chemistry, University of California, Davis, California
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, California
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, California
| | | | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, California.
| |
Collapse
|
2
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
3
|
Munzen ME, Reguera Gomez M, Hamed MF, Enriquez V, Charles-Niño CL, Dores MR, Alviña K, Martinez LR. Palmitoylethanolamide shows limited efficacy in controlling cerebral cryptococcosis in vivo. Antimicrob Agents Chemother 2023; 67:e0045923. [PMID: 37750714 PMCID: PMC10583666 DOI: 10.1128/aac.00459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/13/2023] [Indexed: 09/27/2023] Open
Abstract
Cryptococcus neoformans (Cn) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.
Collapse
Affiliation(s)
- Melissa E. Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Marta Reguera Gomez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Mohamed F. Hamed
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Vanessa Enriquez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Claudia L. Charles-Niño
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Michael R. Dores
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Karina Alviña
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, Gainesville, Florida, USA
| | - Luis R. Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, Gainesville, Florida, USA
- Center for Immunology and Transplantation, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
The Use of Palmitoylethanolamide in the Treatment of Long COVID: A Real-Life Retrospective Cohort Study. Med Sci (Basel) 2022; 10:medsci10030037. [PMID: 35893119 PMCID: PMC9326613 DOI: 10.3390/medsci10030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 can cause symptoms that last weeks or months after the infection has gone, with a significant impairment of quality of life. Palmitoylethanolamide (PEA) is a naturally occurring lipid mediator that has an entourage effect on the endocannabinoid system mitigating the cytokine storm. The aim of this retrospective study is to evaluate the potential efficacy of PEA in the treatment of long COVID. Patients attending the Neurological Out Clinic of the IRCCS Centro Neurolesi Bonino-Pulejo (Messina, Italy) from August 2020 to September 2021 were screened for potential inclusion in the study. We included only long COVID patients who were treated with PEA 600 mg two times daily for about 3 months. All patients performed the post-COVID-19 Functional Status (PCFS) scale. Thirty-three patients (10 males, 43.5%, mean age 47.8 ± 12.4) were enrolled in the study. Patients were divided into two groups based on hospitalization or home care observation. A substantial difference in the PCFS score between the two groups at baseline and after treatment with PEA were found. We found that smoking was a risk factor with an odds ratio of 8.13 CI 95% [0.233, 1.167]. Our findings encourage the use of PEA as a potentially effective therapy in patients with long COVID.
Collapse
|
5
|
Maretti E, Molinari S, Battini R, Rustichelli C, Truzzi E, Iannuccelli V, Leo E. Design, Characterization, and In Vitro Assays on Muscle Cells of Endocannabinoid-like Molecule Loaded Lipid Nanoparticles for a Therapeutic Anti-Inflammatory Approach to Sarcopenia. Pharmaceutics 2022; 14:pharmaceutics14030648. [PMID: 35336022 PMCID: PMC8951178 DOI: 10.3390/pharmaceutics14030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory processes play a key role in the pathogenesis of sarcopenia owing to their effects on the balance between muscle protein breakdown and synthesis. Palmitoylethanolamide (PEA), an endocannabinoid-like molecule, has been well documented for its anti-inflammatory properties, suggesting its possible beneficial use to counteract sarcopenia. The promising therapeutic effects of PEA are, however, impaired by its poor bioavailability. In order to overcome this limitation, the present study focused on the encapsulation of PEA in solid lipid nanoparticles (PEA-SLNs) in a perspective of a systemic administration. PEA-SLNs were characterized for their physico-chemical properties as well as cytotoxicity and cell internalization capacity on C2C12 myoblast cells. Their size was approximately 250 nm and the encapsulation efficiency reached 90%. Differential scanning calorimetry analyses demonstrated the amorphous state of PEA in the inner SLN matrix, which improved PEA dissolution, as observed in the in vitro assays. Despite the high internalization capacity observed with the flow cytometer (values between 85 and 94% after 14 h of incubation), the Nile Red labeled PEA-SLNs showed practically no toxicity towards myoblasts. Confocal analysis showed the presence of SLNs in the cytoplasm and not in the nucleus. These results suggest the potentiality provided by PEA-SLNs to obtain an innovative and side-effect-free tool in the medical treatment of sarcopenia.
