1
|
Zhou Z, Zheng J, Lu Y, Mai Z, Lin Y, Lin P, Zheng Y, Chen X, Xu R, Zhao X, Cui L. Optimizing CD8 + T cell-based immunotherapy via metabolic interventions: a comprehensive review of intrinsic and extrinsic modulators. Exp Hematol Oncol 2024; 13:103. [PMID: 39438986 PMCID: PMC11495118 DOI: 10.1186/s40164-024-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
CD8+ T cells are integral to the effective management of cancer and infectious diseases due to their cytotoxic functions. The efficacy of these cells is profoundly influenced by their metabolic state, which regulates their activation, differentiation, and longevity. Accordingly, the modulation of metabolic pathways within CD8+ T cells is crucial for enhancing the effectiveness of T cell-based immunotherapy. Precise metabolic control is paramount in optimizing therapeutic outcomes and minimizing potential toxicities associated with treatment. Importantly, the potential of exogenous metabolites to augment CD8+ T cell responses is critically evaluated, especially through in vivo evidence that underscores their therapeutic promise. This review also addresses current challenges, including the need for precise control of metabolic modulation to avoid adverse effects, the development of targeted delivery systems to ensure efficient metabolite delivery to CD8+ T cells, and the inherent variability of metabolic states among patients that may influence treatment outcomes. Addressing these hurdles will be crucial for the successful integration of metabolic interventions into established immunotherapeutic regimens.
Collapse
Affiliation(s)
- Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
2
|
Wendering DJ, Amini L, Schlickeiser S, Farrera-Sal M, Schulenberg S, Peter L, Mai M, Vollmer T, Du W, Stein M, Hamm F, Malard A, Castro C, Yang M, Ranka R, Rückert T, Durek P, Heinrich F, Gasparoni G, Salhab A, Walter J, Wagner DL, Mashreghi MF, Landwehr-Kenzel S, Polansky JK, Reinke P, Volk HD, Schmueck-Henneresse M. Effector memory-type regulatory T cells display phenotypic and functional instability. SCIENCE ADVANCES 2024; 10:eadn3470. [PMID: 39231218 PMCID: PMC11421655 DOI: 10.1126/sciadv.adn3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Regulatory T cells (Treg cells) hold promise for sustainable therapy of immune disorders. Recent advancements in chimeric antigen receptor development and genome editing aim to enhance the specificity and function of Treg cells. However, impurities and functional instability pose challenges for the development of safe gene-edited Treg cell products. Here, we examined different Treg cell subsets regarding their fate, epigenomic stability, transcriptomes, T cell receptor repertoires, and function ex vivo and after manufacturing. Each Treg cell subset displayed distinct features, including lineage stability, epigenomics, surface markers, T cell receptor diversity, and transcriptomics. Earlier-differentiated memory Treg cell populations, including a hitherto unidentified naïve-like memory Treg cell subset, outperformed late-differentiated effector memory-like Treg cells in regulatory function, proliferative capacity, and epigenomic stability. High yields of stable, functional Treg cell products could be achieved by depleting the small effector memory-like Treg cell subset before manufacturing. Considering Treg cell subset composition appears critical to maintain lineage stability in the final cell product.
Collapse
Affiliation(s)
- Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marco Mai
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Frederik Hamm
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Alisier Malard
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carla Castro
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ramon Ranka
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Rückert
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Gilles Gasparoni
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Jörn Walter
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Dimitrios Laurin Wagner
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Department of Pediatric Pulmonology, Allergy and Neonatology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
3
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Alexander KL, Ford ML. The Entangled World of Memory T Cells and Implications in Transplantation. Transplantation 2024; 108:137-147. [PMID: 37271872 PMCID: PMC10696133 DOI: 10.1097/tp.0000000000004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Memory T cells that are specific for alloantigen can arise from a variety of stimuli, ranging from direct allogeneic sensitization from prior transplantation, blood transfusion, or pregnancy to the elicitation of pathogen-specific T cells that are cross-reactive with alloantigen. Regardless of the mechanism by which they arise, alloreactive memory T cells possess key metabolic, phenotypic, and functional properties that render them distinct from naive T cells. These properties affect the immune response to transplantation in 2 important ways: first, they can alter the speed, location, and effector mechanisms with which alloreactive T cells mediate allograft rejection, and second, they can alter T-cell susceptibility to immunosuppression. In this review, we discuss recent developments in understanding these properties of memory T cells and their implications for transplantation.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
6
|
Peter L, Wendering DJ, Schlickeiser S, Hoffmann H, Noster R, Wagner DL, Zarrinrad G, Münch S, Picht S, Schulenberg S, Moradian H, Mashreghi MF, Klein O, Gossen M, Roch T, Babel N, Reinke P, Volk HD, Amini L, Schmueck-Henneresse M. Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients. Mol Ther Methods Clin Dev 2022; 25:52-73. [PMID: 35252469 PMCID: PMC8882037 DOI: 10.1016/j.omtm.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.
