1
|
Atavliyeva S, Auganova D, Tarlykov P. Genetic diversity, evolution and drug resistance of Mycobacterium tuberculosis lineage 2. Front Microbiol 2024; 15:1384791. [PMID: 38827149 PMCID: PMC11140050 DOI: 10.3389/fmicb.2024.1384791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Mycobacterium tuberculosis causes a chronic infectious disease called tuberculosis. Phylogenetic lineage 2 (L2) of M. tuberculosis, also known as the East Asian lineage, is associated with high virulence, increased transmissibility, and the spread of multidrug-resistant strains. This review article examines the genomic characteristics of the M. tuberculosis genome and M. tuberculosis lineage 2, such as the unique insertion sequence and spoligotype patterns, as well as MIRU-VNTR typing, and SNP-based barcoding. The review describes the geographical distribution of lineage 2 and its history of origin. In addition, the article discusses recent studies on drug resistance and compensatory mechanisms of M. tuberculosis lineage 2 and its impact on the pathogen's transmissibility and virulence. This review article discusses the importance of establishing a unified classification for lineage 2 to ensure consistency in terminology and criteria across different studies and settings.
Collapse
Affiliation(s)
- Sabina Atavliyeva
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| | | | - Pavel Tarlykov
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
2
|
Stanley S, Wang X, Liu Q, Kwon YY, Frey AM, Hicks ND, Vickers AJ, Hui S, Fortune SM. Ongoing evolution of the Mycobacterium tuberculosis lactate dehydrogenase reveals the pleiotropic effects of bacterial adaption to host pressure. PLoS Pathog 2024; 20:e1012050. [PMID: 38422159 DOI: 10.1371/journal.ppat.1012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.
Collapse
Affiliation(s)
- Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Young Yon Kwon
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Abigail M Frey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nathan D Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Andrew J Vickers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Mobed A, Darvishi M, Kohansal F, Dehfooli FM, Alipourfard I, Tahavvori A, Ghazi F. Biosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 34:100412. [PMID: 38222862 PMCID: PMC10787265 DOI: 10.1016/j.jctube.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institute of Medical Science and Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Tahavvori
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| | - Farhood Ghazi
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| |
Collapse
|
4
|
Schami A, Islam MN, Belisle JT, Torrelles JB. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Front Cell Infect Microbiol 2023; 13:1274175. [PMID: 38029252 PMCID: PMC10664572 DOI: 10.3389/fcimb.2023.1274175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - M. Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research & Education, International Center for the Advancement of Research & Education, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
5
|
Stanley S, Wang X, Liu Q, Kwon YY, Frey AM, Hicks ND, Vickers AJ, Hui S, Fortune SM. Ongoing evolution of the Mycobacterium tuberculosis lactate dehydrogenase reveals the pleiotropic effects of bacterial adaption to host pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561592. [PMID: 37873410 PMCID: PMC10592758 DOI: 10.1101/2023.10.09.561592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2 , which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulates Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13 C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2 , label preferentially accumulates in methylglyoxal precursors dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accumulated lactate toxicity via a methylglyoxal pathway that has been proposed previously. The evolved lldD2 variants increase lactate incorporation to pyruvate but also alter flux in the methylglyoxal pathway, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX-1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provide context for the selective advantage of lldD2 mutations in adapting to host stress.
Collapse
|
6
|
Mancuso G, Midiri A, De Gaetano S, Ponzo E, Biondo C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium tuberculosis. Microorganisms 2023; 11:2277. [PMID: 37764122 PMCID: PMC10537529 DOI: 10.3390/microorganisms11092277] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics have played a crucial role in the reduction in the incidence of TB globally as evidenced by the fact that before the mid-20th century, the mortality rate within five years of the onset of the disease was 50%. The use of antibiotics has eliminated TB as a devastating disease, but the challenge of resistance to anti-TB drugs, which had already been described at the time of the introduction of streptomycin, has become a major global issue in disease management. Mismanagement of multidrug-resistant tuberculosis (MDR-TB) cases, resulting from intermittent drug use, prescription errors, and non-compliance of patients, has been identified as a critical risk factor for the development of extensively drug-resistant tuberculosis (XDR-TB). Antimicrobial resistance (AMR) in TB is a multi-factorial, complex problem of microbes evolving to escape antibiotics, the gradual decline in antibiotic development, and different economic and social conditions. In this review, we summarize recent advances in our understanding of how Mycobacterium tuberculosis evolves drug resistance. We also highlight the importance of developing shorter regimens that rapidly reach bacteria in diverse host environments, eradicating all mycobacterial populations and preventing the evolution of drug resistance. Lastly, we also emphasize that the current burden of this ancient disease is driven by a combination of complex interactions between mycobacterial and host factors, and that only a holistic approach that effectively addresses all the critical issues associated with drug resistance will limit the further spread of drug-resistant strains throughout the community.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycobacteriology Unit, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.D.G.); (E.P.)