Collapse
|
6
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
7
|
Raciti L, Arcadi FA, Calabrò RS. Could Palmitoylethanolamide Be an Effective Treatment for Long-COVID-19? Hypothesis and Insights in Potential Mechanisms of Action and Clinical Applications. INNOVATIONS IN CLINICAL NEUROSCIENCE 2022; 19:19-25. [PMID: 35382075 PMCID: PMC8970234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
COVID-19 is highly transmissive and contagious disease with a wide spectrum of clinicopathological issues, including respiratory, vasculo-coagulative, and immune disorders. In some cases of COVID-19, patients can be characterized by clinical sequelae with mild-to-moderate symptoms that persist long after the resolution of the acute infection, known as long-COVID, potentially affecting their quality of life. The main symptoms of long-COVID include persistent dyspnea, fatigue and weakness (that are typically out of proportion, to the degree of ongoing lung damage and gas exchange impairment), persistence of anosmia and dysgeusia, neuropsychiatric symptoms, and cognitive dysfunctions (such as brain fog or memory lapses). The appropriate management and prevention of potential long-COVID sequelae is still lacking. It is also believed that long-term symptoms of COVID-19 are related to an immunity over-response, namely a cytokine storm, involving the release of pro-inflammatory interleukins, monocyte chemoattractant proteins, and tissue necrosis factors. Palmitoylethanolamide (PEA) shows affinity for vanilloid receptor 1 and for cannabinoid-like G protein-coupled receptors, enhancing anandamide activity by means of an entourage effect. Due to its anti-inflammatory properties, PEA has been recently used as an early add-on therapy for respiratory problems in patients with COVID-19. It is believed that PEA mitigates the cytokine storm modulating cell-mediated immunity, as well as counteracts pain and oxidative stress. In this article, we theorize that PEA could be a potentially effective nutraceutical to treat long-COVID, with regard to fatigue and myalgia, where a mythocondrial dysfunction is hypothesizable.
Collapse
Affiliation(s)
- Loredana Raciti
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| | - Francesca Antonia Arcadi
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| | - Rocco Salvatore Calabrò
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| |
Collapse
|
8
|
Rao A, Ebelt P, Mallard A, Briskey D. Palmitoylethanolamide for sleep disturbance. A double-blind, randomised, placebo-controlled interventional study. SLEEP SCIENCE AND PRACTICE 2021; 5:12. [PMID: 34522787 PMCID: PMC8428962 DOI: 10.1186/s41606-021-00065-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Sleep is essential for wellbeing, yet sleep disturbance is a common problem linked to a wide range of health conditions. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide proposed to promote better sleep via potential interaction with the endocannabinoid system. Methods This double-blind, randomised study on 103 adults compared the efficacy and tolerability of 8 weeks of daily supplemented PEA formulation (350 mg Levagen + ®) to a placebo. Sleep quality and quantity were measured using wrist actigraphy, a sleep diary and questionnaires. Results At week 8, PEA supplementation reduced sleep onset latency, time to feel completely awake and improved cognition on waking. After 8 weeks, both groups improved their sleep quality and quantity scores similarly. There was no difference between groups at baseline or week 8 for sleep quantity or quality as measured from actigraphy or sleep diaries. Conclusion These findings support PEA as a potential sleeping aid capable of reducing sleep onset time and improving cognition on waking. Trial registration Australian
New Zealand Clinical Trials Registry ACTRN12618001339246. Registered 9th
August 2018.
