1
|
Zhang HJ, Zhu L, Xie QH, Zhang LZ, Liu JY, Feng YYF, Chen ZK, Xia HF, Fu QY, Yu ZL, Chen G. Extracellular vesicle-packaged PD-L1 impedes macrophage-mediated antibacterial immunity in preexisting malignancy. Cell Rep 2024; 43:114903. [PMID: 39489940 DOI: 10.1016/j.celrep.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malignancies can compromise systemic innate immunity, but the underlying mechanisms are largely unknown. Here, we find that tumor-derived small extracellular vesicles (sEVs; TEVs) deliver PD-L1 to host macrophages, thereby impeding antibacterial immunity. Mice implanted with Rab27a-knockdown tumors are more resistant to bacterial infection than wild-type controls. Injection of TEVs into mice impairs macrophage-mediated bacterial clearance, increases systemic bacterial dissemination, and enhances sepsis score in a PD-L1-dependent manner. Mechanistically, TEV-packaged PD-L1 inhibits Bruton's tyrosine kinase/PLCγ2 signaling-mediated cytoskeleton reorganization and reactive oxygen species generation, impacting bacterial phagocytosis and killing by macrophages. Neutralizing PD-L1 markedly normalizes macrophage-mediated bacterial clearance in tumor-bearing mice. Importantly, circulating sEV PD-L1 levels in patients with tumors can predict bacterial infection susceptibility, while patients with tumors treated with αPD-1 exhibit fewer postoperative infections. These findings identify a mechanism by which cancer cells dampen host innate immunity-mediated bacterial clearance and suggest targeting TEV-packaged PD-L1 to reduce bacterial infection susceptibility in tumor-bearing conditions.
Collapse
Affiliation(s)
- He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Yuan Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Englebert K, Taquin A, Azouz A, Acolty V, Vande Velde S, Vanhollebeke M, Innes H, Boon L, Keler T, Leo O, Goriely S, Moser M, Oldenhove G. The CD27/CD70 pathway negatively regulates visceral adipose tissue-resident Th2 cells and controls metabolic homeostasis. Cell Rep 2024; 43:113824. [PMID: 38386557 DOI: 10.1016/j.celrep.2024.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.
Collapse
Affiliation(s)
- Kevin Englebert
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Anaelle Taquin
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Abdulkader Azouz
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Valérie Acolty
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sylvie Vande Velde
- Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium; Machine Learning Group, ULB, Brussels, Belgium
| | - Marie Vanhollebeke
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Hadrien Innes
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | | | | | - Oberdan Leo
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Guillaume Oldenhove
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
3
|
Lv M, Guo S, Zhang X, Zou Y, Chen Q, Zang C, Huang S, Hu Y, Wang Y, Wang Q, Zhong J. Attenuated Salmonella-delivered PD-1 siRNA enhances the antitumor effects of EZH2 inhibitors in colorectal cancer. Int Immunopharmacol 2023; 124:110918. [PMID: 37708707 DOI: 10.1016/j.intimp.2023.110918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Immunotherapy has made significant progress in the treatment of malignant tumors. However, strategies to combine immunotherapy with anticancer drugs have attracted great attention due to the low response rate and unique toxicity profile of immunotherapies and the subsequent development of acquired resistance in some initial responders. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex,is highly expressed in a variety of tumors, and targeting EZH2 has become a new strategy for tumor therapy and drug combination. Here,we studied the effect of EZH2 inhibitors on colorectal cancer cells and their combination with immunotherapy. Our results demonstrated that EZH2 inhibitors can not only significantly inhibit the survival of colorectal cancer (CRC) cells and induce apoptosis, effectively inhibit cell invasion and migration, but also cause an increase in the expression of PD-L1 receptors on the cell surface. To determine the effect of EZH2 in combination with immunotherapy, we combine EZH2 inhibitors with PD-1 siRNA delivered by attenuated Salmonella. The vivo experiments have shown that the combination of EZH2 inhibitors and Salmonella-delivered PD-1 siRNA can further inhibit the development of CRC, trigger effective anti-tumor immunity, and improve therapeutic efficacy. Its underlying mechanisms mainly involve synergistic immunomodulation and apoptosis. This study suggests an emerging strategy based on a combination of EZH2 inhibitor and immunotherapy based on PD-1 inhibition.
Collapse
Affiliation(s)
- Mengmeng Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sheng Guo
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China, Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyu Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Zou
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiang Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chongyi Zang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuo Huang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhan Hu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qianqing Wang
- Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China; Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
4
|
Mittermüller D, Otto L, Long Z, Kraus A, Beer A, Hasenberg A, Zelinskyy G, Westmeier J, Hasenkrug KJ, Dittmer U, Gunzer M. Regulatory T cells suppress the motility of cytotoxic T cells in Friend retrovirus-infected mice. JCI Insight 2023; 8:e167482. [PMID: 37427590 PMCID: PMC10371334 DOI: 10.1172/jci.insight.167482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daniela Mittermüller
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zoë Long
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kim J Hasenkrug
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Ulf Dittmer
- Institute for Virology and
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institute for Analytical Sciences ISAS-e.V., Dortmund, Germany
| |
Collapse
|
5
|
Crosstalk between apoptosis and cytotoxic lymphocytes (CTLs) in the course of Lagovirus europaeus GI.1a infection in rabbits. J Vet Res 2023; 67:41-47. [PMID: 37008759 PMCID: PMC10062044 DOI: 10.2478/jvetres-2023-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Abstract
Introduction
Lagovirus europaeus is a single-stranded RNA virus causing an acute fatal disease in wild and domestic rabbits around the world. Studies have shown that the pivotal process impacting the immune response against the disease is apoptosis, registered mainly in hepatocytes and in peripheral blood, together with an increased number of cytotoxic lymphocytes (CTLs). It is known that cytotoxic lymphocytes can induce target cells to undergo apoptosis on the pseudoreceptor pathway, such apoptosis having been found in several acute and chronic viral infections. The study aimed to assess the crosstalk between the apoptosis of peripheral blood lymphocytes and CD8+ T lymphocytes (as CTLs) in rabbits infected with 6 Lagovirus europaeus GI.1a viruses.