| |
Collapse
|
7
|
Waworuntu W, Tanoerahardjo FS, Mallongi A, Ahmad A, Amin M, Djaharuddin I, Bukhari A, Tabri NA, Bahar B, Hidayah N, Halik H, Massi MN. Serum iron levels in tuberculosis patients and household contacts and its association with natural resistance-associated macrophage protein 1 polymorphism and expression. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:893-904. [PMID: 37607533 PMCID: PMC10500328 DOI: 10.1111/crj.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Iron deficiency can impair immune function, increasing tuberculosis (TB) susceptibility and severity. The research aimed to investigate iron deficiency anemia in TB patients and household contacts and its association with natural resistance-associated macrophage protein 1 (NRAMP1) polymorphism and expression. METHODS The levels of iron, ferritin, and transferrin were measured in the serum by ELISA (Enzyme-Linked Immunosorbent Assay). NRAMP1 polymorphisms were determined by polymerase chain reaction (PCR) and sequencing. NRAMP1 gene expression was measured by real-time PCR. Interferon-gamma release assay (IGRA) checked on household contacts to screen household contacts with positive IGRA as the control. RESULTS This study involved 35 TB cases and 35 TB contacts. The results showed that the serum Fe levels were found to be lower in the TB case group (median 149.6 μmol/L) than in the positive IGRA household contacts group (median 628.53 μmol/L) with a p-value <0.001. Meanwhile, ferritin levels in TB cases tended to be higher, in contrast to transferrin, which was found to tend to be lower in TB cases than household contacts but did not show a significant difference. This study found no association between the polymorphism of exon 15 D543 and active TB. However, NRAMP1 gene expression was lower in TB cases than in positive IGRA household contacts (p = 0.011). Besides, there was a positive correlation between NRAMP1 gene expression and serum Fe levels (r = 0.367, p = 0.006). TB was associated with decreased NRAMP1 gene expression (OR 0.086 95% CI 0.02-0.366, p = 0.001). Besides, TB was associated with low Fe levels (OR 0.533 95% CI 0.453-0.629, p < 0.001). CONCLUSION Comparing the TB case to the household contacts group, decreased serum Fe levels were discovered in the TB case group. This study also shows a correlation of NRAMP1 gene expression to Fe levels in TB patients and household contacts and describes that TB may lead to decreased Fe levels by downregulating NRAMP1 expression.
Collapse
Affiliation(s)
- Wiendra Waworuntu
- Pusat Kebijakan Sumber Daya dan Sistem Ketahanan Kesehatan, Badan Kebijakan Pembangunan KesehatanMinistry of Health Republic IndonesiaJakartaIndonesia
- Postgraduate Program, Faculty of Medicine, Universitas HasanuddinMakassarSouth SulawesiIndonesia
| | | | - Anwar Mallongi
- Department of Environmental Health, Faculty of Public HealthUniversitas HasanuddinMakassarSouth SulawesiIndonesia
| | - Ahyar Ahmad
- Department of Chemistry, Faculty of Mathematics and Natural SciencesUniversitas HasanuddinMakassarSouth SulawesiIndonesia
| | - Muhammad Amin
- Department of Pulmonology and Respiratory Diseases, Faculty of MedicineUniversitas AirlanggaSurabayaWest JavaIndonesia
| | - Irawaty Djaharuddin
- Department of Pulmonology and Respiratory Diseases, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
- Dr. Wahidin Sudirohusodo HospitalMakassarSouth SulawesiIndonesia
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
| | - Nur Ahmad Tabri
- Department of Pulmonology and Respiratory Diseases, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
- Dr. Wahidin Sudirohusodo HospitalMakassarSouth SulawesiIndonesia
| | - Burhanuddin Bahar
- Department of Nutrition Sciences, Faculty of Public HealthHasanuddin UniversityMakassarIndonesia
| | - Najdah Hidayah
- Research Center for Vaccine and DrugsNational Research and Innovation Agency (BRIN)Tangerang SelatanBantenIndonesia
| | - Handayani Halik
