1
|
Hao YB, Xing J, Sheng XZ, Chi H, Tang XQ, Zhan WB. The Role of Fc Receptors in the Innate Immune System of Flounders Purported to Be Homologs of FcγRII and FcγRIII. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1196-1206. [PMID: 38380986 DOI: 10.4049/jimmunol.2300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yan-Bo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Interactions of interleukin 2 (IL-2) and IL-2 receptors mediate the activities of B lymphocytes in flounder (Paralichthys olivaceus). Int J Biol Macromol 2023; 227:113-123. [PMID: 36539171 DOI: 10.1016/j.ijbiomac.2022.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Interleukin 2 (IL-2) is an immunoregulatory cytokine that plays significant role in the activation and proliferation of immune cells. In teleost, the functions of IL-2 signaling on the proliferation and differentiation of T lymphocytes were well documented. However, there is still unclear about the effects of IL-2 signaling on B cell immunity in fish. Hence, in this study, full-length transcriptome sequencing was performed to investigate the activation of IL-2 on flounder (Paralichthys olivaceus) lymphocytes in vitro, the effects of IL-2 on the immunity of B cells after its receptors (IL-2Rβ or IL-2Rγ) blocked were further investigated. The results shown that the differentially expressed genes in lymphocytes after IL-2 stimulation were annotated to the pathways related to the immune response of B cells. The percentages of mIgM+ B cells were increased, and the capacities of antibody secretion and phagocytosis of B cells were enhanced after IL-2 stimulation. However, the function of IL-2 on B lymphocytes immunity was significantly inhibited after IL-2 receptors were blocked, especially after IL-2Rβ was blocked. Collectively, we can conclude that IL-2 is able to promote the proliferation of B lymphocytes, antibody secretion, and enhance their phagocytosis in flounder, and these effects are mediated through IL-2/IL-2R signaling.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
4
|
Yang D, Hu X, Li H, Xu W, Wu T, Chen J. Molecular cloning and characteristic analysis of polymeric immunoglobulin receptor-like (plgRL) in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108503. [PMID: 36581255 DOI: 10.1016/j.fsi.2022.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the polyimmunoglobulin receptor-like (pIgRL) of large yellow croaker (Larimichthys crocea) was first cloned and characterized. LcpIgRL's full-length cDNA was 1610 bp, encoding 377 amino acids, and the protein's predicted molecular weight was 41.9 kDa, containing two immunoglobulin-like structural domains. The transcript levels of LcpIgRL in different tissues of healthy large yellow croaker were examined by real-time fluorescence quantitative PCR, and the results showed that the gills and head kidney had the highest levels. Within 36 h of the large yellow croaker being infected with Vibrio harveyi, pIgRL mRNA first increased and then decreased in all determined tissues, with the highest expression in the skin and hindgut. Furthermore, a recombinant protein of the extracellular region of LcpIgRL was expressed in E. coli BL21, and a murine rLcpIgRL polyclonal antibody was prepared, which could react specifically with the natural LcpIgRL in skin mucus, but no natural LcpIgRL was detected in serum. Meanwhile, it was found that the rLcpIgRL could bind to the recombinant IgM and the natural IgM, indicating that LcpIgRL could mediate the transport of IgM in mucus. In addition, rLcpIgRL binds to Aeromonas hydrophila and V. harveyi, as well as lipopolysaccharide (LPS) and various saccharides, and reduced binding to bacteria was observed under LPS treatment, suggesting that LcpIgRL can bind to bacteria to prevent infection and that saccharide binding is an important mechanism of interaction between pIgRL and bacteria.
