1
|
Zhu W, Li M, Wang Q, Shen J, Ji J. Quantitative Proteomic Analysis Reveals Functional Alterations of the Peripheral Immune System in Colorectal Cancer. Mol Cell Proteomics 2024; 23:100784. [PMID: 38735538 PMCID: PMC11215959 DOI: 10.1016/j.mcpro.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is characterized by high morbidity, high mortality, and limited response to immunotherapies. The peripheral immune system is an important component of tumor immunity, and enhancements of peripheral immunity help to suppress tumor progression. However, the functional alterations of the peripheral immune system in CRC are unclear. Here, we used mass spectrometry-based quantitative proteomics to establish a protein expression atlas for the peripheral immune system in CRC, including plasma and five types of immune cells (CD4+ T cells, CD8+ T cells, monocytes, natural killer cells, and B cells). Synthesizing the results of the multidimensional analysis, we observed an enhanced inflammatory phenotype in CRC, including elevated expression of plasma inflammatory proteins, activation of the inflammatory pathway in monocytes, and increased inflammation-related ligand-receptor interactions. Notably, we observed tumor effects on peripheral T cells, including altered cell subpopulation ratios and suppression of cell function. Suppression of CD4+ T cell function is mainly mediated by high expression levels of protein tyrosine phosphatases. Among them, the expression of protein tyrosine phosphatase receptor type J (PTPRJ) gradually increased with CRC progression; knockdown of PTPRJ in vitro could promote T cell activation, thereby enhancing peripheral immunity. We also found that the combination of leucine-rich α-2 glycoprotein 1 (LRG1) and apolipoprotein A4 (APOA4) had the best predictive ability for colorectal cancer and has the potential to be a biomarker. Overall, this study provides a comprehensive understanding of the peripheral immune system in CRC. It also offers insights regarding the potential clinical utilities of these peripheral immune characteristics as diagnostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Minzhe Li
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Jian Shen
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Jin Y, Huang S, Zhou H, Wang Z, Zhou Y. Multi-omics comprehensive analyses of programmed cell death patterns to regulate the immune characteristics of head and neck squamous cell carcinoma. Transl Oncol 2024; 41:101862. [PMID: 38237211 PMCID: PMC10825548 DOI: 10.1016/j.tranon.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer with high morbidity and mortality. Triggering the programmed cell death (PCD) to enhance the anti-tumor therapies is being applied in multiple cancers. However, the limited understanding of genetic heterogeneity in HNSCC severely hampers the clinical efficacy. We systematically analyzed 14 types of PCD in HNSCC from The Cancer Genome Atlas (TCGA). We utilized ssGSEA to calculate the PCD scores and classify patients into two clusters. Subsequently, we displayed the genomic alteration landscape to unravel the significant differences in copy number alterations and gene mutations. Furthermore, we calculated the IC50 values of targeted drugs to predict the differences in sensitivity. To identify the immune-related prognostic types, we comprehensively estimated the relationship between immune indicators and all prognostic PCD in three datasets (TCGA, GSE65858, GSE41613). Finally, 7 regulators were filtered. Subsequently, we integrated 10 machine learning algorithms and 101 algorithm combinations to test the clinical predictive efficacy. Using WGCNA as a basis, we built a weighted co-expression network to identify modules involved in the immune landscape with different colors. Meanwhile, our results indicated that blue and red modules containing crucial regulators closely related to the CD4+, CD8+ T cells, TMB or PD-L1. FCGR2A from blue module, CSF2, INHBA, and THBS1 from the red module were determined. After verifying in vivo experiments, FCGR2A was identified as hub gene. In conclusion, our findings suggest a potential role of PCD in HNSCC, offering new insights into effective immunotherapy and anti-tumor therapies in HNSCC.
Collapse
Affiliation(s)
- Yi Jin
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Siwei Huang
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hongyu Zhou
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Yonghong Zhou
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Ji W, Wang W, Li P, Liu Y, Zhang B, Qi F. sFgl2 gene-modified MSCs regulate the differentiation of CD4 + T cells in the treatment of autoimmune hepatitis. Stem Cell Res Ther 2023; 14:316. [PMID: 37924141 PMCID: PMC10625288 DOI: 10.1186/s13287-023-03550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a T-cell-mediated autoimmune liver disease that can lead to liver injury and has a poor long-term prognosis. Mesenchymal stromal cells (MSCs) have immunosuppressive effects and can treat AIH. CD4+ T cells express the unique inhibitory Fcγ receptor (FcγRIIB), which is the only receptor for the immunosuppressive factor soluble fibrinogen-like protein 2 (sFgl2). This study aimed to examine the therapeutic effect of sFgl2 gene-modified MSCs (sFgl2-MSCs) on AIH. METHODS MSCs were obtained from the inguinal fat of mice and cocultured with CD4+ T cells sorted from mouse spleens. FcγRIIB expression on CD4+ T cells was determined by flow cytometry. sFgl2 expression in MSCs transfected with lentiviral vectors carrying the Fgl2 gene and a green fluorescent protein-encoding sequence was determined by enzyme-linked immunosorbent assay. The percentages of Th1 cells Th17 cells and regulatory T cells (Tregs) were determined by flow cytometry And the levels of p-SHP2 and p-SMAD2/3 were detected by Western blotting after the cells were cocultured with MSCs for 72 h. After locating MSCs by in vivo imaging Con A-induced experimental AIH mice were randomly divided into 4 groups and administered different treatments. After 24 h histopathological scores liver function and cytokine levels were examined and the proportions of CD4+ T cells CD8+ T cells Tregs Th17 cells and Th1 cells in the spleen and liver were determined by flow cytometry. In addition immunohistochemical staining was used to detect the liver infiltration of T-bet-, Foxp3- and RORγ-positive cells. RESULTS FcγRIIB expression on CD4+ T cells was upregulated after coculture with MSCs. After coculture with sFgl2-MSCs, the proportion of Tregs among CD4+ T cells increased, the proportion of Th17 and Th1 cells decreased, and the levels of p-SHP2 and p-SMAD2/3 increased. In vivo, sFgl2-MSCs significantly improved liver function, decreased liver necrosis area, decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 expression, increased IL-10 expression, reduced liver infiltration of CD4+ T and CD8+ T cells, increased the proportion of Tregs and reduced the proportions of Th17 and Th1 cells in mice. CONCLUSION By promoting Tregs differentiation and inhibiting Th17 and Th1 cell differentiation, sFgl2 gene-modified MSCs have a more powerful therapeutic effect on Con A-induced experimental AIH and may represent a strategy for the clinical treatment of AIH.