- Postgraduate Program, Faculty of Medicine, Universitas HasanuddinMakassarSouth SulawesiIndonesia
- Hasanuddin University Medical Research Center Laboratory, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
| | - Muhammad Nasrum Massi
- Hasanuddin University Medical Research Center Laboratory, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
- Department of Clinical Microbiology, Faculty of MedicineUniversitas HasanuddinMakassarSouth SulawesiIndonesia
| |
Collapse
|
8
|
Discovery of Novel Transketolase Epitopes and the Development of IgG-Based Tuberculosis Serodiagnostics. Microbiol Spectr 2023; 11:e0337722. [PMID: 36651770 PMCID: PMC9927582 DOI: 10.1128/spectrum.03377-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite advances in rapid molecular techniques for tuberculosis (TB) diagnostics, there is an unmet need for a point-of-care, nonsputum-based test. Previously, through a T7 phage antigen display platform and immunoscreening, we identified that the serum IgGs of active TB patients differentially bind to several antigen-clones and that this immunoreactivity discriminates TB from other respiratory diseases. One of these high-performance clones has some homology to the transketolase of Mycobacterium tuberculosis (M.tb TKT). In this study, we developed a direct enzyme-linked immunosorbent assay (ELISA) detecting IgG against the TKT antigen-clone (TKTμ). Through sequence alignment and in silico analysis, we designed two more peptides with potential antigenicity that correspond to M.tb-specific transketolase (M.tb TKT1 and M.tb TKT3) epitopes. After the development and standardization of a direct peptide ELISA for three peptides, we tested 292 subjects, including TB (n = 101), latent tuberculosis infection (LTBI) (n = 49), healthy controls (n = 66), and sarcoidosis (n = 76). We randomly assigned 60% of the subjects to a training set to create optimal models to distinguish positive TB samples, and the remaining 40% were used to validate the diagnostic power of the IgG-based assays that were developed in the training set. Antibodies against M.tb TKT3 yielded the highest sensitivity (0.845), and these were followed by TKTμ (0.817) and M.tb TKT1 (0.732). The specificities obtained by TKTμ, M.tb TKT3, and M.tb TKT1 on the test sets were 1, 0.95, and 0.875, respectively. The model using TKTμ obtained a perfect positive predictive value (PPV) of 1, and this was followed by M.tb TKT3 (0.968) and M.tb TKT1 (0.912). These results show that IgG antibodies against transketolase can discriminate active TB against LTBI, sarcoidosis, and controls. IMPORTANCE There is an unmet need for a point-of-care, nonsputum-based TB test. Through the immunoscreening of a novel T7 phage library, we identified classifiers that specifically bind to IgGs in active TB sera. We discovered that one of these clones is aligned with Mycobacterium tuberculosis transketolase (TKT). TKT is an essential enzyme for Mycobacterium tuberculosis growth. We designed three TKT epitopes (TKTμ, TKT1, and TKT3) to detect TKT-specific IgGs. After the development and standardization of three different ELISA-utilizing TKT peptides, we tested 292 subjects, including active TB, LTBI, healthy controls, and sarcoidosis. Rigorous statistical analyses using training and validation sets showed that ELISA-based detections of specific IgGs against TKT3 and TKTμ have the greatest sensitivity, specificity, and accuracy to distinguish active TB subjects from others, even LTBI. Our work provides a novel scientific platform from which to further develop a point-of-care test, thereby aiding in faster TB diagnoses.
Collapse
|
9
|
Olive AJ, Smith CM, Baer CE, Coers J, Sassetti CM. Mycobacterium tuberculosis Evasion of Guanylate Binding Protein-Mediated Host Defense in Mice Requires the ESX1 Secretion System. Int J Mol Sci 2023; 24:2861. [PMID: 36769182 PMCID: PMC9917499 DOI: 10.3390/ijms24032861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.