Collapse
Affiliation(s)
- Amanda Rao
- RDC Clinical, Brisbane, 4006 Australia.,University of Sydney, School of Medicine, Sydney, Australia
| | | | - Alistair Mallard
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - David Briskey
- RDC Clinical, Brisbane, 4006 Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
10
|
Pesce M, Seguella L, Cassarano S, Aurino L, Sanseverino W, Lu J, Corpetti C, Del Re A, Vincenzi M, Sarnelli G, Esposito G. Phytotherapics in COVID19: Why palmitoylethanolamide? Phytother Res 2021; 35:2514-2522. [PMID: 33296131 DOI: 10.1002/ptr.6978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
At present, googling the search terms "COVID-19" and "Functional foods" yields nearly 500,000,000 hits, witnessing the growing interest of the scientific community and the general public in the role of nutrition and nutraceuticals during the COVID-19 pandemic. Many compounds have been proposed as phytotherapics in the prevention and/or treatment of COVID-19. The extensive interest of the general public and the enormous social media coverage on this topic urges the scientific community to address the question of whether which nutraceuticals can actually be employed in preventing and treating this newly described coronavirus-related disease. Recently, the Canadian biotech pharma company "FSD Pharma" received the green light from the Food and Drug Administration to design a proof-of-concept study evaluating the effects of ultramicronized palmitoylethanolamide (PEA) in COVID-19 patients. The story of PEA as a nutraceutical to prevent and treat infectious diseases dates back to the 1970s where the molecule was branded under the name Impulsin and was used for its immunomodulatory properties in influenza virus infection. The present paper aims at analyzing the potential of PEA as a nutraceutical and the previous evidence suggesting its anti-inflammatory and immunomodulatory properties in infectious and respiratory diseases and how these could translate to COVID-19 care.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Cassarano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, China
| | - Chiara Corpetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
12
|
Ribes S, Zacke L, Nessler S, Saiepour N, Avendaño-Guzmán E, Ballüer M, Hanisch UK, Nau R. Oligodeoxynucleotides containing unmethylated cytosine-guanine motifs are effective immunostimulants against pneumococcal meningitis in the immunocompetent and neutropenic host. J Neuroinflammation 2021; 18:39. [PMID: 33531028 PMCID: PMC7852218 DOI: 10.1186/s12974-021-02077-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacterial meningitis is a fatal disease with a mortality up to 30% and neurological sequelae in one fourth of survivors. Available vaccines do not fully protect against this lethal disease. Here, we report the protective effect of synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG ODN) against the most frequent form of bacterial meningitis caused by Streptococcus pneumoniae. METHODS Three days prior to the induction of meningitis by intracerebral injection of S. pneumoniae D39, wild-type and Toll-like receptor (TLR9)-/- mice received an intraperitoneal injection of 100 μg CpG ODN or vehicle. To render mice neutropenic, anti-Ly-6G monoclonal antibody was daily administrated starting 4 days before infection with a total of 7 injections. Kaplan-Meier survival analyses and bacteriological studies, in which mice were sacrificed 24 h and 36 h after infection, were performed. RESULTS Pre-treatment with 100 μg CpG ODN prolonged survival of immunocompetent and neutropenic wild-type mice but not of TLR9-/- mice. There was a trend towards lower mortality in CpG ODN-treated immunocompetent and neutropenic wild-type mice. CpG ODN caused an increase of IL-12/IL-23p40 levels in the spleen and serum in uninfected animals. The effects of CpG ODN on bacterial concentrations and development of clinical symptoms were associated with an increased number of microglia in the CNS during the early phase of infection. Elevated concentrations of IL-12/IL-23p40 and MIP-1α correlated with lower bacterial concentrations in the blood and spleen during infection. CONCLUSIONS Pre-conditioning with CpG ODN strengthened the resistance of neutropenic and immunocompetent mice against S. pneumoniae meningitis in the presence of TLR9. Administration of CpG ODN decreased bacterial burden in the cerebellum and reduced the degree of bacteremia. Systemic administration of CpG ODN may help to prevent or slow the progression to sepsis of bacterial CNS infections in healthy and immunocompromised individuals even after direct inoculation of bacteria into the intracranial compartments, which can occur after sinusitis, mastoiditis, open head trauma, and surgery, including placement of an external ventricular drain.