Collapse
Affiliation(s)
- Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiwei Wang
- Department of General Surgery, Tianjin Medical University Baodi Clinical College, Guangchuan Road, Baodi, Tianjin, 301800, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
4
|
Alsalloum A, Alrhmoun S, Shevchenko J, Fisher M, Philippova J, Perik-Zavodskii R, Perik-Zavodskaia O, Lopatnikova J, Kurilin V, Volynets M, Akahori Y, Shiku H, Silkov A, Sennikov S. TCR-Engineered Lymphocytes Targeting NY-ESO-1: In Vitro Assessment of Cytotoxicity against Tumors. Biomedicines 2023; 11:2805. [PMID: 37893178 PMCID: PMC10604587 DOI: 10.3390/biomedicines11102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Adoptive T-cell therapies tailored for the treatment of solid tumors encounter intricate challenges, necessitating the meticulous selection of specific target antigens and the engineering of highly specific T-cell receptors (TCRs). This study delves into the cytotoxicity and functional characteristics of in vitro-cultured T-lymphocytes, equipped with a TCR designed to precisely target the cancer-testis antigen NY-ESO-1. Flow cytometry analysis unveiled a notable increase in the population of cells expressing activation markers upon encountering the NY-ESO-1-positive tumor cell line, SK-Mel-37. Employing the NanoString platform, immune transcriptome profiling revealed the upregulation of genes enriched in Gene Ontology Biological Processes associated with the IFN-γ signaling pathway, regulation of T-cell activation, and proliferation. Furthermore, the modified T cells exhibited robust cytotoxicity in an antigen-dependent manner, as confirmed by the LDH assay results. Multiplex immunoassays, including LEGENDplex™, additionally demonstrated the elevated production of cytotoxicity-associated cytokines driven by granzymes and soluble Fas ligand (sFasL). Our findings underscore the specific targeting potential of engineered TCR T cells against NY-ESO-1-positive tumors. Further comprehensive in vivo investigations are essential to thoroughly validate these results and effectively harness the intrinsic potential of genetically engineered T cells for combating cancer.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Marina Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Julia Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Vasily Kurilin
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Alexander Silkov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (A.A.); (S.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (J.L.); (V.K.); (M.V.); (A.S.)
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Alsalloum A, Shevchenko J, Fisher M, Philippova J, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Lopatnikova J, Vasily K, Volynets M, Zavjalov E, Solovjeva O, Akahori Y, Shiku H, Silkov A, Sennikov S. Exploring TCR-like CAR-Engineered Lymphocyte Cytotoxicity against MAGE-A4. Int J Mol Sci 2023; 24:15134. [PMID: 37894816 PMCID: PMC10606439 DOI: 10.3390/ijms242015134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Julia Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Kurilin Vasily
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Olga Solovjeva
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Alexander Silkov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Yao CY, Hu ZS, Yuan RL, Jin J, Chen ZX. CD32 Expression by CD4 + T and CD8 + T Lymphocytes Is Increased in Patients with Chronic Hepatitis B Virus Infection. Viral Immunol 2023; 36:351-359. [PMID: 37289774 DOI: 10.1089/vim.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
FcγR is expressed by many immune cells and plays an important role in the immune response to hepatitis B virus (HBV) infection. CD32 belongs to the FcγR family. This study aimed to observe changes in CD32 expression by CD4+ T and CD8+ T lymphocytes in chronic HBV infection patients and evaluate the clinical utility of CD4+ T and CD8+ T CD32 expression to assess the severity of liver injury in chronic HBV-infected patients. A total of 68 chronic HBV patients and 40 healthy individuals were recruited, and the median fluorescence intensity (MFI) of CD32 expression on CD4+ T, CD8+ T lymphocytes was measured using flow cytometry and the CD4+ T, CD8+ T CD32 index was calculated. The reactivity of the healthy individual lymphocytes to mixed patients' plasma containing HBV was observed. Finally, the correlation between CD4+ T, CD8+ T lymphocytes CD32 MFI and liver function indicator levels was analyzed. The CD4+ T, CD8+ T CD32 MFI and index were significantly elevated in HBV patient groups than in normal control group (p < 0.001, for all). Furthermore, the CD32 MFI of healthy persons' CD4+ T and CD8+ T lymphocytes were remarkably increased when stimulated with mixed patients' plasma containing high HBV copies (p < 0.001; P < 0.001). More importantly, in HBV patients, there was a significant positive correlation between CD4+ T, CD8+ T CD32 MFI and the level of serum aspartate aminotransferase (p < 0.05, p < 0.05). In conclusion, the increased expression of CD32 on CD4+ T and CD8+ T lymphocytes might be potential promising biomarkers for the severity of liver function impairment in chronic HBV patients.
