1
|
Yang M, Huang Y, Tang A, Zhang Y, Liu Y, Fan Z, Li M. Research Hotspots in Mitochondria-Related Studies for AKI Treatment: A Bibliometric Study. Drug Des Devel Ther 2024; 18:4051-4063. [PMID: 39280255 PMCID: PMC11402358 DOI: 10.2147/dddt.s473426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Acute kidney injury (AKI) is a common clinical critical condition that has become a significant healthcare burden. In recent years, the relationship between AKI and mitochondria has attracted increasing attention. Protecting mitochondria or restoring their function has emerged as a novel therapeutic strategy for alleviating AKI. This study aims to analyze and summarize the current status, research trends, and hotspots in this field, providing references and directions for future research. Methods AKI and mitochondria-related literature from the Web of Science core collection were retrieved and collected. Bibliometric and visualization analyses were conducted using Microsoft Excel 2021, bibliometric tools (VosViewer, Citespace 6.3.R1, and the bibliometrix R package), R 4.3.2, and SCImagoGraphica software. Results A total of 2433 publications were included in this study. The number of annual publications in this field has increased year by year. China and the United States are the two most productive countries. Central South University is the most influential research institution in terms of research output, and Parikh SM, Schnellmann RG, and Dong Z are the most influential authors in this field. KIDNEY INTERNATIONAL, JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, and AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY are the most influential journals. Initially, the research focused on keywords such as oxidative stress, ischemia-reperfusion injury, apoptosis, inflammation, and autophagy. In recent years, new research hotspots have emerged, including ferroptosis, aging, mitochondrial quality control, messenger RNA, mitochondrial-targeted antioxidants, extracellular vesicles, and nanodrug delivery. Conclusion Research on the relationship between mitochondria and AKI has broad developing prospects, and targeting mitochondrial regulation will become a focus of future AKI prevention and treatment research.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Provincial, People’s Republic of China
| | - Yu Liu
- Department of Nephrology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Zhenliang Fan
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
2
|
Sanches TR, Parra AC, Sun P, Graner MP, Itto LYU, Butter LM, Claessen N, Roelofs JJ, Florquin S, Veras MM, Andrade MDF, Saldiva PHN, Kers J, Andrade L, Tammaro A. Air pollution aggravates renal ischaemia-reperfusion-induced acute kidney injury. J Pathol 2024; 263:496-507. [PMID: 38934262 DOI: 10.1002/path.6302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM2.5) and a decline in renal function. PM2.5 exerts harmful effects on various organs through oxidative stress and inflammation. Acute kidney injury (AKI) resulting from ischaemia-reperfusion injury (IRI) involves biological processes similar to those involved in PM2.5 toxicity and is a known risk factor for CKD. The objective of this study was to investigate the impact of PM2.5 exposure on IRI-induced AKI. Through a unique environmentally controlled setup, mice were exposed to urban PM2.5 or filtered air for 12 weeks before IRI followed by euthanasia 48 h after surgery. Animals exposed to PM2.5 and IRI exhibited reduced glomerular filtration, impaired urine concentration ability, and significant tubular damage. Further, PM2.5 aggravated local innate immune responses and mitochondrial dysfunction, as well as enhancing cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation. This increased renal senescence and suppressed the anti-ageing protein klotho, leading to early fibrotic changes. In vitro studies using proximal tubular epithelial cells exposed to PM2.5 and hypoxia/reoxygenation revealed heightened activation of the STING pathway triggered by cytoplasmic mitochondrial DNA, resulting in increased tubular damage and a pro-inflammatory phenotype. In summary, our findings imply a role for PM2.5 in sensitising proximal tubular epithelial cells to IRI-induced damage, suggesting a plausible association between PM2.5 exposure and heightened susceptibility to CKD in individuals experiencing AKI. Strategies aimed at reducing PM2.5 concentrations and implementing preventive measures may improve outcomes for AKI patients and mitigate the progression from AKI to CKD. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Talita Rojas Sanches
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Parra
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Peiqi Sun
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariana Pereira Graner