Collapse
Affiliation(s)
- Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Christina E. Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| |
Collapse
|
10
|
Álvarez GI, Hernández Del Pino RE, Barbero AM, Estermann MA, Celano J, Musella RM, Palmero DJ, García VE, Pasquinelli V. Association of IFN-γ +874 A/T SNP and hypermethylation of the -53 CpG site with tuberculosis susceptibility. Front Cell Infect Microbiol 2023; 13:1080100. [PMID: 36743307 PMCID: PMC9892940 DOI: 10.3389/fcimb.2023.1080100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Tuberculosis (TB) is now the 2nd leading infectious killer after COVID-19 and the 13th leading cause of death worldwide. Moreover, TB is a lethal combination for HIV-patients. Th1 responses and particularly IFN-γ are crucial for immune protection against Mycobacterium tuberculosis infection. Many gene variants for IFNG that confer susceptibility to TB have been described in multiple ethnic populations. Likewise, some epigenetic modifications have been evaluated, being CpG methylation the major epigenetic mark that makes chromatin inaccessible to transcription factors, thus avoiding the initiation of IFNG transcription. Methods We evaluated both genetic and epigenetic changes involved in IFN-γ production and TB susceptibility in Argentine population. Amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) was performed for the IFN-γ +874 A/T polymorphism (rs2430561) genotyping in 199 healthy donors (HD) and 173 tuberculosis (TB) patients. IFN-γ levels from M. tuberculosis-stimulated PBMCs were measured by ELISA. The methylation status at the -53 CpG site of the IFNG promoter in individuals with latent infection (LTBI), TB and HD was determine by pyrosequencing. Results Using a case-control study, we found that A allele and, consequently, AA genotype were overrepresented in patients with active disease. Moreover, HD carrying T allele (AT or TT genotype) evidenced an augmented IFN-γ secretion compared to TB patients. Codominance was the genetic model that best fits our results according to the Akaike information criterion (AIC). In addition, increased methylation levels at the -53 CpG site in the IFN-γ promoter were observed in whole blood of patients with active TB compared to LTBI individuals. Discussion IFN-γ is regulated by genetic variants and epigenetic modifications during TB. Besides, AA genotype of the rs2430561 single nucleotide polymorphism could be considered as a potential TB susceptibility genetic biomarker in Argentina and the methylation of the -53 CpG site could result in a useful predictor of TB reactivation.
Collapse
Affiliation(s)
- Guadalupe Inés Álvarez
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA- Universidad Nacional de San Antonio de Areco (UNSAdA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires (UBA) – CONICET, Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA- Universidad Nacional de San Antonio de Areco (UNSAdA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA- Universidad Nacional de San Antonio de Areco (UNSAdA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Martín Andrés Estermann
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Josefina Celano
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | | | | | - Verónica Edith García
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA- Universidad Nacional de San Antonio de Areco (UNSAdA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina,*Correspondence: Virginia Pasquinelli, ,
| |
Collapse
|
11
|
Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Jurcic Smith KL, Sisk DM, Hu DD, Cronin RM, Hughes EJ, Brewer WJ, Coers J, Champion MM, Champion PA, Lowe CB, Smith CM, Lee S, Stout JE, Tobin DM. An ancestral mycobacterial effector promotes dissemination of infection. Cell 2022; 185:4507-4525.e18. [PMID: 36356582 PMCID: PMC9691622 DOI: 10.1016/j.cell.2022.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Collapse
Affiliation(s)
- Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mollie I Sweeney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ana María Xet-Mull
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel M Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jason E Stout
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Multiplexed Strain Phenotyping Defines Consequences of Genetic Diversity in Mycobacterium tuberculosis for Infection and Vaccination Outcomes. mSystems 2022; 7:e0011022. [PMID: 35430871 PMCID: PMC9239107 DOI: 10.1128/msystems.00110-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is growing evidence that genetic diversity in Mycobacterium tuberculosis, the causative agent of tuberculosis, contributes to the outcomes of infection and public health interventions, such as vaccination. Epidemiological studies suggest that among the phylogeographic lineages of M. tuberculosis, strains belonging to a sublineage of Lineage 2 (mL2) are associated with concerning clinical features, including hypervirulence, treatment failure, and vaccine escape. The global expansion and increasing prevalence of this sublineage has been attributed to the selective advantage conferred by these characteristics, yet confounding host and environmental factors make it difficult to identify the bacterial determinants driving these associations in human studies. Here, we developed a molecular barcoding strategy to facilitate high-throughput, experimental phenotyping of M. tuberculosis clinical isolates. This approach allowed us to characterize growth dynamics for a panel of genetically diverse M. tuberculosis strains during infection and after vaccination in the mouse model. We found that mL2 strains exhibit distinct growth dynamics in vivo and are resistant to the immune protection conferred by Bacillus Calmette-Guerin (BCG) vaccination. The latter finding corroborates epidemiological observations and demonstrates that mycobacterial features contribute to vaccine efficacy. To investigate the genetic and biological basis of mL2 strains’ distinctive phenotypes, we performed variant analysis, transcriptional studies, and genome-wide transposon sequencing. We identified functional genetic changes across multiple stress and host response pathways in a representative mL2 strain that are associated with variants in regulatory genes. These adaptive changes may underlie the distinct clinical characteristics and epidemiological success of this lineage. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a remarkably heterogeneous disease, a feature that complicates clinical care and public health interventions. The contributions of pathogen genetic diversity to this heterogeneity are uncertain, in part due to the challenges of experimentally manipulating M. tuberculosis, a slow-growing, biosafety level 3 organism. To overcome these challenges, we applied a molecular barcoding strategy to a panel of M. tuberculosis clinical isolates. This novel application of barcoding permitted the high-throughput characterization of M. tuberculosis strain growth dynamics and vaccine resistance in the mouse model of infection. Integrating these results with genomic analyses, we uncover bacterial pathways that contribute to infection outcomes, suggesting targets for improved therapeutics and vaccines.