Collapse
Affiliation(s)
- Du Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Yang S, Ma Y, Lou X, Zhou Z, Zhang H, Yi S, Cheng Y, Qian S, Huang M, Fei H. The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides) leukocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108488. [PMID: 36503056 DOI: 10.1016/j.fsi.2022.108488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Phagocytosis is an important innate immune process in which immune cells recognize, ingest and eliminate pathogens. Largemouth bass (Micropterus salmoides) has become an important economic farmed fish in many regions, while few studies has focused on phagocytosis of its leucocytes. In present study, largemouth bass peripheral blood leucocytes were separated using Percoll gradient to establish the phagocytic function. Flow cytometric analysis showed that largemouth bass leukocytes exhibited the phagocytic capacity to fluoresbrite microspheres and Aeromonas hydrophila, where higher phagocytic capacity to A. hydrophila were observed in granulocytes/monocytes than that of lymphocytes. The leukocytes engulfing fluoresbrite microspheres and A. hydrophila were also observed by fluorescence microscopy. Besides, manygenes associated with phagocytosis and TNF-α in leukocytes were up-regulated following A. hydrophila stimulation. Subsequently, the largemouth bass TNF-α was recombinantly expressed to investigate its role in regulating phagocytosis. The results showed that TNF-α in largemouth bass could significantly enhance the phagocytic ability of granulocytes/monocytes to A. hydrophila, but not lymphocytes. Moreover, we also found that TNF-α could not only significantly increase the ROS activity of granulocytes/monocytes, but also had the function of inducing its apoptosis. These results demonstrated that granulocytes/monocytes play more important role in phagocytosis, meanwhile, TNF-α has the function of enhancing the phagocytic ability of granulocytes/monocytes in largemouth bass.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanxin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaocong Lou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhewei Zhou
- Zhejiang Development &Planning Institute, Hangzhou, 310012, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd, 313000, Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
7
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Splenic protection network revealed by transcriptome analysis in inactivated vaccine-immunized flounder ( Paralichthys olivaceus) against Edwardsiella tarda infection. Front Immunol 2022; 13:1058599. [PMID: 36439120 PMCID: PMC9681833 DOI: 10.3389/fimmu.2022.1058599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 07/01/2024] Open
Abstract
The protective immune response produced by fish after vaccination is crucial for vaccine effectiveness. Our previous studies have shown inactivated vaccine against Edwardsiella tarda can induce immune response in flounder (Paralichthys olivaceus). To elucidate the protective immune response at the genetic level, in this study, flounder was immunized with inactivated E. tarda for 5 weeks, and then they were challenged with E. tarda. The spleen was dissected at 7th day post immunization, 1st and 7th day post challenge, respectively. Transcriptome analysis showed that average of 46 million clean reads were obtained per library, while percentage of clean reads being mapped to reference genome was more than 89% in all cases, which suggested good quality of samples. As for differentially expressed genes (DEGs) identification in inactivated E. tarda groups, at 7th day post immunization, 1422 DEGs were identified and significantly enriched in innate immune-related pathways, such as Phagosome, Cell adhesion molecules and NF-kappa B signaling pathway; At 1st post challenge day, 1210 DEGs were identified and enriched to Antigen processing and presentation and Cell adhesion molecules, indicating that the pathogen was rapidly recognized and delivered; At 7th post challenge day, 1929 DEGs were identified, belonged to Toll-like receptor signaling pathway, Antigen processing and presentation, Th1 and Th2 cell differentiation and Th17 cell differentiation. Compared to 7th post immunization day, 73 immune-associated DEGs were identified at 1st post challenge day. Protein-protein interaction networks analysis revealed 11 hub genes (TLR7, TLR3, CXCR4, IFIH1, TLR8 etc), associated with recognition of pathogens and activation of innate immunity; while for 7th post challenge day, 141 immune-associated DEGs were identified. 30 hub genes (IL6, STAT1, HSP90A.1, TLR7, IL12β etc) were associated with stimulation of lymphocyte differentiation and activation of cellular immunity. Ten immune-related genes were randomly selected for RT-qPCR validation at each time point. In conclusion, data revealed protection of flounder against E. tarda infection by inactivated vaccine is mediated via immediate recognition of pathogen and subsequently activation of cellular immunity. Results give new aspect for vaccine protection cascades, is good references for vaccine evaluation.