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lucas Yuji Umesaki Itto
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Loes Maria Butter
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology (LIM-5), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria de Fatima Andrade
- Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Lucia Andrade
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fan Y, Xu Y, Huo Z, Zhang H, Peng L, Jiang X, Thomson AW, Dai H. Role of triggering receptor expressed on myeloid cells-1 in kidney diseases: A biomarker and potential therapeutic target. Chin Med J (Engl) 2024; 137:1663-1673. [PMID: 38809056 PMCID: PMC11268828 DOI: 10.1097/cm9.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily. As an amplifier of the inflammatory response, TREM-1 is mainly involved in the production of inflammatory mediators and the regulation of cell survival. TREM-1 has been studied in infectious diseases and more recently in non-infectious disorders. More and more studies have shown that TREM-1 plays an important pathogenic role in kidney diseases. There is evidence that TREM-1 can not only be used as a biomarker for diagnosis of disease but also as a potential therapeutic target to guide the development of novel therapeutic agents for kidney disease. This review summarized molecular biology of TREM-1 and its signaling pathways as well as immune response in the progress of acute kidney injury, renal fibrosis, diabetic nephropathy, immune nephropathy, and renal cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Fan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Medical College of Guangxi University, Nanning, Guangxi 530004, China
| | - Zhi Huo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, Henan 450000, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Ajith A, Mamouni K, Horuzsko DD, Musa A, Dzutsev AK, Fang JR, Chadli A, Zhu X, Lebedyeva I, Trinchieri G, Horuzsko A. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance. J Clin Invest 2023; 133:e167951. [PMID: 37651197 PMCID: PMC10617775 DOI: 10.1172/jci167951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kenza Mamouni
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D. Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Abu Musa
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
5
|
Zheng Y, Wang J, Ling Z, Zhang J, Zeng Y, Wang K, Zhang Y, Nong L, Sang L, Xu Y, Liu X, Li Y, Huang Y. A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications. J Transl Med 2023; 21:620. [PMID: 37700323 PMCID: PMC10498641 DOI: 10.1186/s12967-023-04499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. METHODS The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. RESULTS The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. CONCLUSION This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Jinping Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong,, China
| | - Zhaoyi Ling
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Jiamei Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yuan Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Ke Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yu Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Lingbo Nong
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Ling Sang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yonghao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yimin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China.
| | - Yongbo Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Abstract
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Zhang F, Zheng X, Zhao F, Li L, Ren Y, Li L, Huang H, Yin H. TFAM-Mediated mitochondrial transfer of MSCs improved the permeability barrier in sepsis-associated acute lung injury. Apoptosis 2023:10.1007/s10495-023-01847-z. [PMID: 37060506 DOI: 10.1007/s10495-023-01847-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Vascular endothelial cell barrier disruption is a hallmark of sepsis-induced acute lung injury (ALI). Mesenchymal stem cells (MSCs)-based therapy has been regarded as a promising treatment for repairing injured lungs, and mitochondrial transfer was shown to be important for the therapeutic effects of MSCs. Here we investigated the ability of MSCs to modulate endothelial barrier integrity through mitochondrial transfer in sepsis-induced ALI. We found that mitochondrial transfer from MSCs to LPS-induced PMVECs through forming tunneling nanotubes (TNTs). Due to the inhibition of TNTs (using LAT-A), MSCs-mediated reparation on PMVECs functions, including cell apoptosis, MMP, ATP generation, TEER level and monolayer permeability of FITC-dextran were greatly inhibited. In addition, silencing of mitochondrial transcription factor A (TFAM) in MSCs could also partly inhibit the TNTs formation and aggravate the LPS-induced mitochondrial dysfunction and permeability barrier in PMVECs. Furthermore, the LPS-induced pulmonary edema and higher pulmonary vascular permeability were alleviated by MSCs while that of lung tissue bounced back after MSCs were pre-incubated by LAT-A and or down-regulation of TFAM. Therefore, we firstly revealed that regulation of TFAM expression in MSCs played a critical role to improve the permeability barrier of PMVECs by TNTs mediating mitochondrial transfer in sepsis-associated ALI. This study provided a new therapeutic strategy for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Fengzhi Zhao
