1
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Berriat F, Lobsiger CS, Boillée S. The contribution of the peripheral immune system to neurodegeneration. Nat Neurosci 2023:10.1038/s41593-023-01323-6. [PMID: 37231108 DOI: 10.1038/s41593-023-01323-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.
Collapse
Affiliation(s)
- Félix Berriat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
4
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
5
|
Li S, Zhang Q, Li J, Weng L. Comprehensive analysis of autoimmune-related genes in amyotrophic lateral sclerosis from the perspective of 3P medicine. EPMA J 2022; 13:699-723. [PMID: 36505891 PMCID: PMC9727070 DOI: 10.1007/s13167-022-00299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
Background Although growing evidence suggests close correlations between autoimmunity and amyotrophic lateral sclerosis (ALS), no studies have reported on autoimmune-related genes (ARGs) from the perspective of the prognostic assessment of ALS. The purpose of this study was to investigate whether the circulating ARD signature could be identified as a reliable biomarker for ALS survival for predictive, preventive, and personalized medicine. Methods The whole blood transcriptional profiles and clinical characteristics of 454 ALS patients were downloaded from the Gene Expression Omnibus (GEO) database. A total of 4371 ARGs were obtained from GAAD and DisGeNET databases. Wilcoxon test and multivariate Cox regression were applied to identify the differentially expressed and prognostic ARGs. Then, unsupervised clustering was performed to classify patients into two distinct autoimmune-related clusters. PCA method was used to calculate the autoimmune index. LASSO and multivariate Cox regression was performed to establish risk model to predict overall survival for ALS patients. A ceRNA regulatory network was then constructed for regulating the model genes. Finally, we performed single-cell analysis to explore the expression of model genes in mutant SOD1 mice and methylation analysis in ALS patients. Results Based on the expressions of 85 prognostic ARGs, two autoimmune-related clusters with various biological features, immune characteristics, and survival outcome were determined. Cluster 1 with a worsen prognosis was more active in immune-related biological pathways and immune infiltration than Cluster 2. A higher autoimmune index was associated with a better prognosis than a lower autoimmune index, and there were significant adverse correlations between the autoimmune index and immune infiltrating cells and immune responses. Nine model genes (KIF17, CD248, ENG, BTNL2, CLEC5A, ADORA3, PRDX5, AIM2, and XKR8) were selected to construct prognostic risk signature, indicating potent potential for survival prediction in ALS. Nomogram integrating risk model and clinical characteristics could predict the prognosis more accurately than other clinicopathological features. We constructed a ceRNA regulatory network for the model genes, including five lncRNAs, four miRNAs, and five mRNAs. Conclusion Expression of ARGs is correlated with immune characteristics of ALS, and seven ARG signatures may have practical application as an independent prognostic factor in patients with ALS, which may serve as target for the future prognostic assessment, targeted prevention, patient stratification, and personalization of medical services in ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00299-w.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- Hydrocephalus Center, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Ling Weng
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| |
Collapse
|
6
|
Moreno-Martinez L, Santiago L, de la Torre M, Calvo AC, Pardo J, Osta R. Hemizygous Granzyme A Mice Expressing the hSOD1G93A Transgene Show Slightly Extended Lifespan. Int J Mol Sci 2022; 23:13554. [PMID: 36362341 PMCID: PMC9655466 DOI: 10.3390/ijms232113554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Granzyme A (gzmA), a serine protease involved in the modulation of the inflammatory immune response, is found at an elevated level in the serum from ALS patients. However, the influence of gzmA on the progression of ALS remains unclear. The aim of our work was to assess whether the absence of gzmA in an ALS murine model could help slow down the progression of the disease. Homozygous and hemizygous gzmA-deficient mice expressing the hSOD1G93A transgene were generated, and survival of these mice was monitored. Subsequently, gene and protein expression of inflammatory and oxidative stress markers was measured in the spinal cord and quadriceps of these mice. We observed the longest lifespan in gzmA+/- mice. GzmA gene and protein expression was downregulated in the spinal cord and serum from gmzA+/- mice, confirming that the increased survival of hemizygous mice is correlated with lower levels of gzmA. In addition, mRNA and protein levels of glutathione reductase (GSR), involved in oxidative stress, were found downregulated in the spinal cord and quadriceps of gmzA+/- mice, together with lower IL-1β and IL-6 mRNA levels in hemyzigous mice. In summary, our findings indicate for the first time that reduced levels, but not the absence, of gzmA could slightly ameliorate the disease progression in this animal model.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam de la Torre