Collapse
Affiliation(s)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| | | | | | | | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. The role of Syk phosphorylation in Fc receptor mediated mIgM + B lymphocyte phagocytosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:462-471. [PMID: 36162778 DOI: 10.1016/j.fsi.2022.09.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, and it mediates downstream signaling of FcR-mediated immune responses. Our previous work revealed that the expression of Syk was significantly up-regulated in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda, which suggested Syk might be involved in Ig-opsonized phagocytosis. In this paper, phospho-Syk (pSyk) inhibitor was used to investigate the potential role of phosphorylated Syk in FcR-mediated phagocytosis of IgM+ B cells. Indirect immunofluorescence assay (IFA) and Western blotting showed that the level of phosphorylated Syk in the mIgM+ B lymphocytes treated with pSyk inhibitor was significantly lower compared to the control group after stimulation with flounder antiserum. Flow cytometry analysis showed that after 3 h incubation with antiserum-opsonized E. tarda, the phagocytosis rates of mIgM+ B lymphocytes from peripheral blood, spleen and head kidney pre-treated with pSyk inhibitor were 48.1%, 40.1% and 43.6% respectively, which were significantly lower than that of the control groups with 58.7%, 53.2% and 57.4%, respectively. And likewise, after pSyk inhibitor treatment, the proportions of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels in peripheral blood, spleen and head kidney decreased to 15.2%, 12.0% and 12.1% from the control level of 26.5%, 25.9% and 26.3%, respectively. Moreover, the expression of three genes affected by pSyk, including phospholipase Cγ1 (PLCγ1), phospholipase Cγ2 (PLCγ2) and phosphatidylinositol 3 kinase (PI3K) were found to be significantly down-regulated in pSyk inhibitor-treated mIgM+ B lymphocytes post phagocytosis. These results suggest that pSyk plays a key role in FcR-mediated phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which promotes further understanding of the regulatory role of pSyk in teleost B cells phagocytosis.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Sheng X, Zeng J, Zhong Y, Tang X, Xing J, Chi H, Zhan W. Peripheral Blood B-Lymphocytes Are Involved in Lymphocystis Disease Virus Infection in Flounder ( Paralichthys olivaceus) via Cellular Receptor-Mediated Mechanism. Int J Mol Sci 2022; 23:9225. [PMID: 36012490 PMCID: PMC9409355 DOI: 10.3390/ijms23169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Previous studies imply that peripheral blood leukocytes (PBLs) may play an important role in systemic lymphocystis disease virus (LCDV) dissemination, but whether the PBLs are susceptible and permissive to LCDV infection and the dissemination mechanism need to be clarified. In this study, LCDV was firstly confirmed to infect the PBLs in flounder (Paralichthys olivaceus) in vivo, and to replicate in PBLs in vitro. Subsequently, the 27.8 kDa receptor protein (27.8R), a functional receptor mediating LCDV infection in flounder gill cells, was shown to locate on the cell membrane of PBLs and co-localize with LCDV in PBLs, while blocking of the 27.8R via pre-incubation of anti-27.8R MAb with the PBLs could obviously inhibit LCDV infection, revealing the 27.8R as a receptor for LCDV entry into PBLs. Multicolor fluorescence imaging studies verified that IgM+ and IgD+ B-lymphocyte were involved in LCDV infection. In the sorted IgM+ B-cells, 27.8R+ and LCDV+ signals were simultaneously observed, and LCDV copy numbers increased with time, indicating that IgM+ B-cells expressed the 27.8R and were permissive to LCDV infection. Furthermore, the dynamic changes of IgM+, 27.8R+, LCDV+ and LCDV+/IgM+ PBLs were monitored during the early phase of LCDV infection. It was found that the percentage of IgM+ B-cells in PBLs clearly declined first and then increased, suggesting LCDV infection facilitated damage to B-cells, whereas the amounts of 27.8R+ and LCDV+ PBLs, as well as LCDV-infected IgM+ B-cells, showed an opposite trend. These results proved that IgM+ B-lymphocytes could be infected by LCDV via a receptor-mediated mechanism and support viral replication, which provided novel insights for the first time into the role of B-lymphocytes in LCDV dissemination and pathogenesis in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Zeng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ying Zhong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
10
|
Ma ZY, Liang JX, Li WS, Sun Y, Wu CS, Hu YZ, Li J, Zhang YA, Zhang XJ. Complement C3a Enhances the Phagocytic Activity of B Cells Through C3aR in a Fish. Front Immunol 2022; 13:873982. [PMID: 35386704 PMCID: PMC8977587 DOI: 10.3389/fimmu.2022.873982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is an important part of the immune system of teleost fish. Besides, teleost B cells possess both phagocytic activity and adaptive humoral immune function, unlike mammalian B1 cells with phagocytic activity and B2 cells specific to adaptive humoral immunity. However, the cross talk between complement system and phagocytic B cells in teleost fish still requires elucidation. Here, we show that, unlike tetrapods with a single C3 gene, nine C3 genes were identified from the grass carp (Ctenopharyngodon idella) genome, named C3.1-C3.9. Expression analysis revealed that C3.1 is the dominant C3 molecule in grass carp, for its expression was significantly higher than that of the other C3 molecules both at the mRNA and protein levels. The C3a fragment of C3.1 (C3a.1) was determined after the conserved C3 convertase cleavage site. Structural analysis revealed that C3a.1 consists of four α-helixes, with the C-terminal region forming a long α-helix, which is the potential functional region. Interestingly, we found that the recombinant GST-C3a.1 protein and the C-terminal α-helix peptide of C3a.1 both could significantly enhance the phagocytic activity of IgM+ B cells. Further study revealed that the C3a receptor (C3aR) was highly expressed in grass carp IgM+ B cells, and the phagocytosis-stimulating activity of C3a.1 could be dramatically inhibited by the anti-C3aR antibodies, indicating that C3a.1 performed the stimulating function through C3aR on IgM+ B cells. Taken together, our study not only uncovered the novel phagocytosis-stimulating activity of C3a, but also increased our knowledge of the cross talk between complement system and phagocytic B cells in teleost fish.