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Longzhu Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Haiyan Huang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
8
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
9
|
Cellular senescence in ischemia/reperfusion injury. Cell Death Dis 2022; 8:420. [PMID: 36253355 PMCID: PMC9576687 DOI: 10.1038/s41420-022-01205-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Ischemia/reperfusion (IR) injury, a main reason of mortality and morbidity worldwide, occurs in many organs and tissues. As a result of IR injury, senescent cells can accumulate in multiple organs. Increasing evidence shows that cellular senescence is the underlying mechanism that transforms an acute organ injury into a chronic one. Several recent studies suggest senescent cells can be targeted for the prevention or elimination of acute and chronic organ injury induced by IR. In this review, we concisely introduce the underlying mechanism and the pivotal role of premature senescence in the transition from acute to chronic IR injuries. Special focus is laid on recent advances in the mechanisms as well as on the basic and clinical research, targeting cellular senescence in multi-organ IR injuries. Besides, the potential directions in this field are discussed in the end. Together, the recent advances reviewed here will act as a comprehensive overview of the roles of cellular senescence in IR injury, which could be of great significance for the design of related studies, or as a guide for potential therapeutic target.
Collapse
|
10
|
Siskind S, Zhang F, Brenner M, Wang P. Extracellular CIRP induces acute kidney injury via endothelial TREM-1. Front Physiol 2022; 13:954815. [PMID: 36246143 PMCID: PMC9558214 DOI: 10.3389/fphys.2022.954815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Acute kidney injury is associated with elevated serum levels of extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern released during ischemia/reperfusion injury, hemorrhagic shock, and sepsis. It is unknown if circulating eCIRP and eCIRP-induced activation of receptor triggering receptor expressed on myeloid cells-1 (TREM-1), expressed on endothelial cells, play an important role in the pathogenesis of AKI. Methods: Male B6 wild-type (WT) and TREM-1−/− mice were subjected to intravenous injection of recombinant murine (rm) CIRP. Serum, urine, and renal tissue were collected 6 h later for analysis. Additionally, primary human renal glomerular endothelial cells (HRGEC) were stimulated in vitro with rmCIRP after pretreatment with M3, a novel inhibitory peptide of TREM-1, or vehicle. Supernatants and cells were collected 20 h after stimulation. Results: After injection with rmCIRP, WT mice had a significant increase in serum levels of BUN, creatinine, and NGAL compared to control. Additionally, NGAL was significantly increased in the urine of rmCIRP-injected mice, suggesting that circulating eCIRP can directly induce AKI. The levels of TREM-1 mRNA in the kidneys, as well as soluble (s) TREM-1 released into the serum and urine, were significantly increased in rmCIRP-injected mice. TREM-1−/− mice injected with rmCIRP had attenuated AKI, indicated by significantly decreased serum BUN, creatinine, and NGAL, and renal mRNA expression of NGAL and KIM-1 compared to WT mice. TREM-1−/− mice also had attenuated endothelial activation, with decreased mRNA and protein expression of ICAM-1 in renal tissue. HRGEC stimulated with rmCIRP in vitro had significant increases in cytokine production and sTREM-1 release, which was attenuated in cells treated with M3. Conclusion: Activation of renal TREM-1 with circulating eCIRP is sufficient to cause AKI. Elevated levels of eCIRP may be critical for the development of AKI under conditions such as ischemia/reperfusion injury, hemorrhagic shock, and sepsis. Mice deficient in the TREM-1 receptor have attenuated AKI and reduced endothelial cell activation after injection of rmCIRP. TREM-1 inhibition with M3 attenuates HRGEC activation after eCIRP stimulation. Targeting eCIRP activation of TREM-1 may provide a novel and effective treatment for AKI.