Collapse
Affiliation(s)
- Chun-Yan Yao
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zhao-Suo Hu
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Run-Lin Yuan
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zheng-Xu Chen
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
An T, Guo M, Fan C, Huang S, Liu H, Liu K, Wang Z. sFgl2-Treg Positive Feedback Pathway Protects against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032338. [PMID: 36768661 PMCID: PMC9916961 DOI: 10.3390/ijms24032338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFgl2), a novel effector of regulatory T cells (Tregs), has been demonstrated to have potent immunosuppressive functions. Multiple studies indicate that Tregs could exert important atheroprotective effects, but their numbers gradually decrease during atherogenesis. The receptor of sFgl2 can be expressed on Treg precursor cells, while the role of sFgl2 on Treg differentiation and atherosclerosis progression remains unclear. Firstly, we detected that the sFgl2 was decreased in humans and mice with atherosclerotic diseases and was especially lower in their vulnerable plaques. Then, we used both Adeno-associated virus-sFgl2 (AAV-sFgl2)-injected ApoE-/- mice, which is systemic overexpression of sFgl2, and sFgl2TgApoE-/- bone marrow cells (BMC)-transplanted ApoE-/- mice, which is almost immune-system-specific overexpression of sFgl2, to explore the role of sFgl2 in atherosclerosis. Our experiment data showed that AAV-sFgl2 and BMT-sFgl2 could reduce atherosclerotic area and enhance plaque stability. Mechanistically, sFgl2 increases the abundance and immunosuppressive function of Tregs, which is partly mediated by binding to FcγRIIB receptors and phosphorylating Smad2/3. Collectively, sFgl2 has an atheroprotective effect that is mainly achieved by forming a positive feedback pathway with Treg. sFgl2 and Treg could synergistically protect against atherosclerosis.
Collapse
Affiliation(s)
- Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| |
Collapse
|
8
|
Porbahaie M, Savelkoul HFJ, de Haan CAM, Teodorowicz M, van Neerven RJJ. Direct Binding of Bovine IgG-Containing Immune Complexes to Human Monocytes and Their Putative Role in Innate Immune Training. Nutrients 2022; 14:nu14214452. [PMID: 36364714 PMCID: PMC9654672 DOI: 10.3390/nu14214452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Bovine milk IgG (bIgG) was shown to bind to and neutralize the human respiratory synovial virus (RSV). In animal models, adding bIgG prevented experimental RSV infection and increased the number of activated T cells. This enhanced activation of RSV-specific T cells may be explained by receptor-mediated uptake and antigen presentation after binding of bIgG-RSV immune complexes (ICs) with FcγRs (primarily CD32) on human immune cells. This indirect effect of bIgG ICs on activation of RSV-specific T cells was confirmed previously in human T cell cultures. However, the direct binding of ICs to antigen-presenting cells has not been addressed. As bovine IgG can induce innate immune training, we hypothesized that this effect could be caused more efficiently by ICs. Therefore, we characterized the expression of CD16, CD32, and CD64 on (peripheral blood mononuclear cells (PBMCs), determined the optimal conditions to form ICs of bIgG with the RSV preF protein, and demonstrated the direct binding of these ICs to human CD14+ monocytes. Similarly, bIgG complexed with a murine anti-bIgG mAb also bound efficiently to the monocytes. To evaluate whether the ICs could induce innate immune training more efficiently than bIgG itself, the resulted ICs, as well as bIgG, were used in an in vitro innate immune training model. Training with the ICs containing bIgG and RSV preF protein-but not the bIgG alone-induced significantly higher TNF-α production upon LPS and R848 stimulation. However, the preF protein itself nonsignificantly increased cytokine production as well. This may be explained by its tropism to the insulin-like growth factor receptor 1 (IGFR1), as IGF has been reported to induce innate immune training. Even so, these data suggest a role for IgG-containing ICs in inducing innate immune training after re-exposure to pathogens. However, as ICs of bIgG with a mouse anti-bIgG mAb did not induce this effect, further research is needed to confirm the putative role of bIgG ICs in enhancing innate immune responses in vivo.