Collapse
|
13
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
14
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
15
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Mishra R, Yadav V, Guha M, Singh A. Heterogeneous Host-Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends Microbiol 2021; 29:606-620. [PMID: 33309526 PMCID: PMC7611257 DOI: 10.1016/j.tim.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Successful treatment of tuberculosis (TB) depends on the eradication of its causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the emergence of phenotypically drug-resistant Mtb in the host environment tempers the ability of antibiotics to cure disease. Host immunity produces diverse microenvironmental niches that are exploited by Mtb to mobilize adaptation programs. Such differential interactions amplify pre-existing heterogeneity in the host-pathogen milieu to influence disease pathology and therapy outcome. Therefore, comprehending the intricacies of phenotypic heterogeneity can be an empirical step forward in potentiating drug action. With this goal, we review the interconnectedness of the lesional, cellular, and bacterial heterogeneity underlying phenotypic drug resistance. Based on this information, we anticipate the development of new therapeutic strategies targeting host-pathogen heterogeneity to cure TB.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India.
| |
Collapse
|
17
|
Liu M, Xu P, Liao X, Li Q, Chen W, Gao Q, Li N, Luo T, Chen L. Molecular epidemiology and drug-resistance of tuberculosis in Luodian revealed by whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2021; 93:104979. [PMID: 34175481 DOI: 10.1016/j.meegid.2021.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
In this study, we aimed to investigate the molecular epidemiology and drug-resistance profiles of tuberculosis (TB) in Luodian, an area with highest TB incidence and limited healthcare resources in Guizhou, China. The passive case finding strategy was used to identify suspected pulmonary TB with symptoms, and individuals with positive Mycobacterium tuberculosis (MTB) culture were enrolled from May 22, 2018 to April 21, 2019. All the 107 cases except three came from nine towns, including 55.1% from Longping and Bianyang. The phylogeny tree showed that 53.3% of strains were Lineage 2 (Beijing genotype), while 46.7% were Lineage 4 (Euro-American genotype). Among Lineage 2 strains, 66.7% were of "modern" Beijing type. Seven clusters with genomic distance within 12 SNPs were identified. The clusters included 14 strains, accounting for a clustering rate of 13.1%. The distance separating the clustered cases was between 2.1 and 71.0 km (Km), with an average paired distance of 21.8 Km (interquartile range, 2.8-38.0 Km). Based on the gene mutations associated with drug-resistance, we predicted that 4.8% of strains were resistant to isoniazid, 3.7% to rifampicin, and 3.7% to streptomycin; only one strain (0.9%) had multidrug resistance (MDR). This study found low drug-resistance rates in Luodian, and the sub-lineage of the "modern" Beijing branch has recent expansion in Luodian. This work may also serve as a genomic baseline to assess the evolution and spread of MTB in Guizhou.