Collapse
Affiliation(s)
- Sara Siskind
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
| | - Fangming Zhang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
11
|
Deng J, Wu Z, He Y, Lin L, Tan W, Yang J. Interaction Between Intrinsic Renal Cells and Immune Cells in the Progression of Acute Kidney Injury. Front Med (Lausanne) 2022; 9:954574. [PMID: 35872775 PMCID: PMC9300888 DOI: 10.3389/fmed.2022.954574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang ;
| |
Collapse
|
12
|
Siskind S, Brenner M, Wang P. TREM-1 Modulation Strategies for Sepsis. Front Immunol 2022; 13:907387. [PMID: 35784361 PMCID: PMC9240770 DOI: 10.3389/fimmu.2022.907387] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor, which can be upregulated in inflammatory diseases as an amplifier of immune responses. Once activated, TREM-1 induces the production and release of pro-inflammatory cytokines and chemokines, in addition to increasing its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). This amplification of the inflammatory response by TREM-1 has now been considered as a critical contributor to the dysregulated immune responses in sepsis. Studies have shown that in septic patients there is an elevated expression of TREM-1 on immune cells and increased circulating levels of sTREM-1, associated with increased mortality. As a result, a considerable effort has been made towards identifying endogenous ligands of TREM-1 and developing TREM-1 inhibitory peptides to attenuate the exacerbated inflammatory response in sepsis. TREM-1 modulation has proven a promising strategy for the development of therapeutic agents to treat sepsis. Therefore, this review encompasses the ligands investigated as activators of TREM-1 thus far and highlights the development and efficacy of novel inhibitors for the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Sara Siskind
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
13
|
A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery 2022; 172:639-647. [PMID: 35292178 PMCID: PMC9283225 DOI: 10.1016/j.surg.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extracellular cold-inducible RNA-binding protein aggravates acute kidney injury after renal ischemia/reperfusion. Although extracellular cold-inducible RNA-binding protein activates triggering receptor expressed on myeloid cells-1, how this receptor and its antagonism with a novel peptide M3 affects acute kidney injury is poorly understood. We, therefore, hypothesize that inhibiting the extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway with M3 attenuates acute kidney injury. METHODS Wild-type and triggering receptor expressed on myeloid cells-1-/- mice were subjected to bilateral 30-minute renal hilum clamping followed by reperfusion or sham. After 4 hours, wild-type mice received M3 (10 mg/kg BW) or normal saline intraperitoneally. After 24 hours, renal tissue and serum were collected for analysis. Additionally, wild-type mice were subjected to bilateral renal ischemia for 34 minutes and treated with M3 at 10 mg/kg BW or vehicle at the time of reperfusion. Survival was monitored for 10 days. RESULTS After renal ischemia/reperfusion, triggering receptor expressed on myeloid cells-1 messenger ribonucleic acid expression increased by 9-fold in wild-type mice compared to sham mice. Wild-type mice also demonstrated significant increases in serum blood urea nitrogen, creatinine, and interleukin-6 and renal tissue levels of interleukin-6 and neutrophil gelatinase-associated lipocalin after renal ischemia/reperfusion compared to sham mice. Triggering receptor expressed on myeloid cells-1-/- mice demonstrated significant reductions in serum blood urea nitrogen, creatinine, and interleukin-6 compared to wild-type mice after renal ischemia/reperfusion. Levels of renal interleukin-6 and neutrophil gelatinase-associated lipocalin were also significantly decreased in the kidneys of triggering receptor expressed on myeloid cells-1-/- mice. Furthermore, treatment with M3 in wild-type mice significantly decreased serum and renal levels of interleukin-6 after renal ischemia/reperfusion. M3 treatment demonstrated significant reductions in renal messenger ribonucleic acid and protein levels of neutrophil gelatinase-associated lipocalin, serum blood urea nitrogen and creatinine, and histologic structural damage as well as apoptosis. Treatment with M3 also increased survival from 35% to 65% in mice with acute kidney injury. CONCLUSION Triggering receptor expressed on myeloid cells-1 mediates the deleterious effects of extracellular cold-inducible RNA-binding protein in acute kidney injury after renal ischemia/reperfusion. The novel extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway antagonist, M3, attenuates acute kidney injury and has the potential to be developed as a therapeutic agent for acute kidney injury.