Material and Methods
Sixty rabbits of Polish hybrid breed comprising both sexes and weighing 3.2–4.2 kg were the experimental group, and an identical group was the control. Each of the six GI.1a Lagovirus europaeus viruses was inoculated into ten experimental rabbits. Control rabbits received glycerol as a placebo. Flow cytometric analysis was performed on blood from the study and control group animals for peripheral blood lymphocyte apoptosis and CTL percentage determination.
Results
The activation of apoptosis in peripheral blood lymphocytes was recorded from 4 h post inoculation (p.i.) up to 36 h p.i. The percentage of CTLs in the total blood pool decreased from 8 to 36 h p.i. A negative correlation between apoptosis of lymphocytes and the number of CTLs was proven.
Conclusion
This may be the first evidence of virus-induced CTL apoptosis in Lagovirus europaeus GI.1a infection.
Collapse
|
6
|
Song Y, Wang J, Wang Y, Wu L, You Y, Song D, Chen L, Meng G, He X, Cui T, Wang X, Yin Q, Wang Z. PD-1 blockade and lenalidomide combination therapy for chronic active Epstein-Barr virus infection. Clin Microbiol Infect 2023:S1198-743X(23)00039-3. [PMID: 36702399 DOI: 10.1016/j.cmi.2023.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Chronic active Epstein-Barr virus infection (CAEBV) is a prototype of EBV-associated T-or NK-cell lymphoproliferative diseases. It is a disease with poor outcome. Almost all current therapies are ineffective except of allogeneic hematopoietic stem cell transplantation. METHODS We investigated the efficacy and safety of programmed death 1 (PD-1) blockade (Sintilimab), combined with lenalidomide, which is an immunomodulatory drug, in an open-label, single-center, prospective study involving CAEBV patients. PD1 blockade 2mg/kg was given every two weeks by intravenous infusion on day 1, and lenalidomide 5mg (age<18 years)/10mg (age ≥ 18 years) was given orally once a day on day 1-14. RESULTS As of Nov 15, 2020, 34 patients were enrolled. As of the Feb 1, 2021 analysis cut-off date, 24 cases completed at least 3 courses and were assessed for efficacy. The overall response rate is 54.2% (13/24, 45.8% complete response; 8.3% partial response). EBV-DNA copies in PBMC decreased significantly (p = 0.002). The proportion of CD8+T cells in lymphocytes increased (p = 0.007). The comparative analysis between response group and non-response group showed the proportion of Effector Memory CD8+ T cells and cytokines of CTLs activation (IFN-γ, CD27, CD30, MIG, IP-10) increased significantly in Response-group after treatment. Whole-exome sequencing generated from peripheral blood and saliva samples reveal that Non-Response group had a higher somatic mutational load of copy number variation in background. With a median follow-up time of 17.8 months, 22 of 24 patients were alive with an estimated survival probability of 91.3% at 1 year. All 34 patients were assessed for safety evaluation. The possible drug-related adverse events were reported in 17 (50%) patients. CONCLUSIONS PD-1 blockade combined with lenalidomide was an effective and safe therapy for CAEBV patients. The significant therapeutic effect and the different characteristics between response and non-response group, provides a possible predictive value for CAEBV treatment option.
Collapse
Affiliation(s)
- Yue Song
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yini Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yahong You
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deli Song
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Leilei Chen
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gaungqiang Meng
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodan He
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Cui
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingxia Yin
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Ou H, Chen K, Chen L, Wu H. Bioinformatic analysis of PD-1 checkpoint blockade response in influenza infection. BMC Genom Data 2022; 23:65. [PMID: 35962325 PMCID: PMC9374577 DOI: 10.1186/s12863-022-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) signaling pathway is significantly upregulated in influenza virus infection, which impairs the antiviral response. Blocking this signaling pathway may reduce the damage, lower the virus titer in lung tissue, and alleviate the symptoms of infection to promote recovery. In addition to the enhanced viral immune response, using of immune checkpoint inhibitors in influenza virus infection is controversial, the aim of this study was to identify the key factors and regulatory mechanisms in the PD-1 checkpoint blockade response microenvironment in influenza infection. METHODS A BALB/c mouse model of influenza A/PR8(H1N1) infection was established then constructed, and whole-transcriptome sequencing including mRNAs, miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs) of mice treated with PD-1 checkpoint blockade by antibody treatment and IgG2a isotype control before infection with A/PR8(H1N1) were performed. Subsequently, the differential expression of transcripts between these two groups was analyzed, followed by functional interaction prediction analysis to investigate gene-regulatory circuits. RESULTS In total, 84 differentially expressed dif-mRNAs, 36 dif-miRNAs, 90 dif-lncRNAs and 22 dif-circRNAs were found in PD-1 antagonist treated A/PR8(H1N1) influenza-infected lungs compared with the controls (IgG2a isotype control treated before infection). In spleens between the above two groups, 45 dif-mRNAs, 36 dif-miRNAs, 57 dif-lncRNAs, and 24 dif-circRNAs were identified. Direct function enrichment analysis of dif-mRNAs and dif-miRNAs showed that these genes were mainly involved in myocardial damage related to viral infection, mitogen activated protein kinase (MAPK) signaling pathways, RAP1 (Ras-related protein 1) signaling pathway, and Axon guidance. Finally, 595 interaction pairs were obtained for the lungs and 462 interaction pairs for the spleens were obtained in the competing endogenous RNA (ceRNA) complex network, in which the downregulated mmu-miR-7043-3p and Vps39-204 were enriched significantly in PD-1 checkpoint blockade treated A/PR8(H1N1) infection group. CONCLUSIONS The present study provided a basis for the identification of potential pathways and hub genes that might be involved in the PD-1 checkpoint blockade response microenvironment in influenza infection.