Collapse
Affiliation(s)
- Mojtaba Porbahaie
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Cornelis A. M. de Haan
- Virology Division, Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Malgorzata Teodorowicz
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
10
|
Astorga-Gamaza A, Grau-Expósito J, Burgos J, Navarro J, Curran A, Planas B, Suanzes P, Falcó V, Genescà M, Buzon M. Identification of HIV-reservoir cells with reduced susceptibility to antibody-dependent immune response. eLife 2022; 11:78294. [PMID: 35616530 PMCID: PMC9177146 DOI: 10.7554/elife.78294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
HIV establishes a persistent infection in heterogeneous cell reservoirs, which can be maintained by different mechanisms including cellular proliferation, and represent the main obstacle to curing the infection. The expression of the Fcγ receptor CD32 has been identified as a marker of the active cell reservoirs in people on antiretroviral therapy, but if its expression has any role in conferring advantage for viral persistence is unknown. Here, we report that HIV-infected cells expressing CD32 have reduced susceptibility to natural killer (NK) antibody-dependent cell cytotoxicity (ADCC) by a mechanism compatible with the suboptimal binding of HIV-specific antibodies. Infected CD32 cells have increased proliferative capacity in the presence of immune complexes, and are more resistant to strategies directed to potentiate NK function. Remarkably, reactivation of the latent reservoir from antiretroviral-treated people living with HIV increases the pool of infected CD32 cells, which are largely resistant to the ADCC immune mechanism. Thus, we report the existence of reservoir cells that evade part of the NK immune response through the expression of CD32.
Collapse
Affiliation(s)
| | | | - Joaquín Burgos
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Jordi Navarro
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Adrià Curran
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Bibiana Planas
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Paula Suanzes
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Vicenç Falcó
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Meritxell Genescà
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Maria Buzon
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| |
Collapse
|
11
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
12
|
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022; 10:jitc-2021-003171. [PMID: 34992090 PMCID: PMC8739678 DOI: 10.1136/jitc-2021-003171] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Collapse
Affiliation(s)
- Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy
| | - William J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Mark D Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
He J, Yu L, Qiao Z, Yu B, Liu Y, Ren H. Genetic polymorphisms of FCGR2A, ORAI1 and CD40 are associated with risk of lung cancer. Eur J Cancer Prev 2022; 31:7-13. [PMID: 34871197 DOI: 10.1097/cej.0000000000000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FCGR2A, ORAI1 and CD40 are all involved in the immune and inflammatory responses in the human body, whereas its association with lung cancer is still unclear. This study aimed to investigate the effects of polymorphisms in these genes on the susceptibility to lung cancer. Six candidate single nucleotide polymorphisms (SNPs) were genotyped using a MassARRAY platform in a discovery cohort, including 400 lung cancer patients and 400 healthy controls, and validated in a replication cohort, including 529 lung cancer cases and 532 controls. Comparing the allele frequency distributions, we found that the rs1801274-G, rs511278-T and rs1883832-T were risk alleles for lung cancer (P < 0.05), whereas the minor allele of rs12320939-T was a protective allele for the disease (P = 0.037). Comparing the genotype frequency distributions, we found that rs1801274-GG, rs511278-CT and of rs1883832-TT were risk genotype for lung cancer (P < 0.05). Genetic model analysis showed that the rs1801274 A>G was correlated with an elevated risk of lung cancer in recessive and log-additive models (P < 0.05); rs511278 C>T exhibited an increased risk of disease in dominant and log-additive models (P < 0.05); rs1883832 C>T had a strong relationship with risk of disease in all three models (P < 0.001), whereas rs12320939 G>T was correlated to a reduced risk of disease in recessive and log-additive models (P < 0.05). Finally, the association between the above SNPs and lung cancer risk was validated in a replication cohort (P < 0.05). These results shed new light on the association between immune-related genes and risk of lung cancer, and might be useful for the identification of high-risk individuals.
Collapse
Affiliation(s)
- Jinxi He
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liang Yu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhixiong Qiao
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo Yu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Liu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| |
Collapse
|
14
|
Sun Y, Hu L, Yang P, Zhang M, Wang X, Xiao H, Qiao C, Wang J, Luo L, Feng J, Zheng Y, Wang Y, Shi Y, Chen G. pH Low Insertion Peptide-Modified Programmed Cell Death-Ligand 1 Potently Suppresses T-Cell Activation Under Acidic Condition. Front Immunol 2021; 12:794226. [PMID: 35003115 PMCID: PMC8733706 DOI: 10.3389/fimmu.2021.794226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death-ligand 1 (PD-L1)/PD-1 axis is critical for maintenance of immune homeostasis by limiting overactivation of effector T-cell responses. The impairment of PD-L1/PD-1 signals play an important role in the pathogenesis of inflammatory diseases, making this pathway an ideal target for novel therapeutics to induce immune tolerance. Given weakly acidic environment as a putative hallmark of inflammation, in this study we designed a new cargo by linking the ectodomain of murine PD-L1 to the N terminus of pHLIPs, a low pH-responding and membrane-insertion peptide, and demonstrated its potent immune-suppressive activity. Specifically, PD-L1-pHLIP spanned the cellular membrane and perfectly recognized its ligand PD-1 in acidic buffer. Immobile PD-L1-pHLIP actively inhibited T-cell proliferation and IFN-γ production. Importantly, soluble PD-L1-pHLIP retained its function to dampen T-cell responses under acidic condition instead of neutral aqueous solution. Overall, these data suggest that PD-L1-pHLIP has potentials to be a novel therapeutic avenue for T-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ying Sun
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Peng Yang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
15
|
Liu Y, Feng Y, Tang S, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Deng X, Wang L, Liu X, Yuan H. Aberrant expression of inhibitory receptors on B cells in patients with Graves' disease. Hum Immunol 2021; 83:144-152. [PMID: 34933777 DOI: 10.1016/j.humimm.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