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Ana Cristina Calvo
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Julián Pardo
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Cai Z, Yin K, Liu Q, Liu M, Yang X, Cui L. Association between abnormal expression and methylation of LGALS1 in amyotrophic lateral sclerosis. Brain Res 2022; 1792:148022. [PMID: 35872012 DOI: 10.1016/j.brainres.2022.148022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE DNA methylation has been identified to play an important role in amyotrophic lateral sclerosis (ALS). Galectin-1, encoded by LGALS1 gene, has been proved to be associated with ALS. We aimed to investigate the association between the expression and methylation of LGALS1 in blood samples from ALS patients. METHODS Forty-five patients diagnosed with ALS were enrolled. Thirty-two healthy relatives consisted the control group. Among them, samples from 12 patients and 12 controls consisted the exploration samples. In the exploration samples, mRNA expression levels were detected by quantitative real-time PCR. In all the samples, DNA methylation levels of one CpG island containing 12 CpG sites in the gene promoter were detected by bisulfite sequencing PCR, and galectin-1 levels were examined by enzyme linked immunosorbent assay. Associations between the gene expression and methylation level, as well as between the region-specific methylation level and clinical variables were calculated. RESULTS The mRNA expression level of LGALS1 was significantly increased and the promoter of LGALS1 was hypomethylated in ALS patients. Serum galectin-1 levels were significantly elevated in the ALS patients. The ALS group had significantly lower methylation level at certain CpG sites than the control group. There were significant negative associations between abnormal expression and methylation of LGALS1, as well as between region-specific methylation levels and the age of onset. CONCLUSIONS The aberrant expression and DNA methylation of LGALS1 and their association reveals epigenetic changes in ALS patients, which are helpful for early intervention and treatment for the disease.
Collapse
Affiliation(s)
- Zhengyi Cai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kaili Yin
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Garbuzova-Davis S, Willing AE, Borlongan CV. Apolipoprotein A1 Enhances Endothelial Cell Survival in an In Vitro Model of ALS. eNeuro 2022; 9:ENEURO.0140-22.2022. [PMID: 35840315 PMCID: PMC9337612 DOI: 10.1523/eneuro.0140-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Altered lipoprotein metabolism is considered a pathogenic component of amyotrophic lateral sclerosis (ALS). Apolipoprotein A1 (ApoA1), a major high-density lipoprotein (HDL) protein, is associated with prevention of vascular damage. However, ApoA1's effects on damaged endothelium in ALS are unknown. This study aimed to determine therapeutic potential of ApoA1 for endothelial cell (EC) repair under a pathologic condition reminiscent of ALS. We performed in vitro studies using mouse brain ECs (mBECs) exposed to plasma from symptomatic G93A SOD1 mice. Dosage effects of ApoA1, including inhibition of the phosphoinoside 3-kinase (PI3K)/Akt signaling pathway and integration of ApoA1 into mBECs were examined. Also, human bone marrow-derived endothelial progenitor cells (hBM-EPCs) and mBECs were co-cultured without cell contact to establish therapeutic mechanism of hBM-EPC transplantation. Results showed that ApoA1 significantly reduced mBEC death via the PI3K/Akt downstream signaling pathway. Also, ApoA1 was incorporated into mBECs as confirmed by blocked ApoA1 cellular integration. Co-culture system provided evidence that ApoA1 was secreted by hBM-EPCs and incorporated into injured mBECs. Thus, our study findings provide important evidence for ApoA1 as a potential novel therapeutic for endothelium protection in ALS. This in vitro study lays the groundwork for further in vivo research to fully determine therapeutic effects of ApoA1 in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| |
Collapse
|
9
|