Collapse
Affiliation(s)
- Huilin Ou
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310015, China
| | - Hongcheng Wu
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
8
|
Li F, Liao B, Wang T, Qi T, Wang Y. Programmed Cell Death Protein 1/Programmed Cell Death Protein Ligand 1 Immunosuppressants in Advanced Non-Small Cell Lung Cancer Research Progress in Treatment. Front Pharmacol 2022; 13:918709. [PMID: 35784705 PMCID: PMC9243588 DOI: 10.3389/fphar.2022.918709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
PD-1/PD-L1 play key roles in tumor immune escape and the formation of the tumor microenvironment, and are closely related to the generation and development of tumors. Blocking the PD-1/PD-L1 pathway can reshape the tumor microenvironment or block the formation of the tumor microenvironment and enhance endogenous antitumor immune response. Clinical trials show that the treatment of non-small cell lung cancer (NSCLC) with PD-1/PD-L1 inhibitors has significant advantages. The review briefly describes these basic principles of the PD-1/PD-L1 pathway and action mechanism in the treatment of NSCLC. A summary of global PD-1/PD-L1 clinical trials and five PD-1/PD-L1 inhibitors approved by FDA, EMA and NMPA for advanced NSCLC were analyzed.
Collapse
Affiliation(s)
- Feng Li
- Sichuan Cancer Hospital, Cancer Hospital Affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Binchi Liao
- National Medical Products Administration Institute of Executive Development, Beijing, China
| | - Ting Wang
- Sichuan Cancer Hospital, Cancer Hospital Affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Sichuan Cancer Hospital, Cancer Hospital Affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixin Wang
- Sichuan Cancer Hospital, Cancer Hospital Affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yixin Wang,
| |
Collapse
|
9
|
Mormile R. Myocarditis and pericarditis following mRNA COVID-19 vaccination in younger patients: is there a shared thread? Expert Rev Cardiovasc Ther 2022; 20:87-90. [PMID: 35180029 DOI: 10.1080/14779072.2022.2044305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, San G Moscati Hospital, Aversa, Italy
| |
Collapse
|
10
|
Lanfermeijer J, Nühn MM, Emmelot ME, Poelen MCM, van Els CACM, Borghans JAM, van Baarle D, Kaaijk P, de Wit J. Longitudinal Characterization of the Mumps-Specific HLA-A2 Restricted T-Cell Response after Mumps Virus Infection. Vaccines (Basel) 2021; 9:1431. [PMID: 34960178 PMCID: PMC8707000 DOI: 10.3390/vaccines9121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Waning of the mumps virus (MuV)-specific humoral response after vaccination has been suggested as a cause for recent mumps outbreaks in vaccinated young adults, although it cannot explain all cases. Moreover, CD8+ T cells may play an important role in the response against MuV; however, little is known about the characteristics and dynamics of the MuV-specific CD8+ T-cell response after MuV infection. Here, we had the opportunity to follow the CD8+ T-cell response to three recently identified HLA-A2*02:01-restricted MuV-specific epitopes from 1.5 to 36 months post-MuV infection in five previously vaccinated and three unvaccinated individuals. The infection-induced CD8+ T-cell response was dominated by T cells specific for the ALDQTDIRV and LLDSSTTRV epitopes, while the response to the GLMEGQIVSV epitope was subdominant. MuV-specific CD8+ T-cell frequencies in the blood declined between 1.5 and 9 months after infection. This decline was not explained by changes in the expression of inhibitory receptors or homing markers. Despite the ongoing changes in the frequencies and phenotype of MuV-specific CD8+ T cells, TCRβ analyses revealed a stable MuV-specific T-cell repertoire over time. These insights in the maintenance of the cellular response against mumps may provide hallmarks for optimizing vaccination strategies towards a long-term cellular memory response.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marieke M. Nühn
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
| | - Maarten E. Emmelot
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
| | - Martien C. M. Poelen
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
| | - Cécile A. C. M. van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Patricia Kaaijk
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (J.L.); (M.M.N.); (M.E.E.); (M.C.M.P.); (C.A.C.M.v.E.); (D.v.B.); (P.K.)