Collapse
|
14
|
Zhang X, Agborbesong E, Li X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222011253. [PMID: 34681922 PMCID: PMC8537003 DOI: 10.3390/ijms222011253] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are heterogeneous and highly dynamic organelles, playing critical roles in adenosine triphosphate (ATP) synthesis, metabolic modulation, reactive oxygen species (ROS) generation, and cell differentiation and death. Mitochondrial dysfunction has been recognized as a contributor in many diseases. The kidney is an organ enriched in mitochondria and with high energy demand in the human body. Recent studies have been focusing on how mitochondrial dysfunction contributes to the pathogenesis of different forms of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). AKI has been linked to an increased risk of developing CKD. AKI and CKD have a broad clinical syndrome and a substantial impact on morbidity and mortality, encompassing various etiologies and representing important challenges for global public health. Renal mitochondrial disorders are a common feature of diverse forms of AKI and CKD, which result from defects in mitochondrial structure, dynamics, and biogenesis as well as crosstalk of mitochondria with other organelles. Persistent dysregulation of mitochondrial homeostasis in AKI and CKD affects diverse cellular pathways, leading to an increase in renal microvascular loss, oxidative stress, apoptosis, and eventually renal failure. It is important to understand the cellular and molecular events that govern mitochondria functions and pathophysiology in AKI and CKD, which should facilitate the development of novel therapeutic strategies. This review provides an overview of the molecular insights of the mitochondria and the specific pathogenic mechanisms of mitochondrial dysfunction in the progression of AKI, CKD, and AKI to CKD transition. We also discuss the possible beneficial effects of mitochondrial-targeted therapeutic agents for the treatment of mitochondrial dysfunction-mediated AKI and CKD, which may translate into therapeutic options to ameliorate renal injury and delay the progression of these kidney diseases.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +507-266-0110
| |
Collapse
|
15
|
Xie Y, Li X, Lv D, He M, Sun Y, Lin X, Fan Y, Yang M, Xu H, Zhang X, Zhang Y, Beejadhursing R, Li F, Deng D. TREM-1 amplifies trophoblastic inflammation via activating NF-κB pathway during preeclampsia. Placenta 2021; 115:97-105. [PMID: 34598084 DOI: 10.1016/j.placenta.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Excessive activation of maternal systemic inflammation is one of the underlying causes of pathology during the disease course of preeclampsia (PE). The triggering receptor expressed on myeloid cells-1 (TREM-1) participates in the development and persistence of inflammation. We hypothesized that dysregulated TREM-1 may be involved in the pathogenesis of PE by promoting the secretion of trophoblastic pro-inflammatory cytokines that augment inflammation. METHODS The localization of TREM-1 in placenta and the extravillous trophoblast cell line (TEV-1) was determined by immunohistochemical staining. The expression level of TREM-1 and pro-inflammatory cytokines in placentas were compared between normal pregnancies and PE. We used lipopolysaccharide (LPS) to simulate trophoblastic inflammation. TEV-1 cells were transfected with TREM-1 plasmid and si-TREM-1 respectively, and then were incubated with LPS. The expression levels of pro-inflammatory cytokines and key molecules featured in nuclear transcription factor-kappaB (NF-κB) pathway were detected. Transwell assays were used to detect the effects of TREM-1 on cell migration and invasion. RESULTS TREM-1 was localized on both villous trophoblasts (VTs) and extravillous trophoblasts (EVTs). TREM-1 and pro-inflammatory cytokines were up-regulated in preeclamptic placenta. Overexpression of TREM-1 promoted the activation of NF-κB pathway and the release of pro-inflammatory factors induced by LPS, and enhanced migration and invasion of TEV-1 cells. Inhibition of TREM-1 significantly attenuated LPS-induced effects and suppressed migration and invasion. DISCUSSION This study suggested that TREM-1 was up-regulated in PE, and may promote the production of downstream inflammatory factors by activating NF-κB pathway in trophoblastic cells, thus exerting pro-inflammatory effects in the pathogenesis of PE.