Collapse
Affiliation(s)
- S Ribes
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany.
| | - L Zacke
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany
| | - S Nessler
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany
| | - N Saiepour
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany
| | - E Avendaño-Guzmán
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany
| | - M Ballüer
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende, Göttingen, Germany
| | - U K Hanisch
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany
| | - R Nau
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
13
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
14
|
Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther 2020; 19:215-231. [PMID: 32808580 DOI: 10.1080/14787210.2020.1812384] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sepsis-associated encephalopathy (SAE) and septic encephalitis (SE) are associated with increased mortality, long-term cognitive impairment, and focal neurological deficits. AREAS COVERED The PUBMED database was searched 2016-2020. The clinical manifestation of SAE is delirium, SE additionally is characterized by focal neurological symptoms. SAE is caused by inflammation with endothelial/microglial activation, increase of permeability of the blood-brain-barrier, hypoxia, imbalance of neurotransmitters, glial activation, axonal, and neuronal loss. Septic-embolic (SEE) and septic-metastatic encephalitis (SME) are characterized by focal ischemia (SEE) and small abscesses (SME). The continuum between SAE, SME, and SEE is documented by imaging techniques and autopsies. The backbone of treatment is rapid optimum antibiotic therapy. Experimental approaches focus on modulation of inflammation, stabilization of the blood-brain barrier, and restoration of membrane/mitochondrial function. EXPERT OPINION The most promising diagnostic approaches are new imaging techniques. The most important measure to fight delirium remains establishment of daily structure and adequate sensory stimuli. Dexmedetomidine and melatonin appear to reduce the frequency of delirium, their efficacy in SAE and SE remains to be established. Drugs already licensed for other indications or available as food supplements which may be effective in SAE are statins, L-DOPA/benserazide, β-hydroxybutyrate, palmitoylethanolamide, and tetracyclines or other bactericidal non-lytic antibiotics.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) , Aachen, Germany
| | - Marija Djukic
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Johannes Gossner
- Department of Diagnostic and Interventional Radiology, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Helmut Eiffert
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology , Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center , Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| |
Collapse
|
15
|
Ribes S, Arcilla C, Ott M, Schütze S, Hanisch UK, Nessler S, Nau R. Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli. J Neuroinflammation 2020; 17:24. [PMID: 31952519 PMCID: PMC6969464 DOI: 10.1186/s12974-020-1700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis. This study evaluated the potential of poly(I:C) pre-treatment to induce trained immunity. Poly(I:C) was administered as a non-specific stimulus of innate immune responses to protect immunocompetent and neutropenic wild-type mice from a subsequent challenge by the intracranial injection of E. coli K1. METHODS Three days prior to infection, mice received an intraperitoneal injection of poly(I:C) or vehicle. Kaplan-Meier survival curves were analyzed. In short-term experiments, bacterial titers and the inflammatory response were characterized in the blood, cerebellum, and spleen homogenates. NK cell subpopulations in the brain and spleen were analyzed by flow cytometry. Numbers of microglia and activation scores were evaluated by histopathology. RESULTS Pre-treatment with 200 μg poly(I:C) increased survival time, reduced mortality, and enhanced bacterial clearance in the blood, cerebellum, and spleen at early infection in neutropenic mice. Poly(I:C)-mediated protection correlated with an augmented number of NK cells (CD45+NK1.1+CD3-) and Iba-1+ microglial cells and a higher production of IFN-γ in the brain. In the spleen, levels of CCL5/RANTES and IFN-γ were increased and sustained in surviving poly(I:C)-treated animals for 14 days after infection. In immunocompetent animals, survival time was not significantly prolonged in poly(I:C)-treated animals although poly(I:C) priming reduced brain bacterial concentrations compared with vehicle-injected animals at early infection. CONCLUSIONS Pre-treatment with the viral TLR3 agonist poly(I:C) modulated innate immune responses and strengthened the resistance of neutropenic mice against E. coli K1 meningoencephalitis.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Christa Arcilla