| |
Collapse
|
11
|
Tinoco R, Neubert EN, Stairiker CJ, Henriquez ML, Bradley LM. PSGL-1 Is a T Cell Intrinsic Inhibitor That Regulates Effector and Memory Differentiation and Responses During Viral Infection. Front Immunol 2021; 12:677824. [PMID: 34326837 PMCID: PMC8314012 DOI: 10.3389/fimmu.2021.677824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Effective T cell differentiation during acute virus infections leads to the generation of effector T cells that mediate viral clearance, as well as memory T cells that confer protection against subsequent reinfection. While inhibitory immune checkpoints have been shown to promote T cell dysfunction during chronic virus infections and in tumors, their roles in fine tuning the differentiation and responses of effector and memory T cells are only just beginning to be appreciated. We previously identified PSGL-1 as a fundamental regulator of T cell exhaustion that sustains expression of several inhibitory receptors, including PD-1. We now show that PSGL-1 can restrict the magnitude of effector T cell responses and memory T cell development to acute LCMV virus infection by limiting survival, sustaining PD-1 expression, and reducing effector responses. After infection, PSGL-1-deficient effector T cells accumulated to a greater extent than wild type T cells, and preferentially generated memory precursor cells that displayed enhanced accumulation and functional capacity in response to TCR stimulation as persisting memory cells. Although, PSGL-1-deficient memory cells did not exhibit inherent greater sensitivity to cell death, they failed to respond to a homologous virus challenge after adoptive transfer into naïve hosts indicating an impaired capacity to generate memory effector T cell responses in the context of viral infection. These studies underscore the function of PSGL-1 as a key negative regulator of effector and memory T cell differentiation and suggest that PSGL-1 may limit excessive stimulation of memory T cells during acute viral infection.
Collapse
Affiliation(s)
- Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Emily N Neubert
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher J Stairiker
- Infectious and Inflammatory Disease Center, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Linda M Bradley
- Infectious and Inflammatory Disease Center, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
12
|
Cai X, Xu Q, Zhou C, Yin T, Zhou L. Serum β2-microglobulin may be a viral biomarker by analyzing children with upper respiratory tract infections and exanthem subitum: a retrospective study. PeerJ 2021; 9:e11109. [PMID: 33868812 PMCID: PMC8034339 DOI: 10.7717/peerj.11109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Due to the lack of effective and feasible viral biomarkers to distinguish viral infection from bacterial infection, children often receive unnecessary antibiotic treatment. To identify serum β2-microglobulin that distinguishes bacterial upper respiratory tract infection from viral upper respiratory tract infection and exanthem subitum in children. Methods This retrospective study was conducted from January 1, 2019 to September 30, 2020 in Yancheng Third People’s Hospital. Children with upper respiratory tract infection and exanthem subitum were recruited. The concentration of serum β2-microglobulin in the viral and bacterial infection groups were statistically analyzed. Results A total of 291 children included 36 with bacterial upper respiratory tract infection (median age, 13 months; 44.4% female), 197 with viral upper respiratory tract infection (median age, 12 months; 43.7% female) and 58 with exanthem subitum (median age, 13 months; 37.9% female). When the concentration of β2-microglobulin was 2.4mg/L, the sensitivity to distinguish viral from bacterial upper respiratory tract infection was 81.2% (95% CI [75.1–86.4%]), and the specificity was 80.6% (95% CI [64.0–91.8]%). When the cutoff was 2.91 mg/L, the sensitivity of β2-microglobulin to distinguish exanthem subitum from bacterial upper respiratory tract infection was 94.8% (95% CI [85.6–98.9]%), and the specificity was 100% (95% CI [90.3–100]%). Conclusions Serum β2-microglobulin may be a significant biological indicator in children with upper respiratory tract infection and exanthem subitum.
Collapse
Affiliation(s)
- Xulong Cai
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China.,Department of Pediatrics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Qiaolan Xu
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China.,Department of Pediatrics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Chenrong Zhou
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China.,Department of Pediatrics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Tongjin Yin
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China.,Department of Pediatrics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Li Zhou
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China.,Department of Pediatrics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
13
|
Tan Y, Tang F. SARS-CoV-2-mediated immune system activation and potential application in immunotherapy. Med Res Rev 2021; 41:1167-1194. [PMID: 33185926 DOI: 10.1002/med.21756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Although novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated pulmonary inflammation has recently attracted great attention, its pathology and pathogenesis are not clear. Notably, due to both its high infective and pathogenicity, SARS-CoV-2 infection may cause a severe sometimes fatal respiratory disease. A specific vaccine, which relies on the analysis of SARS-CoV-2 structural protein-derived antigenic peptides, is indispensable for restraining the spread and reducing the mortality of SARS-CoV-2. SARS-CoV-2 infections activate cytototxic, myeloid-derived suppressor cells, dendritic cells, macrophages, as well as natural killer, B, helper T, and regulatory T cells, thus further stimulating innate and antigen-specific immune responses. Nevertheless, many immune effector cells cause hyperinflammation and pulmonary immunopathology by releasing proinflammatory cytokines and chemokines, including interferon (IFN)-α, IFN-β, IFN-γ, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1A, MIP1B, interleukin (IL)-1, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, and IL-18, platelet-derived growth factor, fibroblast growth factor, tumor necrosis factor-α, and induced protein 10. Interestingly, related products derived from SARS-CoV-2 are likely to trigger immune evasion. Therefore, investigating SARS-CoV-2-specific vaccines, blocking immunopathology, and prohibiting immune evasion are urgently required for treating SARS-CoV-2 infection. In this review, we emphatically illuminated the development of a SARS-CoV-2-specific vaccine based on the analysis of epitopes, also expounding the molecular mechanisms of SARS-CoV-2-mediated cytokine release syndrome. Furthermore, we comprehensively discussed SARS-CoV-2-associated immune evasion and lung immunopathology. Lastly, potential therapeutic strategies against SARS-CoV-2 were explored.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Faqin Tang
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
14
|
Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, Sabzevari A, Azizi G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2020; 93:e12998. [PMID: 33190302 PMCID: PMC7744910 DOI: 10.1111/sji.12998] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a novel human coronavirus responsible for the Coronavirus disease 2019 (COVID-19) pandemic. Pneumonia and acute respiratory distress syndrome are the major complications of COVID-19. SARS-CoV-2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses later in the disease. These uncontrolled inflammatory responses may lead to local and systemic tissue damage. In patients with severe COVID-19, eosinopenia and lymphopenia with a severe reduction in the frequency of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells are a common feature. COVID-19 severity hinges on the development of cytokine storm characterized by elevated serum levels of pro-inflammatory cytokines. Moreover, IgG-, IgM- and IgA-specific antibodies against SARS-CoV-2 can be detected in most patients, along with the viral RNA, forming the basis for assays that aid in patient diagnosis. Elucidating the immunopathological outcomes due to COVID-19 could provide potential targets for immunotherapy and are important for choosing the best clinical management by consultants. Currently, along with standard supportive care, therapeutic approaches to COVID-19 treatment involve the use of antiviral agents that interfere with the SARS-CoV-2 lifecycle to prevent further viral replication and utilizing immunomodulators to dampen the immune system in order to prevent cytokine storm and tissue damage. While current therapeutic options vary in efficacy, there are several molecules that were either shown to be effective against other viruses such as HIV or show promise in vitro that could be added to the growing arsenal of agents used to control COVID-19 severity and spread.