Abstract
The pathophysiological mechanism underlying Graves' disease (GD) remains incompletely understood. Inhibitory receptors on B cells are critical for humoral immunity, which plays a key role in GD pathogenesis. This study aimed to investigate B cell subsets distribution and inhibitory receptor expression on these subsets in GD patients. Peripheral blood was drawn from 41 healthy controls and 46 GD patients (21 patients with moderate GD, 25 patients with severe GD). B cell subset distribution and CD22, CD32b and CD72 expression on B cells were analyzed by flow cytometry. Serum cytokines were examined by enzyme-linked immunosorbent assay (ELISA). Compared with healthy controls, the naïve B cell percentage was increased, while the preswitched memory and conventional memory B cell percentages were decreased. The inhibitory receptors expression, especially CD32b, on B cell subsets was significantly decreased in patients with GD. In addition, the inhibitory receptors expression on B cell subsets from severe GD patients exhibited a decreasing trend compared with those from moderate GD patients. These results suggest that abnormal B cell subset distribution occurs in GD. Impaired inhibitory receptors, in particular CD32b, play a crucial role in GD pathogenesis and might be a therapeutic target to rebuild self-immune tolerance in GD.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Yu Feng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Shasha Tang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Lijun Zhang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Xiaoyang Shi
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Yuanyuan Fang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Junpeng Yang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Xinru Deng
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Limin Wang
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, PR China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China.
| |
Collapse
|
16
|
Badam TV, Hellberg S, Mehta RB, Lechner-Scott J, Lea RA, Tost J, Mariette X, Svensson-Arvelund J, Nestor CE, Benson M, Berg G, Jenmalm MC, Gustafsson M, Ernerudh J. CD4 + T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases. Epigenetics 2021; 17:1040-1055. [PMID: 34605719 PMCID: PMC9487751 DOI: 10.1080/15592294.2021.1982510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4+ T-cells in non-pregnant and pregnant women, during the 1st and 2nd trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2nd trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.Abbreviations: BMIQ: beta-mixture quantile dilation; DMGs: differentially methylated genes; DMPs: differentially methylated probes; FE: fold enrichment; FDR: false discovery rate; GO: gene ontology; GWAS: genome-wide association studies; MDS: multidimensional scaling; MS: multiple sclerosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PPI; protein-protein interaction; RA: rheumatoid arthritis; SD: standard deviation; SLE: systemic lupus erythematosus; SNP: single nucleotide polymorphism; TH: CD4+ T helper cell; VIStA: diVIsive Shuffling Approach.
Collapse
Affiliation(s)
- Tejaswi V Badam
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,School of Bioscience, Skövde University, Skövde, Sweden
| | - Sandra Hellberg
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ratnesh B Mehta
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
| | - Rodney A Lea
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, Australia
| | - Jorg Tost
- Laboratory of Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA-Institut De Biologie Francois Jacob, Evry, France
| | - Xavier Mariette
- Université Paris-Saclay, AP-HP-Université Paris-Saclay, Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (Inserm) U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, France
| | - Judit Svensson-Arvelund
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Obstetrics and Gynaecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
The active human immunodeficiency virus reservoir during antiretroviral therapy: emerging players in viral persistence. Curr Opin HIV AIDS 2021; 16:193-199. [PMID: 33973900 DOI: 10.1097/coh.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To discuss the role of CD4+ T cells with active Human immunodeficiency virus (HIV), meaning infected cells with transcriptional and/or translational viral activity during antiretroviral therapy (ART), focusing on new technologies for its detection, potential cell markers for its characterization, and evidences on the contribution of the active HIV reservoir to long-term viral persistence. RECENT FINDINGS HIV-infected cells expressing viral ribonucleic acid are systematically detected in subjects on long-term ART. In recent years, powerful new tools have provided significant insights into the nature, quantification, and identification of cells with active HIV, including the identification of new cell markers, and the presence of viral activity in specific cell populations located in different cellular and anatomical compartments. Moreover, studies on viral sequence integrity have identified cell clones with intact viral genomes and active viral transcription that could potentially persist for years. Together, new investigations support the notion that the active reservoir could represent a relevant fraction of long-term infected cells, and therefore, the study of its cell sources and mechanisms of maintenance could represent a significant advance in our understanding of viral persistence and the development of new curative strategies. SUMMARY The presence of HIV-infected cells with viral expression during ART has been traditionally overlooked for years. Based on recent investigations, this active viral reservoir could play an important role in HIV persistence.
Collapse
|
18
|
Arsentieva NA, Batsunov OK, Semenov AV, Kudryavtsev IV, Esaulenko EV, Boeva EV, Kovelenov AY, Totolian AA. Association between Higher CD32a+CD4+ T Cell Count and Viral Load in the Peripheral Blood of HIV-infected Patients. Open AIDS J 2021. [DOI: 10.2174/1874613602115010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The significance of CD32a receptor expression in individuals infected with Human Immunodeficiency Virus (HIV) is currently unclear. Previously, B. Descours et al. (2017) concluded that in patients infected with HIV-1, CD32a is expressed on resting T cells that contain HIV DNA. According to the authors, these cells are reservoirs for inducible, replication-competent viruses. However, other studies have reported that CD32a expression is associated with activated T cells and is not a marker of HIV-1 reservoirs. The aims of this study were: to determine the significance of the CD32a marker in HIV infection, to assess its expression on T helper (Th) subpopulations in peripheral blood of HIV-infected individuals and to clarify the relationship between this expression and viral load.