Sadanandan N, Lee JY, Garbuzova-Davis S. Extracellular vesicle-based therapy for amyotrophic lateral sclerosis. Brain Circ 2021; 7:23-28. [PMID: 34084973 PMCID: PMC8057104 DOI: 10.4103/bc.bc_9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/02/2021] [Accepted: 01/20/2021] [Indexed: 11/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a neurodegenerative disorder characterized by the rapid progression of motor neuron loss in the brain and spinal cord. Unfortunately, treatment options for ALS are limited, and therefore, novel therapies that prevent further motor neuron degeneration are of dire need. In ALS, the infiltration of pathological elements from the blood to the central nervous system (CNS) compartment that spur motor neuron damage may be prevented via restoration of the impaired blood-CNS-barrier. Transplantation of human bone marrow endothelial progenitor cells (hBM-EPCs) demonstrated therapeutic promise in a mouse model of ALS due to their capacity to mitigate the altered blood-CNS-barrier by restoring endothelial cell (EC) integrity. Remarkably, the hBM-EPCs can release angiogenic factors that endogenously ameliorate impaired ECs. In addition, these cells may produce extracellular vesicles (EVs) that carry a wide range of vesicular factors, which aid in alleviating EC damage. In an in vitro study, hBM-EPC-derived EVs were effectively uptaken by the mouse brain endothelial cells (mBECs) and cell damage was significantly attenuated. Interestingly, the incorporation of EVs into mBECs was inhibited via β1 integrin hindrance. This review explores preclinical studies of the therapeutic potential of hBM-EPCs, specifically via hBM-EPC-derived EVs, for the repair of the damaged blood-CNS-barrier in ALS as a novel treatment approach.
Collapse
Affiliation(s)
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Clarke BE, Patani R. The microglial component of amyotrophic lateral sclerosis. Brain 2021; 143:3526-3539. [PMID: 33427296 PMCID: PMC7805793 DOI: 10.1093/brain/awaa309] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the CNS, carrying out key homeostatic roles and undergoing context-dependent and temporally regulated changes in response to injury and neurodegenerative diseases. Microglia have been implicated in playing a role in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by extensive motor neuron loss leading to paralysis and premature death. However, as the pathomechansims of ALS are increasingly recognized to involve a multitude of different cell types, it has been difficult to delineate the specific contribution of microglia to disease. Here, we review the literature of microglial involvement in ALS and discuss the evidence for the neurotoxic and neuroprotective pathways that have been attributed to microglia in this disease. We also discuss accumulating evidence for spatiotemporal regulation of microglial activation in this context. A deeper understanding of the role of microglia in the ‘cellular phase’ of ALS is crucial in the development of mechanistically rationalized therapies.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| | - Rickie Patani
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| |
Collapse
|
11
|
Martin LJ, Niedzwiecki MV, Wong M. Chronic Intermittent Mild Whole-Body Hypothermia Is Therapeutic in a Mouse Model of ALS. Cells 2021; 10:320. [PMID: 33557211 PMCID: PMC7913914 DOI: 10.3390/cells10020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration. There are no cures or effective treatments for ALS. Therapeutic hypothermia is effectively used clinically to mitigate mortality in patients with acute acquired brain injury and in surgical settings to minimize secondary brain injury. The efficacy of therapeutic hypothermia in chronic neurodegenerative disorders has not been examined. We tested the hypothesis that mild hypothermia/cold acclimation is therapeutic in a transgenic mouse model of ALS caused by expression of mutated human superoxide dismutase-1 gene. At presymptomatic stages of disease, body temperatures (oral and axial) of mutant male mice were persistently hyperthermic (38-38.5 °C) compared to littermate controls, but at end-stage disease mice were generally hypothermic (36-36.5 °C). Presymptomatic mutant mice (awake-freely moving) were acclimated to systemic mild hypothermia using an environmentally controlled chamber (12 h-on/12-off or 24 h-on/24 h-off) to lower body temperature (1-3 °C). Cooled ALS mice showed a significant delay in disease onset (103-112 days) compared to normothermia mice (80-90 days) and exhibited significant attenuation of functional decline in motor performance. Cooled mice examined at 80 days had reduced motor neuron loss, mitochondrial swelling, and spinal cord inflammation compared to non-cooled mice. Cooling attenuated the loss of heat-shock protein 70, mitochondrial uncoupling protein-3, and sumoylated-1 (SUMO1)-conjugated proteins in skeletal muscle and disengaged the mitochondrial permeability transition pore. Cooled ALS mice had a significant extension of lifespan (148 ± 7 days) compared to normothermic mice (135 ± 4 days). Thus, intermittent systemic mild hypothermia is therapeutic in mouse ALS with protective effects manifested within the CNS and skeletal muscle that target mitochondria.