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, 37075, Göttingen, Germany
| |
Collapse
|
16
|
Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel MI, Heidemann R, Braczynski AK, Ballhorn W, Günther S, Ogunshola OO, Mittelbronn M, Ködel U, Monoranu CM, Plate KH, Hammerschmidt S, Nau R, Devraj K, Kempf VAJ. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol 2020; 140:183-208. [PMID: 32529267 PMCID: PMC7360668 DOI: 10.1007/s00401-020-02174-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Sylvaine Guérit
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center, Göttingen, Germany ,Department of Geriatrics, Evangelisches Krankenhaus, Göttingen-Weende, Germany
| | - Daniel Spitzer
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Jadranka Macas
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Maryam I. Khel
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Roxana Heidemann
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Anne K. Braczynski
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Technische Hochschule University Hospital, Aachen, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Michel Mittelbronn
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ,Laboratoire National de Santé (LNS), Dudelange, Luxembourg ,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg ,NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Uwe Ködel
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Camelia M. Monoranu
- Department of Neuropathology, Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Karl H. Plate
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Kavi Devraj
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany. .,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany.
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Lerner R, Pascual Cuadrado D, Post JM, Lutz B, Bindila L. Broad Lipidomic and Transcriptional Changes of Prophylactic PEA Administration in Adult Mice. Front Neurosci 2019; 13:527. [PMID: 31244590 PMCID: PMC6580993 DOI: 10.3389/fnins.2019.00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
Beside diverse therapeutic properties of palmitoylethanolamide (PEA) including: neuroprotection, inflammation and pain alleviation, prophylactic effects have also been reported in animal models of infections, inflammation, and neurological diseases. The availability of PEA as (ultra)micronized nutraceutical formulations with reportedly no side effects, renders it accordingly an appealing candidate in human preventive care, such as in population at high risk of disease development or for healthy aging. PEA’s mode of action is multi-facetted. Consensus exists that PEA’s effects are primarily modulated by the peroxisome proliferator-activated receptor alpha (PPARα) and that PEA-activated PPARα has a pleiotropic effect on lipid metabolism, inflammation gene networks, and host defense mechanisms. Yet, an exhaustive view of how the prophylactic PEA administration changes the lipid signaling in brain and periphery, thereby eliciting a beneficial response to various negative stimuli remains still elusive. We therefore, undertook a broad lipidomic and transcriptomic study in brain and spleen of adult mice to unravel the positive molecular phenotype rendered by prophylactic PEA. We applied a tissue lipidomic and transcriptomic approach based on simultaneous extraction and subsequent targeted liquid chromatography-multiple reaction monitoring (LC-MRM) and mRNA analysis by qPCR, respectively. We targeted lipids of COX-, LOX- and CYP450 pathways, respectively, membrane phospholipids, lipid products of cPLA2, and free fatty acids, along with various genes involved in their biosynthesis and function. Additionally, plasma lipidomics was applied to reveal circulatory consequences and/or reflection of PEA’s action. We found broad, distinct, and several previously unknown tissue transcriptional regulations of inflammatory pathways. In hippocampus also a PEA-induced transcriptional regulation of neuronal activity and excitability was evidenced. A massive downregulation of membrane lipid levels in the splenic tissue of the immune system with a consequent shift towards pro-resolving lipid environment was also detected. Plasma lipid pattern reflected to a large extent the hippocampal and splenic lipidome changes, highlighting the value of plasma lipidomics to monitor effects of nutraceutical PEA administration. Altogether, these findings contribute new insights into PEA’s molecular mechanism and helps answering the questions, how PEA prepares the body for insults and what are the “good lipids” that underlie this action.
Collapse
Affiliation(s)
- Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Diego Pascual Cuadrado
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia M Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|