Methods:
For comparative analysis, the following groups were used: 27 HIV-infected patients; 11 individuals with Hepatitis C Virus (HCV) infection; 16 individuals with Hepatitis B Virus (HBV) infection; and 13 healthy donors. Peripheral blood served as the study material. The expression of CD32a receptor on Th cell subpopulations was assessed using flow cytometry. Nonparametric statistical methods were used for data analysis.
Results:
It was found that relative CD32a+ Th cell counts in HIV-infected individuals significantly exceeded corresponding values in other groups: healthy individuals (p<0.0001), those with HCV infection (p=0.0008) and those with HBV infection (p <0.0001). Among the Th subpopulations in HIV-infected patients, the CD32a receptor was predominantly expressed on Th1 cells (p<0.0001) and Th2 cells (p<0.0001), compared with Th17. We found a strong, direct correlation (r=0.78; p<0.0001) between viral load and CD32a+CD4+ T cell count in peripheral blood of HIV-infected individuals.
Conclusion:
Thus, our results provide evidence that the CD32a receptor can serve as a marker of HIV infection, and its expression depends on viral load. Clinical material was used here, for the first time, to show that CD32a is predominantly expressed on Th1 and Th2 cells.
Collapse
|
19
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
20
|
Darcis G, Kootstra NA, Hooibrink B, van Montfort T, Maurer I, Groen K, Jurriaans S, Bakker M, van Lint C, Berkhout B, Pasternak AO. CD32 +CD4 + T Cells Are Highly Enriched for HIV DNA and Can Support Transcriptional Latency. Cell Rep 2021; 30:2284-2296.e3. [PMID: 32075737 PMCID: PMC7050565 DOI: 10.1016/j.celrep.2020.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV latent reservoir forms the major hurdle to an HIV cure. The discovery of CD32 as marker of this reservoir has aroused much interest, but subsequent reports have challenged this finding. Here, we observe a positive correlation between the percentages of CD32+ cells among CD4+ T cells of aviremic cART-treated, HIV-infected individuals and their HIV DNA loads in peripheral blood. Moreover, optimization of the CD32+CD4+ T cell purification protocol reveals prominent enrichment for HIV DNA (mean, 292-fold) in these cells. However, no enrichment for HIV RNA is observed in CD32+CD4+ cells, yielding significantly reduced HIV RNA/DNA ratios. Furthermore, HIV proviruses in CD32+CD4+ cells can be reactivated ex vivo to produce virus, strongly suggesting that these cells support HIV transcriptional latency. Our results underscore the importance of isolating pure, bona fide CD32+CD4+ T cells for future studies and indicate that CD32 remains a promising candidate marker of the HIV reservoir.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Infectious Diseases Department, Liège University Hospital, Liège, Belgium.
| | - Neeltje A Kootstra
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Irma Maurer
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kevin Groen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carine van Lint
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, Leonard NA, Treacy O, Natoni A, Rigalou A, Cabral J, Chiu C, Sasser K, Ritter T, O'Dwyer M, Ryan AE. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology 2021; 10:1859263. [PMID: 33552684 PMCID: PMC7849715 DOI: 10.1080/2162402x.2020.1859263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide’s immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.
Collapse
Affiliation(s)
- Serika D Naicker
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Claire L Feerick
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Dawn Swan
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland
| | - Cian McEllistrim
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Robert Henderson
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Niamh A Leonard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Alessandro Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Athina Rigalou
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | | | - Kate Sasser
- Janssen Research and Development, Pennsylvania, USA
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Michael O'Dwyer
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| |
Collapse
|
22
|
Adams P, Fievez V, Schober R, Amand M, Iserentant G, Rutsaert S, Dessilly G, Vanham G, Hedin F, Cosma A, Moutschen M, Vandekerckhove L, Seguin-Devaux C. CD32 +CD4 + memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice. iScience 2021; 24:101881. [PMID: 33364576 PMCID: PMC7753142 DOI: 10.1016/j.isci.2020.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Collapse
Affiliation(s)
- Philipp Adams
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Virginie Fievez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Mathieu Amand
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
| | - Guido Vanham
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Fanny Hedin
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Antonio Cosma
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège 4000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| |
Collapse
|
23
|
Holgado MP, Raiden S, Sananez I, Seery V, De Lillo L, Maldonado LL, Kamenetzky L, Geffner J, Arruvito L. Fcγ Receptor IIa (FCGR2A) Polymorphism Is Associated With Severe Respiratory Syncytial Virus Disease in Argentinian Infants. Front Cell Infect Microbiol 2021; 10:607348. [PMID: 33392111 PMCID: PMC7775358 DOI: 10.3389/fcimb.2020.607348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 12/02/2022] Open