Collapse
Affiliation(s)
- Lena Peter
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Einstein Center for Regenerative Therapies at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Henrike Hoffmann
- Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rebecca Noster
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Transfusion Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Einstein Center for Regenerative Therapies at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Münch
- Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Samira Picht
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Einstein Center for Regenerative Therapies at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hanieh Moradian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Mir-Farzin Mashreghi
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Manfred Gossen
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
| | - Toralf Roch
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany.,Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Nina Babel
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany.,Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
7
|
Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, Wendering DJ, Kornak U, Volk HD, Reinke P, Schmueck-Henneresse M. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29:32-46. [PMID: 32956624 PMCID: PMC7791012 DOI: 10.1016/j.ymthe.2020.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections, such as with cytomegalovirus (CMV), remain a major risk factor for mortality and morbidity of transplant recipients because of their requirement for lifelong immunosuppression (IS). Antiviral drugs often cause toxicity and sometimes fail to control disease. Thus, regeneration of the antiviral immune response by adoptive antiviral T cell therapy is an attractive alternative. Our recent data, however, show only short-term efficacy in some solid organ recipients, possibly because of malfunction in transferred T cells caused by ongoing IS. We developed a vector-free clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based good manufacturing practice (GMP)-compliant protocol that efficiently targets and knocks out the gene for the adaptor protein FK506-binding protein 12 (FKBP12), required for the immunosuppressive function of tacrolimus. This was achieved by transient delivery of ribonucleoprotein complexes into CMV-specific T cells by electroporation. We confirmed the tacrolimus resistance of our gene-edited T cell products in vitro and demonstrated performance comparable with non-tacrolimus-treated unmodified T cells. The alternative calcineurin inhibitor cyclosporine A can be administered as a safety switch to shut down tacrolimus-resistant T cell activity in case of adverse effects. Furthermore, we performed safety assessments as a prerequisite for translation to first-in-human applications.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uta Rössler
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Einstein Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Livia Felicitas Wagner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
8
|
Hauser IA, Marx S, Sommerer C, Suwelack B, Dragun D, Witzke O, Lehner F, Schiedel C, Porstner M, Thaiss F, Neudörfl C, Falk CS, Nashan B, Sester M. Effect of everolimus-based drug regimens on CMV-specific T-cell functionality after renal transplantation: 12-month ATHENA subcohort-study results. Eur J Immunol 2020; 51:943-955. [PMID: 33306229 DOI: 10.1002/eji.202048855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Post-transplant cytomegalovirus (CMV) infections and increased viral replication are associated with CMV-specific T-cell anergy. In the ATHENA-study, de-novo everolimus (EVR) with reduced-exposure tacrolimus (TAC) or cyclosporine (CyA) showed significant benefit in preventing CMV infections in renal transplant recipients as compared to standard TAC + mycophenolic acid (MPA). However, immunomodulatory mechanisms for this effect remain largely unknown. Ninety patients from the ATHENA-study completing the 12-month visit on-treatment (EVR + TAC n = 28; EVR + CyA n = 19; MPA + TAC n = 43) were included in a posthoc analysis. Total lymphocyte subpopulations were quantified. CMV-specific CD4 T cells were determined after stimulation with CMV-antigen, and cytokine-profiles and various T-cell anergy markers were analyzed using flow cytometry. While 25.6% of MPA + TAC-treated patients had CMV-infections, no such events were reported in EVR-treated patients. Absolute numbers of lymphocyte subpopulations were comparable between arms, whereas the percentage of regulatory T cells was significantly higher with EVR + CyA versus MPA + TAC (p = 0.019). Despite similar percentages of CMV-specific T cells, their median expression of CTLA-4 and PD-1 was lower with EVR + TAC (p < 0.05 for both) or EVR + CyA (p = 0.045 for CTLA-4) compared with MPA + TAC. Moreover, mean percentages of multifunctional CMV-specific T cells were higher with EVR + TAC (27.2%) and EVR + CyA (29.4%) than with MPA + TAC (19.0%). In conclusion, EVR-treated patients retained CMV-specific T-cell functionality, which may contribute to enhanced protection against CMV infections.