Collapse
Affiliation(s)
- Mei Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Dongan Road No.131, Shanghai 200032, China
| | - Peng Xu
- Key Laboratory of Infectious Disease & Biosafety, Institute of life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province 563000, China
| | - Xingwei Liao
- Department of Infectious Diseases, Hospital of Luodian County, No.96 Jiefang East Road, Luodian 550100, Guizhou, China
| | - Qing Li
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563000, Guizhou, China
| | - Wei Chen
- Department of TB Control, Center of Disease Control and Prevention, Guiyang 550004, Guizhou, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Dongan Road No.131, Shanghai 200032, China
| | - Nana Li
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563000, Guizhou, China
| | - Tao Luo
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No.17 People's South Road, Chengdu 610041, China.
| | - Ling Chen
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563000, Guizhou, China.
| |
Collapse
|
18
|
Cruz-Aguilar M, Castillo-Rodal AI, Arredondo-Hernández R, López-Vidal Y. Non-tuberculous mycobacteria immunopathogenesis: Closer than they appear. a prime of innate immunity trade-off and NTM ways into virulence. Scand J Immunol 2021; 94:e13035. [PMID: 33655533 PMCID: PMC9285547 DOI: 10.1111/sji.13035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/16/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Introduction The growing incidence of non‐tuberculous mycobacteria (NTM) and changes in epidemiological factors have indicated that immune dysregulation may be associated with the emergence of NTM. Minireview entails to acknowledge complex interaction and new ways NTM are evolving around diverse immune status. Methods In order to perform this review, we selected peer reviewed, NLM database articles under the terms NTM, mycobacterium complex ‘AND’ ‐Host‐ immune response, immunity regulation, Disease, Single Nucleotide Polymorphism (SNP´s), and ‐pathogen‐ followed by a snow ball rolling basis search on immune components and NTM related with diseases distribution. Results The universal exposure and diversity of NTM are well‐documented; however, hospitals seldom establish vigilant control of water quality or immunodeficiencies for patients with NTM infections. Depending on the chemical structures and immune mechanisms presented by various NTM varieties, they can trigger different effects in dendritic and natural killer cells, which release interleukin (IL)‐17, tumour necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ) and rIL‐1B. The T helper (Th)2‐acquired immune response is responsible for autoimmune responses in patients with NTM infections, and, quite disturbingly, immunocompetent patients have been reported to suffer from NTM infections. Conclusion New technologies and a comprehensive view has taught us; to acknowledge metabolic/immune determinants and trade‐offs along transit through mutualism‐parasite continuous.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - René Arredondo-Hernández
- Laboratorio de Microbioma, Division de Investigación, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
19
|
Narvskaya O, Starkova D, Levi D, Alexandrova N, Molchanov V, Chernyaeva E, Vyazovaya A, Mushkin A, Zhuravlev V, Solovieva N, Vishnevskiy B, Mokrousov I. First insight into the whole-genome sequence variations in Mycobacterium bovis BCG-1 (Russia) vaccine seed lots and their progeny clinical isolates from children with BCG-induced adverse events. BMC Genomics 2020; 21:567. [PMID: 32811436 PMCID: PMC7437937 DOI: 10.1186/s12864-020-06973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background The only licensed live Bacille Calmette-Guérin (BCG) vaccine used to prevent severe childhood tuberculosis comprises genetically divergent strains with variable protective efficacy and rates of BCG-induced adverse events. The whole-genome sequencing (WGS) allowed evaluating the genome stability of BCG strains and the impact of spontaneous heterogeneity in seed and commercial lots on the efficacy of BCG-vaccines in different countries. Our study aimed to assess sequence variations and their putative effects on genes and protein functions in the BCG-1 (Russia) seed lots compared to their progeny isolates available from immunocompetent children with BCG-induced disease (mainly, osteitis). Results Based on the WGS data, we analyzed the links between seed lots 361, 367, and 368 used for vaccine manufacture in Russia in different periods, and their nine progeny isolates recovered from immunocompetent children with BCG-induced disease. The complete catalog of variants in genes relative to the reference genome (GenBank: CP013741) included 4 synonymous and 8 nonsynonymous single nucleotide polymorphisms, and 3 frameshift deletions. Seed lot 361 shared variants with 2 of 6 descendant isolates that had higher proportions of such polymorphisms in several genes, including ppsC, eccD5, and eccA5 involved in metabolism and cell wall processes and reportedly associated with virulence in mycobacteria. One isolate preserved variants of its parent seed lot 361 without gain of further changes in the sequence profile within 14 years. Conclusions The background genomic information allowed us for the first time to follow the BCG diversity starting from the freeze-dried seed lots to descendant clinical isolates. Sequence variations in several genes of seed lot 361 did not alter the genomic stability and viability of the vaccine and appeared accumulated in isolates during the survival in the human organism. The impact of the observed variations in the context of association with the development of BCG-induced disease should be evaluated in parallel with the immune status and host genetics. Comparative genomic studies of BCG seed lots and their descendant clinical isolates represent a beneficial approach to better understand the molecular bases of efficacy and adverse events during the long-term survival of BCG in the host organism.