Collapse
Affiliation(s)
- Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuanxuan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dan Lv
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanan Sun
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xingguang Lin
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yao Fan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meitao Yang
- Department of Gynecology and Obstetrics, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Heze Xu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaolei Zhang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanling Zhang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rajluxmee Beejadhursing
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Chen L, Xu JY, Tan HB. LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. JOURNAL OF INFLAMMATION-LONDON 2021; 18:12. [PMID: 33663500 PMCID: PMC7934407 DOI: 10.1186/s12950-021-00278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
Background Acute kidney injury (AKI) results from renal dysfunction caused by various causes, resulting in high mortality. The underlying mechanisms of ischemia-reperfusion (I/R) induced AKI is very complicated and needed for further research. Here, we sought to found out the functions of lncRNA TUG1 in I/R-induced AKI. Methods In vivo model was constructed by I/R-induced mice and in vitro model was constructed by hypoxia/reoxygenation (H/R)-induced HK-2 cell. Kidney tissue damage was evaluated through H&E staining in mice. Cell flow cytometry was used to detect the degree of apoptosis. TUG1, miR-494-3p and E-cadherin were determined both by RT-PCR and western blot. Dual luciferase assay was employed to validate the relationships between TUG1, miR-494-3p and E-cadherin. Inflammatory factors including IL-1β, TNFɑ and IL-6 were evaluated by ELISA. Results lncRNA TUG1 was decreased while miR-494-3p was elevated in vivo and in vitro. Overexpression of TUG1 or transfection with miR-494-3p inhibitor significantly alleviated cell apoptosis. MiR-494-3p directly targeted E-cadherin and TUG1 suppressed cell apoptosis via serving as a miR-494-3p sponge to disinhibit E-cadherin. Conclusion lncRNA TUG1 alleviated I/R-induced AKI through targeting miR-494-3p/E-cadherin.
Collapse
Affiliation(s)
- Li Chen
- Department of Nephrology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, P.R. China
| | - Jun-Ying Xu
- Department of Nephrology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, P.R. China
| | - Hong-Bao Tan
- Department of Anesthesiology, The Fourth Hospital of Changsha, No.70, Lushan Road, Yuelu District, Changsha, 410006, Hunan Province, P.R. China.