Collapse
Affiliation(s)
- Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jia-Xin Liang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wen-Shuo Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Sun
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie MI, United States
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
11
|
Wu J, Nie Y, Ma Y, Hao L, Liu Z, Li Y. Analysis of phagocytosis by mIgM + lymphocytes depending on monoclonal antibodies against IgM of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 123:399-408. [PMID: 35314332 DOI: 10.1016/j.fsi.2022.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The phagocytic actives of B cells in fish have been proven in recent years. In this study, five positive hybridomas secreting monoclonal antibodies (MAbs) against largemouth bass IgM were produced. Indirect immunofluorescence assay (IFA) demonstrated that five MAbs could specifically recognize membrane-bound IgM (mIgM) molecule of largemouth bass. Indirect ELISA and Western blotting analysis showed that all the five MAbs had no cross-reactions with the other two teleost IgMs. Flow cytometry analysis (FCM) revealed that the percentages of largemouth bass mIgM+ lymphocytes in head kidney, peripheral blood and spleen were 51.66 ± 0.608%, 16.5 ± 1.235% and 42.92 ± 1.091%, respectively. In addition, the phagocytosis rates of mIgM + lymphocytes ingesting Nocardia seriolae from head kidney, peripheral blood and spleen were calculated to be 5.413 ± 0.274%, 16.6 ± 0.289% and 26.3 ± 0.296%, respectively. The qPCR results of sorted cells indicated that most inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-12β, IL-34, IL-10), chemokine (CXCL12), chemokines receptors (CXCR2, CXCR4) and genes (FcγRⅠa, NCF1, CFL, ARP2/3, CD45, Syk, MARCKS) related to FcγR-mediated phagocytic signaling pathway in phagocytic mIgM+ lymphocytes were up-regulated significantly (P < 0.05). Taken together, the results suggested that the MAb (MM06H) produced in this paper could be used as a tool to study mIgM+ lymphocytes of largemouth bass, and FcγR may participate in the phagocytosis of mIgM+ lymphocytes, which is helpful to further study the role of mIgM+ lymphocytes in innate immunity.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yifan Nie
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering Department of Aquaculture, Guangzhou, 510225, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. Regulatory Role of Fc Receptor in mIgM + B Lymphocyte Phagocytosis in Flounder ( Paralichthys olivaceus). Front Immunol 2022; 12:804244. [PMID: 34975918 PMCID: PMC8718553 DOI: 10.3389/fimmu.2021.804244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fc receptor (FcR) is an important opsonin receptor on the surface of immune cells, playing an important role in antibody-dependent cell-mediated immunity. Our previous work found that the FcR of flounder showed a marked expression response in phagocytizing IgM+ B cell, which suggested that FcR might participate in regulating Ig-opsonized phagocytosis. In this paper, in order to elucidate the potential role of FcR in mediating phagocytosis of IgM+ B cell, flounder anti-E. tarda serum was prepared and complement-inactivated for the use of E. tarda opsonization, and the sera of healthy flounder were used as control. Flow cytometric analysis showed that the phagocytosis rates of antiserum-opsonized E. tarda in peripheral blood mIgM+ B lymphocytes were significantly higher than the control group, and higher phagocytosis rates of mIgM+ B lymphocyte could be detected with an increasing incubation time ranging from 1 to 5 h. The phagocytosis rates of antiserum-opsonized E. tarda by mIgM+ B lymphocyte for an incubation time of 1, 3 or 5 h were 51.1, 63.0, and 77.5% respectively, which were significantly higher than the phagocytosis rates in the control groups with 40.2, 50.9, and 63.8%, respectively. While the Fc fragment of IgM on the surface of opsonized E. tarda was blocked by rabbit anti-flounder IgM polyclonal antibodies, phagocytosis rates of mIgM+ B lymphocyte decreased significantly compared with the unblocked group. Moreover, the proportion of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels rose to 32.1% from the control level of 23.0% after phagocytosis of antiserum-opsonized E. tarda. FcγRII and Syk were found to be significantly upregulated, while FcγRIII was significantly downregulated in the mIgM+ B lymphocytes post phagocytosis. Furthermore, when FcγRII of mIgM+ B lymphocytes was blocked by the prepared antibodies, their phagocytosis rate