Abstract
Background Most patients with respiratory syncytial virus (RSV) infection requiring hospitalization have no risk factors for severe disease. Genetic variation in the receptor for the Fc portion of IgG (FcγR) determines their affinity for IgG subclasses driving innate and adaptive antiviral immunity. We investigated the relationship between FcγRIIa-H131R polymorphism and RSV disease. Methods Blood samples were collected from 182 infants ≤24-month-old (50 uninfected, 114 RSV-infected with moderate course and 18 suffering severe disease). FcγRIIa-H131R SNP genotypic frequencies (HH, HR, RR) and anti-RSV IgG1, IgG2 and IgG3 levels were studied. Results Genotypic frequencies for FcγRIIa-H131R SNP were comparable between uninfected and RSV-infected infants. In contrast, we found a significant higher frequency of HH genotype in severe RSV-infected children compared to moderate patients. Among severe group, HH infants presented more factors associated to severity than HR or RR patients did. Furthermore, compared to moderate RSV-infected infants, severe patients showed higher levels of anti-RSV IgG1 and IgG3. Conclusions We found an association between an FcγRIIa (H131) polymorphism and severe RSV disease, which points towards a critical role for interactions between FcγRs and immune complexes in RSV pathogenesis. This genetic factor could also predict the worse outcome and identify those infants at risk during hospitalization.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, CONICET, Ciudad de Autónoma Buenos Aires, Argentina
| | - Silvina Raiden
- Hospital General de Niños "Pedro de Elizalde", Ciudad Autónoma de Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, CONICET, Ciudad de Autónoma Buenos Aires, Argentina
| | - Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, CONICET, Ciudad de Autónoma Buenos Aires, Argentina
| | - Leonardo De Lillo
- Hospital General de Niños "Pedro de Elizalde", Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas L Maldonado
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Kamenetzky
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, CONICET, Ciudad de Autónoma Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, CONICET, Ciudad de Autónoma Buenos Aires, Argentina
| |
Collapse
|
24
|
Sananez I, Raiden S, Holgado MP, Seery V, De Lillo L, Davenport C, Ferrero F, Peeples ME, Geffner J, Arruvito L. Upregulation of CD32 in T Cells from Infants with Severe Respiratory Syncytial Virus Disease: A New Costimulatory Pathway? Am J Respir Cell Mol Biol 2020; 63:133-136. [PMID: 32609012 DOI: 10.1165/rcmb.2020-0025le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Inés Sananez
- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida.,Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Silvina Raiden
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Hospital General de Niños "Pedro de Elizalde"Buenos Aires, Argentinaand
| | - María P Holgado
- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida.,Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Vanesa Seery
- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida.,Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Leonardo De Lillo
- Hospital General de Niños "Pedro de Elizalde"Buenos Aires, Argentinaand
| | | | - Fernando Ferrero
- Hospital General de Niños "Pedro de Elizalde"Buenos Aires, Argentinaand
| | - Mark E Peeples
- Abigail Wexner Research Institute at Nationwide Children's HospitalColumbus, Ohio
| | - Jorge Geffner
- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida.,Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Lourdes Arruvito
- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida.,Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
25
|
Virdi AK, Wallace J, Barbian H, Richards MH, Ritz EM, Sha B, Al-Harthi L. CD32 is enriched on CD4dimCD8bright T cells. PLoS One 2020; 15:e0239157. [PMID: 32960910 PMCID: PMC7508398 DOI: 10.1371/journal.pone.0239157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
CD4dimCD8bright T cells, a genuine population of CD8+ T cells, are highly activated and cytolytic. Recently, the low affinity IgG Fc fragment receptor CD32a was described as marker of HIV latency while others reported that CD32a is associated with T cell activation. Given that we have previously established that CD4dimCD8bright T cells are highly activated, mediate anti-HIV responses, and are infected by HIV, we assessed here CD32 expression on CD4dimCD8bright T cells in context of HIV. CD32 frequency on peripheral CD4dimCD8bright and CD4+ T cells was determined by flow cytometry among HIV negative and HIV positive patients. We report that among HIV- individuals, mean CD32 percent expression was 60% on CD4dimCD8bright T cells and 17% on CD4+ T cells (p<0.01). Among HIV+ patients, mean CD32 percent expression was 54% on CD4dimCD8bright T cells and 12% on CD4+ T cells (p<0.001). CD32 expression on CD4dimCD8bright T cells did not correlate with CD4 count and viral load and was not different by HIV serostatus. CD32 was also higher on other double positive T cell populations in both HIV negative and HIV positive donors in comparison to their single positive T cell counterpart. Together, these studies indicate that CD32 is enriched on double positive T cells regardless of HIV serostatus. The functional role of CD32 on these double positive T cells remains to be elucidated.