Collapse
Affiliation(s)
- Olga Narvskaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia. .,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia.
| | - Daria Starkova
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| | - Diana Levi
- Scientific Center for Expert Evaluation of Medical Products, Moscow, 127051, Russia
| | - Natalia Alexandrova
- Scientific Center for Expert Evaluation of Medical Products, Moscow, 127051, Russia
| | - Vladimir Molchanov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia. .,Present address: Van Andel Institute, Grand Rapids, MI, 49503-2518, USA.
| | | | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| | - Alexander Mushkin
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Boris Vishnevskiy
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| |
Collapse
|
20
|
Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun 2020; 88:IAI.00916-19. [PMID: 32094248 DOI: 10.1128/iai.00916-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.
Collapse
|
21
|
Zoonotic tuberculosis: a complex issue of the Mycobacterium tuberculosis complex. THE LANCET MICROBE 2020; 1:e45-e46. [DOI: 10.1016/s2666-5247(20)30032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/23/2022] Open
|
22
|
Cardona PJ, Català M, Prats C. Origin of tuberculosis in the Paleolithic predicts unprecedented population growth and female resistance. Sci Rep 2020; 10:42. [PMID: 31913313 PMCID: PMC6949267 DOI: 10.1038/s41598-019-56769-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Current data estimate the origin of Mycobacterium tuberculosis complex (MtbC) infection around 73,000 years before the common era (BCE), and its evolution to “modern” lineages around 46,000 BCE. Being MtbC a major killer of humanity, the question is how both species could persist. To answer this question, we have developed two new epidemiological models (SEIR type), adapted to sex dimorphism and comparing coinfection and superinfection for different MtbC lineages. We have attributed a higher resistance/tolerance to females to explain the lower incidence noted in this sex, a better health status in the Paleolithic compared to the Neolithic, and a higher dissemination of “modern” lineages compared to “ancient” ones. Our findings show the extraordinary impact caused by “modern” lineages, provoking the extinction of the groups infected. This could only be overcomed by an unprecedented population increase (x20 times in 100 years) and helped with the protection generated by previous infection with “ancient” lineages. Our findings also suggest a key role of female resistance against MtbC. This data obliges us to rethink the growth population parameters in the Paleolithic, which is crucial to understanding the survival of both MtbC and humans, and to decipher the nature of human female resistance against TB.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut de Recerca Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain.
| | - Martí Català
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB). Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Clara Prats
- Escola Superior d'Agricultura de Barcelona, Departament de Física, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, Castelldefels, Catalonia, Spain
| |
Collapse
|
23
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
24
|
Donoghue HD. Tuberculosis and leprosy associated with historical human population movements in Europe and beyond - an overview based on mycobacterial ancient DNA. Ann Hum Biol 2019; 46:120-128. [PMID: 31137975 DOI: 10.1080/03014460.2019.1624822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Tuberculosis and leprosy are readily recognised in human remains due to their typical palaeopathology. Both Mycobacterium tuberculosis (MTB) and Mycobacterium leprae (ML) are obligate pathogens and have been detected in ancient human populations. Objective: To demonstrate historical tuberculosis and leprosy cases in Europe and beyond using molecular methods, as human populations are associated with different mycobacterial genotypes. Methods: MTB and ML ancient DNA (aDNA) has been detected by DNA amplification using PCR, or by whole genome sequencing. Mycobacterial cell wall lipids also provide specific markers for identification. Results: In 18th century Hungary, the European indigenous MTB genotype 4 strains have been found. However, many individuals were co-infected with up to three MTB sub-genotypes. In 8th-14th century Europe significant differences in ML genotypes were found between northwest Europe compared with central, southern, or eastern Europe. In addition, several co-infections of MTB and ML were detected in historical samples. Conclusion: Both MTB and ML strain types differ between geographically separate populations. This is associated with ancient human migration after an evolutionary bottleneck and clonal expansion. The absence of indigenous leprosy in Europe today may be due to the greater mortality of tuberculosis in individuals who are co-infected with both organisms.
Collapse
Affiliation(s)
- Helen D Donoghue
- a Centre for Clinical Microbiology , University College London (UCL) , London , UK
| |
Collapse
|