Collapse
Affiliation(s)
- Lee J. Martin
- Departments of Pathology, Division of Neuropathology, Neuroscience, and Anesthesiology and Critical Medicine and the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (M.V.N.); (M.W.)
| | | | | |
Collapse
|
12
|
Detection of endothelial cell-associated human DNA reveals transplanted human bone marrow stem cell engraftment into CNS capillaries of ALS mice. Brain Res Bull 2021; 170:22-28. [PMID: 33545308 DOI: 10.1016/j.brainresbull.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Repairing the altered blood-CNS-barrier in amyotrophic lateral sclerosis (ALS) is imperative to prevent entry of detrimental blood-borne substances into the CNS. Cell transplantation with the goal of replacing damaged endothelial cells (ECs) may be a new therapeutic approach for barrier restoration. We showed positive effects of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These benefits mainly occurred by administered cells engraftment into vascular walls in ALS mice; however, additional studies are needed to confirm cell engraftment within capillaries. The aim of this investigation was to determine the presence of human DNA within microvascular ECs isolated from the CNS tissues of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. The CNS tissues were obtained from previously cell-treated and media-treated G93A mice at 17 weeks of age. Real-time PCR (RT-PCR) assay for detection of human DNA was performed in ECs isolated from mouse CNS tissue. Viability of these ECs was determined using the LIVE/DEAD viability/cytotoxicity assay. Results showed appropriate EC isolation as verified by immunoexpression of endothelial cell marker. Human DNA was detected in isolated ECs from cell-treated mice with greater concentrations in mice receiving hBM-EPCs vs. hBM34+ cells. Also, higher numbers of live ECs were determined in mice treated with hBM-EPCs vs. hBM34+ cells or media-injection. Results revealed that transplanted human cells engrafted into mouse capillary walls and efficaciously maintained endothelium function. These study results support our previous findings showing that intravenous administration of hBM-EPCs into symptomatic ALS mice was more beneficial than hBM34+ cell treatment in repair of barrier integrity, likely due to replacement of damaged ECs in mouse CNS vessels. Based on this evidence, hBM-EPCs may be advanced as a cell-specific approach for ALS therapy through restored CNS barrier integrity.