Collapse
Affiliation(s)
- Amber K. Virdi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Hannah Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Maureen H. Richards
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Ethan M. Ritz
- Biostatistics and Bioinformatics Core, Rush University Medical Center, Chicago, IL, United States of America
| | - Beverly Sha
- Infectious Diseases Division, Rush Medical College, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
27
|
Jodeleit H, Milchram L, Soldo R, Beikircher G, Schönthaler S, Al-amodi O, Wolf E, Beigel F, Weinhäusel A, Siebeck M, Gropp R. Autoantibodies as diagnostic markers and potential drivers of inflammation in ulcerative colitis. PLoS One 2020; 15:e0228615. [PMID: 32050001 PMCID: PMC7015398 DOI: 10.1371/journal.pone.0228615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
To date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0·01 significance level (FDR<0·1) of the univariate test between the UC and the non-UC group. CD99 emerged as a biomarker to discriminate between both groups (p = 1e-04, AUC = 0·8). In addition, cytokines, chemokines and growth factors were analyzed by Olink's Proseek® Multiplex Inflammation-I 96×96 immuno-qPCR assay and 31 genes were significant at the nominal 0.05 level of the univariate test to discriminate between UC and non-UC donors. MCP-3, HGF and CXCL-9 were identified as the most significant markers to discriminate between UC patients with clinically active and inactive disease. Levels of CXCL10 (cor = 0.3; p = 0.02), CCL25 (cor = 0.25; p = 0.04) and CCL28 (cor = 0.3; p = 0.02) correlated positively with levels of anti CD99. To assess whether autoantibodies are detectable prior to diagnosis with UC, sera from nine donors at two different time points (T-early, median 21 months and T-late, median 6 months) were analyzed. 1201 features were identified with higher reactivity in samples at time points closer to clinical UC presentation. In vitro, additional challenge of peripheral mononuclear cells with CD99 did not activate CD4+ T cells but induced the secretion of IL-10 (-CD99: 20.21±20.25; +CD99: 130.20±89.55; mean ±sd; p = 0.015). To examine the effect of CD99 in vivo, inflammation and autoantibody levels were examined in NOD/ScidIL2Rγnull mice reconstituted with PBMC from UC donors (NSG-UC). Additional challenge with CD99 aggravated disease symptoms and pathological phenotype as indicated by the elevated clinical score (-CD99: 1·85 ± 1·94; +CD99: 4·25 ± 1·48) and histological score (-CD99: 2·16 ± 0·83; +CD99: 3·15 ± 1·16, p = 0·01). Furthermore, levels of anti-CD99 antibodies increased (Control: 398 ± 323; mean MFI ± sd; Ethanol + PBS: 358 ±316; Ethanol + CD99: 1363 ± 1336; Control versus Ethanol + CD99: p = 0.03). In a highly inflammatory environment, frequencies of pro-inflammatory M1 monocytes (CD14+ CD64+: unchallenged 8.09±4.72; challenged 14.2±8.62; p = 0.07; CD14+ CD1a+: unchallenged 16.29 ±6.97; challenged 43.81±14.4, p = 0.0003) increased and levels of autoantibodies in serum decreased in the NSG-UC mouse model. These results suggest that autoantibodies are potent biomarkers to discriminate between UC and non-UC and indicate risk to develop UC. In an inflammatory environment, auto-antibodies may promote the pathological phenotype by activating M1 monocytes in the NSG-UC animal model and also in patients with UC.
Collapse
Affiliation(s)
- Henrika Jodeleit
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
| | - Lisa Milchram
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, Wien, Austria
| | - Regina Soldo
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, Wien, Austria
| | - Gabriel Beikircher
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, Wien, Austria
| | - Silvia Schönthaler
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, Wien, Austria
| | - Omar Al-amodi
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, Hospital of the Ludwig-Maximilian University Munich, München, Germany
| | - Andreas Weinhäusel
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, Wien, Austria
| | - Matthias Siebeck
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
| | - Roswitha Gropp
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
28
|
CD4+CD19+ conjugates favor HIV-1 infection and latency during chronic HIV-1 infection. AIDS 2020; 34:189-195. [PMID: 31634199 DOI: 10.1097/qad.0000000000002402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE CD4CD19 conjugates play an important role in regulating antibody responses and follicular helper T cells development in animal models. However, little is known regarding the characteristic of CD4CD19 conjugates in humans with chronic HIV-1 infection. METHODS The numbers of CD4CD19 conjugates were counted in 86 HIV-1-infected patients, including 66 typical progressors and 20 complete responders. CD4CD19 conjugates were sorted by flow cytometry and dissociated into CD4 T singlets and CD19 B singlets. The phenotypes of these cells were analyzed in both typical progressors and complete responders, and the levels of HIV-1 DNA in CD4CD19 conjugates were measured in 10 complete responders. RESULTS We identified CD4CD19 cells as one type of T-B conjugate in peripheral blood, and the numbers and percentages of CD4CD19 conjugates decreased with HIV-1 disease progression. Phenotypic analysis showed CD4CD19 conjugates expressed higher levels of surface CD32. mRNA analysis found that the mRNA levels for CD32b were significantly higher compared with CD32a in CD4CD19 conjugates. Further analysis found that CD4CD19 conjugates expressed higher levels of CCR7 and CXCR5 than CD4 T and CD19 B singlets. A virus infectivity assay showed that CD4CD19 conjugates expressed higher levels of HIV-1-p24 than CD4CD19 cells. CD4CD19 conjugates in lymph node from typical progressors expressed higher levels of HIV-1-p24 than CD4CD19 conjugates in respective peripheral blood. Importantly, CD4CD19 conjugates from complete responders contained higher levels of HIV-1 DNA than total CD4 T cells. CONCLUSION Our study indicates that CD4CD19 conjugates actively participate in HIV-1 infection and latency, and may serve as a new cellular target to eliminate latency.
Collapse
|
29
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|