Collapse
Affiliation(s)
- Ingeborg A Hauser
- Department of Nephrology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Claudia Sommerer
- Nephrology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Suwelack
- Department of Internal Medicine, Transplant Nephrology, University Hospital of Münster, Münster, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Duisburg-Essen, Germany
| | - Frank Lehner
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany.,Helios Hospital Hildesheim, Department of General- and Visceral Surgery, Academic Teaching Hospital of the Hannover Medical School, Hildesheim, Germany
| | | | | | - Friedrich Thaiss
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, Hannover Medical School MHH, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School MHH, Hannover, Germany.,German Center for Infection Research DZIF, Hannover, Germany
| | - Björn Nashan
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Bajda S, Blazquez-Navarro A, Samans B, Wehler P, Kaliszczyk S, Amini L, Schmueck-Henneresse M, Witzke O, Dittmer U, Westhoff TH, Viebahn R, Reinke P, Thomusch O, Hugo C, Olek S, Roch T, Babel N. The role of soluble mediators in the clinical course of EBV infection and B cell homeostasis after kidney transplantation. Sci Rep 2020; 10:19594. [PMID: 33177622 PMCID: PMC7658229 DOI: 10.1038/s41598-020-76607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus (EBV) reactivation can lead to serious complications in kidney transplant patients, including post-transplant lymphoproliferative disorder (PTLD). Here, we have assessed the impact of EBV on B cell homeostasis at cellular and humoral level. In a multicenter study monitoring 540 kidney transplant patients during the first post-transplant year, EBV reactivation was detected in 109 patients. Thirteen soluble factors and B cell counts were analyzed in an EBV+ sub-cohort (N = 54) before, at peak and after EBV clearance and compared to a control group (N = 50). The B cell activating factor (BAFF) was significantly elevated among EBV+ patients. No additional soluble factors were associated with EBV. Importantly, in vitro experiments confirmed the proliferative effect of BAFF on EBV-infected B cells, simultaneously promoting EBV production. In contrast, elevated levels of BAFF in EBV+ patients did not lead to B cell expansion in vivo. Moreover, diminished positive inter-correlations of soluble factors and alterations of the bi-directional interplay between B cell and soluble factors were observed in EBV+ patients at peak and after clearance. Our data suggest that such alterations may counteract the proliferative effect of BAFF, preventing B cell expansion. The role of these alterations in lymphoma development should be analyzed in future studies.
Collapse
Affiliation(s)
- Sharon Bajda
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arturo Blazquez-Navarro
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Systems Immunology Lab, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Björn Samans
- Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, Precision for Medicine Group, Berlin, Germany
| | - Patrizia Wehler
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Sviatlana Kaliszczyk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Department of Infectious Diseases, Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timm H Westhoff
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Chirurgical University Hospital, University Hospital Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Thomusch
- Department of General Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Christian Hugo
- Medical Clinic 3 - Nephrology Unit, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Sven Olek
- Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, Precision for Medicine Group, Berlin, Germany
| | - Toralf Roch
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT): Berlin-Brandenburger Centrum für Regenerative Therapien, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Medical Department I, Center for Translational Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
10
|
Sbierski-Kind J, Mai K, Kath J, Jurisch A, Streitz M, Kuchenbecker L, Babel N, Nienen M, Jürchott K, Spranger L, Jumpertz von Schwartzenberg R, Decker AM, Krüger U, Volk HD, Spranger J. Association between Subcutaneous Adipose Tissue Inflammation, Insulin Resistance, and Calorie Restriction in Obese Females. THE JOURNAL OF IMMUNOLOGY 2020; 205:45-55. [PMID: 32482712 DOI: 10.4049/jimmunol.2000108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023]
Abstract
The worldwide epidemic of overweight and obesity has led to an increase in associated metabolic comorbidities. Obesity induces chronic low-grade inflammation in white adipose tissue (WAT). However, the function and regulation of both innate and adaptive immune cells in human WAT under conditions of obesity and calorie restriction (CR) is not fully understood yet. Using a randomized interventional design, we investigated postmenopausal overweight or obese female subjects who either underwent CR for 3 mo followed by a 4-wk phase of weight maintenance or had to maintain a stable weight over the whole study period. A comprehensive immune phenotyping protocol was conducted using validated multiparameter flow cytometry analysis in blood and s.c. WAT (SAT). The TCR repertoire was analyzed by next-generation sequencing and cytokine levels were determined in SAT. Metabolic parameters were determined by hyperinsulinemic-euglycemic clamp. We found that insulin resistance correlates significantly with a shift toward the memory T cell compartment in SAT. TCR analysis revealed a diverse repertoire in SAT of overweight or obese individuals. Additionally, whereas weight loss improved systemic insulin sensitivity in the intervention group, SAT displayed no significant improvement of inflammatory parameters (cytokine levels and leukocyte subpopulations) compared with the control group. Our data demonstrate the accumulation of effector memory T cells in obese SAT and an association between systemic glucose homeostasis and inflammatory parameters in obese females. The long-standing effect of obesity-induced changes in SAT was demonstrated by preserved immune cell composition after short-term CR-induced weight loss.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany; .,Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Knut Mai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Jonas Kath
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Anke Jurisch
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Mathias Streitz
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leon Kuchenbecker
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Mikalai Nienen
- Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leonard Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| | - Anne-Marie Decker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Ulrike Krüger
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| |
Collapse
|