Collapse
|
13
|
Garbuzova-Davis S, Willing AE, Ehrhart J, Wang L, Sanberg PR, Borlongan CV. Cell-Free Extracellular Vesicles Derived from Human Bone Marrow Endothelial Progenitor Cells as Potential Therapeutics for Microvascular Endothelium Restoration in ALS. Neuromolecular Med 2020; 22:503-516. [PMID: 32820422 DOI: 10.1007/s12017-020-08607-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Repairing the damaged blood-CNS-barrier in amyotrophic lateral sclerosis (ALS) is necessary to prevent entry of detrimental blood-borne factors contributing to motor neuron dysfunction. Recently, we showed benefits of human bone marrow endothelial progenitor cell (hBM-EPC) transplantation into symptomatic ALS mice on barrier restoration by replacing damaged endothelial cells (ECs). Additionally, transplanted cells may endogenously repair ECs by secreting angiogenic factors as our subsequent in vitro study demonstrated. Based on these study results, hBM-EPCs may secrete extracellular vesicles, which may contain and transfer diverse vesicular biomolecules towards maintenance of EC functionality. The study aimed to characterize extracellular vesicles (EVs) derived from hBM-EPCs as potential cell-free therapeutics for endothelium repair in ALS. EVs were isolated from hBM-EPC media at different culture times and vesicle properties were evaluated. The protective effects of EVs on mouse brain endothelial cells (mBECs) exposed to ALS mouse plasma were investigated. Uptake and blockage of EVs from GFP-transfected hBM-EPCs in ECs were determined in vitro. Results showed that EVs isolated from hBM-EPCs as nanosized vesicles significantly reduced mBEC damage from the pathological environment and these EVs were taken up by cells. Blockage of β1 integrin on EVs prevented internalization of vesicles in mBECs. Together, these results provide evidence for potential of hBM-EPC-derived EVs as novel cell-free therapeutics for repair of endothelium in ALS. Although determining translational potential of hBM-EPC-derived EVs will require evaluation in vivo, this in vitro study represents a step towards an extracellular vesicle-based approach for repair of the damaged microvascular endothelium in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer`S Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Moreno-Martinez L, de la Torre M, Muñoz MJ, Zaragoza P, Aguilera J, Calvo AC, Osta R. Neuroprotective Fragment C of Tetanus Toxin Modulates IL-6 in an ALS Mouse Model. Toxins (Basel) 2020; 12:toxins12050330. [PMID: 32429516 PMCID: PMC7290364 DOI: 10.3390/toxins12050330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation plays a significant role in amyotrophic lateral sclerosis (ALS) pathology, leading to the development of therapies targeting inflammation in recent years. Our group has studied the tetanus toxin C-terminal fragment (TTC) as a therapeutic molecule, showing neuroprotective properties in the SOD1G93A mouse model. However, it is unknown whether TTC could have some effect on inflammation. The objective of this study was to assess the effect of TTC on the regulation of inflammatory mediators to elucidate its potential role in modulating inflammation occurring in ALS. After TTC treatment in SOD1G93A mice, levels of eotaxin-1, interleukin (IL)-2, IL-6 and macrophage inflammatory protein (MIP)-1 alpha (α) and galectin-1 were analyzed by immunoassays in plasma samples, whilst protein expression of caspase-1, IL-1β, IL-6 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was measured in the spinal cord, extensor digitorum longus (EDL) muscle and soleus (SOL) muscle. The results showed reduced levels of IL-6 in spinal cord, EDL and SOL in treated SOD1G93A mice. In addition, TTC showed a different role in the modulation of NLRP3 and caspase-1 depending on the tissue analyzed. In conclusion, our results suggest that TTC could have a potential anti-inflammatory effect by reducing IL-6 levels in tissues drastically affected by the disease. However, further research is needed to study more in depth the anti-inflammatory effect of TTC in ALS.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - Miriam de la Torre
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - María J. Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - Pilar Zaragoza
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
| | - José Aguilera
- Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain;
| | - Ana C. Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
- Correspondence: (A.C.C.); (R.O.); Tel.: +34-976761622 (A.C.C.); +34-976761621 (R.O.)
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; (L.M.-M.); (M.d.l.T.); (M.J.M.); (P.Z.)
- Correspondence: (A.C.C.); (R.O.); Tel.: +34-976761622 (A.C.C.); +34-976761621 (R.O.)