| |
Collapse
|
17
|
Pan P, Liu X, Wu L, Li X, Wang K, Wang X, Zhou X, Long Y, Liu D, Xie L, Su L. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-κB pathway. Int J Med Sci 2021; 18:8-17. [PMID: 33390769 PMCID: PMC7738954 DOI: 10.7150/ijms.50893] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Triggering receptor expressed by myeloid cells (TREM-1) is an amplifier of inflammatory responses triggered by bacterial or fungal infection. Soluble TREM-1 (sTREM-1) expression was found to be upregulated in sepsis-associated acute kidney injury (SA-AKI) and predicted to be a potential biomarker. However, the mechanism remains unclear. The human kidney-2 (HK-2) cell line was treated with lipopolysaccharide (LPS) and used to examine the potential roles of TREM-1 in apoptosis and autophagy. A cell viability assay was employed to assess the number of viable cells and as a measure of the proliferative index. The concentrations of sTREM-1, interleukin (IL)-1β, tumor necrosis factor-α (TNFα) and IL-6 in cell-free culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to analyze apoptosis, autophagy and the relevant signaling pathways. The results suggested that TREM-1 overexpression after LPS treatment decreased proliferation and increased apoptosis. The concentrations of sTREM-1, IL-1β, TNFα and IL-6 in cell-free culture supernatants were increased in the TREM-1 overexpression group after LPS treatment. Expression of the antiapoptotic gene Bcl-2 was downregulated in the TREM-1 overexpression group, while that of the proapoptotic genes Bax, cleaved caspase-3 and cleaved caspase-9 was upregulated. Overexpression of TREM-1 downregulated expression of the autophagy genes Beclin-1, Atg-5 and LC3b and increased the gene expression of p62, which inhibits autophagy. Conversely, treatment with TREM-1-specific shRNA had the opposite effects. The nuclear factor-κB (NF-κB) signaling pathway (P-p65/p65 and P-IκBα/IκBα) in LPS-induced HK-2 cells was regulated by TREM-1. In summary, TREM-1 promoted apoptosis and inhibited autophagy in HK-2 cells in the context of LPS exposure potentially through the NF-κB pathway.
Collapse
Affiliation(s)
- Pan Pan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Xudong Liu
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - LingLing Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Xiaogang Li
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
18
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Tammaro A, Kers J, Scantlebery AML, Florquin S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front Immunol 2020; 11:1346. [PMID: 32733450 PMCID: PMC7358591 DOI: 10.3389/fimmu.2020.01346] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI), a common event after renal transplantation, causes acute kidney injury (AKI), increases the risk of delayed graft function (DGF), primes the donor kidney for rejection, and contributes to the long-term risk of graft loss. In the last decade, epidemiological studies have linked even mild episodes of AKI to chronic kidney disease (CKD) progression, and innate immunity seems to play a crucial role. The ischemic insult triggers an acute inflammatory reaction that is elicited by Pattern Recognition Receptors (PRRs), expressed on both infiltrating immune cells as well as tubular epithelial cells (TECs). Among the PRRs, Toll-like receptors (TLRs), their synergistic receptors, Nod-like receptors (NLRs), and the inflammasomes, play a pivotal role in shaping inflammation and TEC repair, in response to renal IRI. These receptors represent promising targets to modulate the extent of inflammation, but also function as gatekeepers of tissue repair, protecting against AKI-to-CKD progression. Despite the important considerations on timely use of therapeutics, in the context of IRI, treatment options are limited by a lack of understanding of the intra- and intercellular mechanisms associated with the activation of innate immune receptors and their impact on adaptive tubular repair. Accumulating evidence suggests that TEC-associated innate immunity shapes the tubular response to stress through the regulation of immunometabolism. Engagement of innate immune receptors provides TECs with the metabolic flexibility necessary for their plasticity during injury and repair. This could significantly affect pathogenic processes within TECs, such as cell death, mitochondrial damage, senescence, and pro-fibrotic cytokine secretion, well-known to exacerbate inflammation and fibrosis. This article provides an overview of the past 5 years of research on the role of innate immunity in experimental and human IRI, with a focus on the cascade of events activated by hypoxic damage in TECs: from programmed cell death (PCD) and mitochondrial dysfunction-mediated metabolic rewiring of TECs to maladaptive repair and progression to fibrosis. Finally, we will discuss the important crosstalk between metabolism and innate immunity observed in TECs and their therapeutic potential in both experimental and clinical research.
Collapse
Affiliation(s)
- Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.,Biomolecular Systems Analytics, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Maekawa H, Inagi R. Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition. Semin Nephrol 2019; 39:581-588. [DOI: 10.1016/j.semnephrol.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|