Collapse
Affiliation(s)
- Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Ibrahim Tahir
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohamed Alsabbagh
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of medical sciences, Karaj, Iran.,CinnaGen Research and production Co, Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of medical sciences, Karaj, Iran.,Orchid pharmed Company, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Huang H, Rückborn M, Le-Trilling VTK, Zhu D, Yang S, Zhou W, Yang X, Feng X, Lu Y, Lu M, Dittmer U, Yang D, Trilling M, Liu J. Prophylactic and therapeutic HBV vaccination by an HBs-expressing cytomegalovirus vector lacking an interferon antagonist in mice. Eur J Immunol 2020; 51:393-407. [PMID: 33029793 DOI: 10.1002/eji.202048780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Cytomegalovirus (CMV)-based vaccines show promising effects against chronic infections in nonhuman primates. Therefore, we examined the potential of hepatitis B virus (HBV) vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg. Immunological consequences of vaccine virus attenuation were addressed by either replacing the dispensable gene m157 ("MCMV-HBsȍ) or the gene M27 ("ΔM27-HBs"), the latter encodes a potent IFN antagonist targeting the transcription factor STAT2. M27 was chosen, since human CMV encodes an analogous gene product, which also induced proteasomal STAT2 degradation by exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T-cell responses. When we explored the therapeutic potential of MCMV-based vaccines, especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted in increased intrahepatic HBs-specific CD8+ T-cell responses and HBV clearance in persistently infected mice. Our results demonstrated that vaccines based on a replication competent MCMV attenuated through the deletion of an IFN antagonist targeting STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice in prophylactic and therapeutic immunization regimes.
Collapse
Affiliation(s)
- Hongming Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meike Rückborn
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangqing Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Abdelhamid L, Cabana-Puig X, Mu Q, Moarefian M, Swartwout B, Eden K, Das P, Seguin RP, Xu L, Lowen S, Lavani M, Hrubec TC, Jones CN, Luo XM. Quaternary Ammonium Compound Disinfectants Reduce Lupus-Associated Splenomegaly by Targeting Neutrophil Migration and T-Cell Fate. Front Immunol 2020; 11:575179. [PMID: 33193366 PMCID: PMC7609861 DOI: 10.3389/fimmu.2020.575179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hypersensitivity reactions and immune dysregulation have been reported with the use of quaternary ammonium compound disinfectants (QACs). We hypothesized that QAC exposure would exacerbate autoimmunity associated with systemic lupus erythematosus (lupus). Surprisingly, however, we found that compared to QAC-free mice, ambient exposure of lupus-prone mice to QACs led to smaller spleens with no change in circulating autoantibodies or the severity of glomerulonephritis. This suggests that QACs may have immunosuppressive effects on lupus. Using a microfluidic device, we showed that ambient exposure to QACs reduced directional migration of bone marrow-derived neutrophils toward an inflammatory chemoattractant ex vivo. Consistent with this, we found decreased infiltration of neutrophils into the spleen. While bone marrow-derived neutrophils appeared to exhibit a pro-inflammatory profile, upregulated expression of PD-L1 was observed on neutrophils that infiltrated the spleen, which in turn interacted with PD-1 on T cells and modulated their fate. Specifically, QAC exposure hindered activation of splenic T cells and increased apoptosis of effector T-cell populations. Collectively, these results suggest that ambient QAC exposure decreases lupus-associated splenomegaly likely through neutrophil-mediated toning of T-cell activation and/or apoptosis. However, our findings also indicate that even ambient exposure could alter immune cell phenotypes, functions, and their fate. Further investigations on how QACs affect immunity under steady-state conditions are warranted.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| | - Maryam Moarefian
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Brianna Swartwout
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Prerna Das
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ryan P. Seguin
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Sarah Lowen
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Mital Lavani
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Terry C. Hrubec
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Caroline N. Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Bioengineering, University of Texas, Dallas, TX, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Goshu BA, Chen H, Moussa M, Cheng J, Catalfamo M. Combination rhIL-15 and Anti-PD-L1 (Avelumab) Enhances HIVGag-Specific CD8 T-Cell Function. J Infect Dis 2020; 222:1540-1549. [PMID: 32433762 PMCID: PMC7529035 DOI: 10.1093/infdis/jiaa269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1-/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.