| |
Collapse
|
15
|
Why do anti-inflammatory signals of bone marrow-derived stromal cells improve neurodegenerative conditions where anti-inflammatory drugs fail? J Neural Transm (Vienna) 2020; 127:715-727. [PMID: 32253536 PMCID: PMC7242250 DOI: 10.1007/s00702-020-02173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders share the final degenerative pathway, the inflammation-induced apoptosis and/or necrosis, irrespective of their etiology, be it of acute and chronic traumatic, vascular and idiopathic origin. Although disease-modifying strategies are an unmet need in these disorders, lately, (pre)clinical studies suggested favorable effects after an intervention with bone marrow-derived stromal cells (bm-SC). Recent interventions with intrathecal transplantation of these cells in preclinical rodent models improved the functional outcome and reduced the inflammation, but not anti-inflammatory drugs. The benefit of bm-SCs was demonstrated in rats with an acute (traumatic spinal cord injury, tSCI) and in mice with a chronic [amyotrophic lateral sclerosis (ALS)-like FUS 1-358 or SOD1-G93-A mutation] neurodegenerative process. Bm-SCs, were found to modify underlying disease processes, to reduce final clinical SCI-related outcome, and to slow down ALS-like clinical progression. After double-blind interventions with bm-SC transplantations, Vehicle (placebo), and (non)steroidal anti-inflammatory drugs (Methylprednisolone, Riluzole, Celecoxib), clinical, histological and histochemical findings, serum/spinal cytokines, markers for spinal microglial activation inclusive, evidenced the cell-to-cell action of bm-SCs in both otherwise healthy and immune-deficient tSCI-rats, as well as wild-type and FUS/SOD1-transgenic ALS-like mice. The multi-pathway hypothesis of the cell-to-cell action of bmSCs, presumably using extracellular vesicles (EVs) as carriers of messages in the form of RNAs, DNA, proteins, and lipids rather than influencing a single inflammatory pathway, could be justified by the reported differences of cytokines and other chemokines in the serum and spinal tissue. The mode of action of bm-SCs is hypothesized to be associated with its dedicated adjustment of the pro-apoptotic glycogen synthase kinase-3β level towards an anti-apoptotic level whereas their multi-pathway hypothesis seems to be confirmed by the decreased levels of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF) as well as the level of the marker of activated microglia, ionized calcium binding adapter (Iba)-1 level.
Collapse
|
16
|
Ly D, Dongol A, Cuthbertson P, Guy TV, Geraghty NJ, Sophocleous RA, Sin L, Turner BJ, Watson D, Yerbury JJ, Sluyter R. The P2X7 receptor antagonist JNJ-47965567 administered thrice weekly from disease onset does not alter progression of amyotrophic lateral sclerosis in SOD1 G93A mice. Purinergic Signal 2020; 16:109-122. [PMID: 32170537 PMCID: PMC7166237 DOI: 10.1007/s11302-020-09692-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ATP-gated P2X7 ion channel has emerging roles in amyotrophic lateral sclerosis (ALS) progression. Pharmacological blockade of P2X7 with Brilliant Blue G can ameliorate disease in SOD1G93A mice, but recent data suggests that this antagonist displays poor penetration of the central nervous system (CNS). Therefore, the current study aimed to determine whether the CNS-penetrant P2X7 antagonist, JNJ-47965567, could ameliorate ALS progression in SOD1G93A mice. A flow cytometric assay revealed that JNJ-47965567 impaired ATP-induced cation dye uptake in a concentration-dependent manner in murine J774 macrophages. Female and male SOD1G93A mice were injected intraperitoneally with JNJ-47965567 (30 mg/kg) or 2-(hydroxypropyl)-beta-cyclodextrin (vehicle control) three times a week from disease onset until end stage, when tissues were collected and studied. JNJ-47965567 did not impact weight loss, clinical score, motor (rotarod) coordination or survival compared to control mice. NanoString analysis revealed altered spinal cord gene expression in JNJ-47965567 mice compared to control mice, but such differences were not confirmed by quantitative PCR. Flow cytometric analyses revealed no differences between treatments in the frequencies or activation status of T cell or dendritic cell subsets in lymphoid tissues or in the concentrations of serum cytokines. Notably, serum IL-27, IFNβ and IL-10 were present in relatively high concentrations compared to other cytokines in both groups. In conclusion, JNJ-47965567 administered thrice weekly from disease onset did not alter disease progression or molecular and cellular parameters in SOD1G93A mice.
Collapse
Affiliation(s)
- Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Anjila Dongol
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Thomas V Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas J Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Lucia Sin
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
17
|
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int J Mol Sci 2019; 20:ijms20112759. [PMID: 31195629 PMCID: PMC6600567 DOI: 10.3390/ijms20112759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - María Jesús Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|