Collapse
Affiliation(s)
- Bruktawit A Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Westmeier J, Paniskaki K, Karaköse Z, Werner T, Sutter K, Dolff S, Overbeck M, Limmer A, Liu J, Zheng X, Brenner T, Berger MM, Witzke O, Trilling M, Lu M, Yang D, Babel N, Westhoff T, Dittmer U, Zelinskyy G. Impaired Cytotoxic CD8 + T Cell Response in Elderly COVID-19 Patients. mBio 2020; 11:e02243-20. [PMID: 32948688 PMCID: PMC7502863 DOI: 10.1128/mbio.02243-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a T cell response that most likely contributes to virus control in COVID-19 patients but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients. Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B as well as perforin within different effector CD8+ T cell subsets. PD-1-expressing CD8+ T cells also produced cytotoxic molecules during acute infection, indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years, the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2. Our data provide valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.IMPORTANCE Cytotoxic T cells are responsible for the elimination of infected cells and are key players in the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group than in younger patients.
Collapse
Affiliation(s)
- Jaana Westmeier
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Krystallenia Paniskaki
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Zehra Karaköse
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marvin Overbeck
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Limmer
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Thorsten Brenner
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc M Berger
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Nina Babel
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Timm Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University of Bochum, Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| |
Collapse
|
19
|
Ji P, Chen J, Golding A, Nikolov NP, Saluja B, Ren YR, Sahajwalla CG. Immunomodulatory Therapeutic Proteins in COVID-19: Current Clinical Development and Clinical Pharmacology Considerations. J Clin Pharmacol 2020; 60:1275-1293. [PMID: 32779201 PMCID: PMC7436618 DOI: 10.1002/jcph.1729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic caused by infection with SARS‐CoV‐2 has led to more than 600 000 deaths worldwide. Patients with severe disease often experience acute respiratory distress characterized by upregulation of multiple cytokines. Immunomodulatory biological therapies are being evaluated in clinical trials for the management of the systemic inflammatory response and pulmonary complications in patients with advanced stages of COVID‐19. In this review, we summarize the clinical pharmacology considerations in the development of immunomodulatory therapeutic proteins for mitigating the heightened inflammatory response identified in COVID‐19.
Collapse
Affiliation(s)
- Ping Ji
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jianmeng Chen
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amit Golding
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nikolay P Nikolov
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bhawana Saluja
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yunzhao R Ren
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chandrahas G Sahajwalla
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
20
|
Herrmann M, Schulte S, Wildner NH, Wittner M, Brehm TT, Ramharter M, Woost R, Lohse AW, Jacobs T, Schulze zur Wiesch J. Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease. Front Immunol 2020; 11:1870. [PMID: 32983106 PMCID: PMC7479337 DOI: 10.3389/fimmu.2020.01870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. In malaria, T cells express a variety of co-inhibitory receptors which might be a consequence of their activation but also might limit their overwhelming function. Thus, T cells are implicated in protection as well as in pathology. The outcome of malaria is thought to be a consequence of the balance between co-activation and co-inhibition of T cells. Following the hypothesis that T cells in COVID-19 might have a similar, dual function, we comprehensively characterized the differentiation (CCR7, CD45RO) and activation status (HLA-DR, CD38, CD69, CD226), the co-expression of co-inhibitory molecules (PD1, TIM-3, LAG-3, BTLA, TIGIT), as well as the expression pattern of the transcription factors T-bet and eomes of CD8+ and CD4+ T cells of PBMC of n = 20 SARS-CoV-2 patients compared to n = 10 P. falciparum infected patients and n = 13 healthy controls. Overall, acute COVID-19 and malaria infection resulted in a comparably elevated activation and altered differentiation status of the CD8+ and CD4+ T cell populations. T effector cells of COVID-19 and malaria patients showed higher frequencies of the inhibitory receptors T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte-activation gene-3 (LAG-3) which was linked to increased activation levels and an upregulation of the transcription factors T-bet and eomes. COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.
Collapse
Affiliation(s)
- Marissa Herrmann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils H. Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Ansgar W. Lohse
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
21
|
Cai X, Xu Q, Zhou C, Zhou L, Yong Q, Mu Q, Cheng Y, Wang J, Xie J. Distribution characteristics of serum β2-microglobulin between viral and bacterial lower respiratory tract infections: a retrospective study. PeerJ 2020; 8:e9814. [PMID: 32904447 PMCID: PMC7453919 DOI: 10.7717/peerj.9814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) is one of the leading cause of death in children under 5 years old around the world between 1980 and 2016. Distinguishing between viral and bacterial infection is challenging when children suffered from LRTI in the absence of pathogen detection. The aim of our study is to analyze the difference of serum β2-microglobulin (β2-MG) between viral LRTI and bacterial LRTI in children. METHODS This retrospective study included children with LRTI caused by a single pathogen from Yancheng Third People's Hospital, Yancheng, China, between January 1, 2016 and December 31, 2019. Participants were divided into the younger group (1 year old ≤ age < 3 years old) and the older group (3 years old ≤ age < 5 years old) for subgroup analysis. RESULTS A total of 475 children with LRTI caused by common respiratory pathogens were identified. In the younger group as well as the older group, the serum level of β2-MG in respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly increased compared to that in the Mycoplasma pneumoniae group. Compared with Streptococcus pneumoniae infection group, the serum β2-MG level of respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly higher in children between 1 and 3 years old. CONCLUSIONS The serum β2-MG may distinguish viral infection from bacterial infection in children with LRTI.
Collapse
Affiliation(s)
- Xulong Cai
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Qiaolan Xu
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Chenrong Zhou
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Li Zhou
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Qijun Yong
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Qing Mu
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Yan Cheng
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Jiena Wang
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| | - Jingjing Xie
- Department of Pediatrics, Yancheng Third People’s Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
22
|
Malenica I, Donadon M, Lleo A. Molecular and Immunological Characterization of Biliary Tract Cancers: A Paradigm Shift Towards a Personalized Medicine. Cancers (Basel) 2020; 12:E2190. [PMID: 32781527 PMCID: PMC7464597 DOI: 10.3390/cancers12082190] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of rare cancers that account for up to 3-5% of cancer patients worldwide. BTCs include cholangiocarcinoma (CCA), gallbladder cancer (GBC), and ampulla of Vater cancer (AVC). They are frequently diagnosed at an advanced stage when the disease is often found disseminated. A late diagnosis highly compromises surgery, the only potentially curative option. Current treatment regimens include a combination of chemotherapeutic drugs gemcitabine with cisplatin that have a limited efficiency since more than 50% of patients relapse in the first year. More recently, an inhibitor of fibroblast growth factor receptor 2 (FGFR2) was approved as a second-line treatment, based on the promising results from the NCT02924376 clinical trial. However, novel secondary treatment options are urgently needed. Recent molecular characterization of CCA and GBC highlighted the molecular heterogeneity, etiology, and epidemiology in BTC development and lead to the classification of the extrahepatic CCA into four types: metabolic, proliferating, mesenchymal, and immune type. Differences in the immune infiltration and tumor microenvironment (TME) have been described as well, showing that only a small subset of BTCs could be classified as an immune "hot" and targeted with the immunotherapeutic drugs. This recent evidence has opened a way to new clinical trials for BTCs, and new drug approvals are highly expected by the medical community.
Collapse
Affiliation(s)
- Ines Malenica
- Hepatobiliary Immunopathology Unit, Humanitas Clinical and Research Center-IRCCS, 20090 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
- Department of Biomedical Science, Humanitas University, 20089 Rozzano, Italy
| | - Ana Lleo
- Department of Biomedical Science, Humanitas University, 20089 Rozzano, Italy
- Internal Medicine and Hepatology Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy
| |
Collapse
|
23
|
Dingemans AMC, Soo RA, Jazieh AR, Rice SJ, Kim YT, Teo LLS, Warren GW, Xiao SY, Smit EF, Aerts JG, Yoon SH, Veronesi G, De Cobelli F, Ramalingam SS, Garassino MC, Wynes MW, Behera M, Haanen J, Lu S, Peters S, Ahn MJ, Scagliotti GV, Adjei AA, Belani CP. Treatment Guidance for Patients With Lung Cancer During the Coronavirus 2019 Pandemic. J Thorac Oncol 2020; 15:1119-1136. [PMID: 32422364 PMCID: PMC7227539 DOI: 10.1016/j.jtho.2020.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
The global coronavirus disease 2019 pandemic continues to escalate at a rapid pace inundating medical facilities and creating substantial challenges globally. The risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with cancer seems to be higher, especially as they are more likely to present with an immunocompromised condition, either from cancer itself or from the treatments they receive. A major consideration in the delivery of cancer care during the pandemic is to balance the risk of patient exposure and infection with the need to provide effective cancer treatment. Many aspects of the SARS-CoV-2 infection currently remain poorly characterized and even less is known about the course of infection in the context of a patient with cancer. As SARS-CoV-2 is highly contagious, the risk of infection directly affects the cancer patient being treated, other cancer patients in close proximity, and health care providers. Infection at any level for patients or providers can cause considerable disruption to even the most effective treatment plans. Lung cancer patients, especially those with reduced lung function and cardiopulmonary comorbidities are more likely to have increased risk and mortality from coronavirus disease 2019 as one of its common manifestations is as an acute respiratory illness. The purpose of this manuscript is to present a practical multidisciplinary and international overview to assist in treatment for lung cancer patients during this pandemic, with the caveat that evidence is lacking in many areas. It is expected that firmer recommendations can be developed as more evidence becomes available.
Collapse
Affiliation(s)
- Anne-Marie C Dingemans
- Department of Pulmonology, Erasmus University Medical Center, Rotterdam, The Netherlands; GROW, School for Oncology and Developmental Biology, University Maastricht, Maastricht, The Netherlands
| | - Ross A Soo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Abdul Rahman Jazieh
- Department of Oncology, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Shawn J Rice
- Department of Medicine, Penn State Cancer Institute, Hershey, Pennsylvania; Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Lynette L S Teo
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Graham W Warren
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Shu-Yuan Xiao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China; Department of Pathology, University of Chicago Medicine, Chicago, Illinois
| | - Egbert F Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Giulia Veronesi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy; Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Marina C Garassino
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Murry W Wynes
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Madhusmita Behera
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - John Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Solange Peters
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Myung-Ju Ahn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chandra P Belani
- Department of Medicine, Penn State Cancer Institute, Hershey, Pennsylvania.
| |
Collapse
|
24
|
Leplina O, Smetanenko E, Tikhonova M, Batorov E, Tyrinova T, Pasman N, Ostanin A, Chernykh E. Binding of the placental growth factor to VEGF receptor type 1 modulates human T cell functions. J Leukoc Biol 2020; 108:1013-1024. [DOI: 10.1002/jlb.2a0420-723rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Olga Leplina
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Ekaterina Smetanenko
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Marina Tikhonova
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Egor Batorov
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Tamara Tyrinova
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Natalya Pasman
- Department of Obstetrics and Gynecology Institute of Medicine and Psychology NSU Novosibirsk Russian Federation
| | - Alexander Ostanin
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| | - Elena Chernykh
- Laboratory of Cellular Immunotherapy Research Institute of Fundamental and Clinical Immunology Novosibirsk Russian Federation
| |
Collapse
|
25
|
Ross JA, Malyshkina A, Otto L, Liu J, Dittmer U. Inhibition of IL-2 or NF- κB Subunit c-Rel-Dependent Signaling Inhibits Expansion of Regulatory T Cells During Acute Friend Retrovirus Infection. Viral Immunol 2020; 33:353-360. [PMID: 32315584 DOI: 10.1089/vim.2019.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In retroviral infections, different immunological mechanisms are involved in the development of a chronic infection. In the Friend virus (FV) model, regulatory T cells (Tregs) were found to induce CD8+ T cell dysfunction before viral clearance is achieved and thus contribute to viral chronicity. Although studied for decades, the exact suppressive mechanisms of Tregs in the FV model remain elusive and an unavailable therapeutic target. However, extracellular IL-2 and intracellular NF-κB signaling were shown to be important pathways for Treg expansion and activation. Therefore, we decided to focus on these two pathways to test therapeutic approaches inhibiting Treg activation during FV infection. In this study, we show that the inhibition of either IL-2 or the NF-κB subunit c-Rel, impaired Treg expansion and activation at 2 weeks post-FV infection. Total numbers of Tregs as well as activated Tregs were reduced in FV-infected mice after treatment with anti-IL-2 antibodies or the c-Rel blocking reagent pentoxifylline. Surprisingly, this did not affect the expansion or function of virus-specific CD8+ T cells nor viral loads in the spleen. However, our data suggest that neutralization of IL-2 as well as blocking c-Rel efficiently inhibits virus-induced Treg expansion.
Collapse
Affiliation(s)
- Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Chiappelli F, Khakshooy A, Greenberg G. CoViD-19 Immunopathology and Immunotherapy. Bioinformation 2020; 16:219-222. [PMID: 32308263 PMCID: PMC7147500 DOI: 10.6026/97320630016219] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
New evidence on the T-cell immuno-pathology in patient's with Corona Virus Disease 2019 (CoViD-19) was reported by Diao et al. in MedRxiv (doi: 10.1101/2020.02.18.20024364) [1]. It reports observations on 522 patients with confirmed CoViD-19 symptomatology, compared to 40 control subjects. In brief, notable T cytopoenia was recorded by flow cytometry in the CD4+ and the CD8+ populations, which were significantly yet inversely correlated with remarkably increased serum levels of the pro-inflammatory cytokines IL-6, IL-10 and TNF-a. Flow cytometry established a progressive increase in the expression of programmed cell death marker-1 (PD-1) and T cell immunoglobulin and mucin domain 3 (Tim-3) as patients (n=14) deteriorated from prodromal to symptomatic CoViD-19 requiring intensive care. Here, we interpret these observations of Diao et al from our current understanding of T cell immunophysiology and immunopathology following an immune challenge in the form of sustained viral infection, as is the case in CoViD-19, with emphasis on exhausted T cells (Tex). Recent clinical trials to rescue Tex show promising outcomes. The relevance of these interventions for the prevention and treatment of CoViD-19 is discussed. Taken together, the data of Diao et al could proffer the first glimpse of immunopathology and possible immunotherapy for patients with CoViD-19.
Collapse
Affiliation(s)
| | - Allen Khakshooy
- Pre-M.D. Student, Rappaport Faculty of Medicine,Technion-Israel Institute of Technology, Haifa, Israel
| | - Gillian Greenberg
- Pre-M.D. Student, Rappaport Faculty of Medicine,Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
27
|
David P, Drabczyk-Pluta M, Pastille E, Knuschke T, Werner T, Honke N, Megger DA, Akhmetzyanova I, Shaabani N, Eyking-Singer A, Cario E, Kershaw O, Gruber AD, Tenbusch M, Dietze KK, Trilling M, Liu J, Schadendorf D, Streeck H, Lang KS, Xie Y, Zimmer L, Sitek B, Paschen A, Westendorf AM, Dittmer U, Zelinskyy G. Combination immunotherapy with anti-PD-L1 antibody and depletion of regulatory T cells during acute viral infections results in improved virus control but lethal immunopathology. PLoS Pathog 2020; 16:e1008340. [PMID: 32226027 PMCID: PMC7105110 DOI: 10.1371/journal.ppat.1008340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied.
Collapse
Affiliation(s)
- Paul David
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Dominik A. Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ilseyar Akhmetzyanova
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Namir Shaabani
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking-Singer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dirk Schadendorf
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Youhua Xie
- Key Lab of Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Zimmer
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annette Paschen
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
28
|
Salmonella Breaks Tumor Immune Tolerance by Downregulating Tumor Programmed Death-Ligand 1 Expression. Cancers (Basel) 2019; 12:cancers12010057. [PMID: 31878272 PMCID: PMC7017279 DOI: 10.3390/cancers12010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.
Collapse
|
29
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
30
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|