of antiserum-opsonized E. tarda was 39.0%, which was significantly lower than the unblocked group of 54.0%. These results demonstrate that FcR plays a critical role in mediating phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which would facilitate an improved understanding of the regulatory roles of FcR in phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Tang X, Ma X, Cao J, Sheng X, Xing J, Chi H, Zhan W. The Influence of Temperature on the Antiviral Response of mIgM+ B Lymphocytes Against Hirame Novirhabdovirus in Flounder (Paralichthys olivaceus). Front Immunol 2022; 13:802638. [PMID: 35197977 PMCID: PMC8858815 DOI: 10.3389/fimmu.2022.802638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) is an ongoing threat to the aquaculture industry. The water temperature for the onset of HIRRV is below 15°C, the peak is about 10°C, but no mortality is observed over 20°C. Previous studies found the positive signal of matrix protein of HIRRV (HIRRV-M) was detected in the peripheral blood leukocytes of viral-infected flounder. Flow cytometry and indirect immunofluorescence assay showed that HIRRV-M was detected in mIgM+ B lymphocytes in viral-infected flounder maintained at 10°C and 20°C, and 22% mIgM+ B lymphocytes are infected at 10°C while 13% are infected at 20°C, indicating that HIRRV could invade into mIgM+ B lymphocytes. Absolute quantitative RT-PCR showed that the viral copies in mIgM+ B lymphocytes were significantly increased at 24 h post infection (hpi) both at 10°C and 20°C, but the viral copies in 10°C infection group were significantly higher than that in 20°C infection group at 72 hpi and 96 hpi. Furthermore, the B lymphocytes were sorted from HIRRV-infected flounder maintained at 10°C and 20°C for RNA-seq. The results showed that the differentially expression genes in mIgM+ B lymphocyte of healthy flounder at 10°C and 20°C were mainly enriched in metabolic pathways. Lipid metabolism and Amino acid metabolism were enhanced at 10°C, while Glucose metabolism was enhanced at 20°C. In contrast, HIRRV infection at 10°C induced the up-regulation of the Complement and coagulation cascades, FcγR-mediated phagocytosis, Platelets activation, Leukocyte transendothelial migration and Natural killer cell mediated cytotoxicity pathways at 72 hpi. HIRRV infection at 20°C induced the up-regulation of the Antigen processing and presentation pathway at 72 hpi. Subsequently, the temporal expression patterns of 16 genes involved in Antigen processing and presentation pathway were investigated by qRT-PCR, and results showed that the pathway was significantly activated by HIRRV infection at 20°C but inhibited at 10°C. In conclusion, HIRRV could invade into mIgM+ B lymphocytes and elicit differential immune response under 10°C and 20°C, which provide a deep insight into the antiviral response in mIgM+ B lymphocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Wenbin Zhan,
| |
Collapse
|
14
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Sun S, Jiang H, Li Q, Liu Y, Gao Q, Liu W, Qin Y, Feng Y, Peng X, Xu G, Shen Q, Fan X, Ding J, Zhu L. Safety and Transcriptome Analysis of Live Attenuated Brucella Vaccine Strain S2 on Non-pregnant Cynomolgus Monkeys Without Abortive Effect on Pregnant Cynomolgus Monkeys. Front Vet Sci 2021; 8:641022. [PMID: 33768120 PMCID: PMC7985263 DOI: 10.3389/fvets.2021.641022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is an important zoonotic disease leading to enormous economic losses in livestock, posing a great threat to public health worldwide. The live attenuated Brucella suis (B. suis) strain S2, a safe and effective vaccine, is widely used in animals in China. However, S2 vaccination in animals may raise debates and concerns in terms of safety to primates, particularly humans. In this study, we used cynomolgus monkey as an animal model to evaluate the safety of the S2 vaccine strain on primates. In addition, we performed transcriptome analysis to determine gene expression profiling on cynomolgus monkeys immunized with the S2 vaccine. Our results suggested that the S2 vaccine was safe for cynomolgus monkeys. The transcriptome analysis identified 663 differentially expressed genes (DEGs), of which 348 were significantly upregulated and 315 were remarkably downregulated. The Gene Ontology (GO) classification and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these DEGs were involved in various biological processes (BPs), including the chemokine signaling pathway, actin cytoskeleton regulation, the defense response, immune system processing, and the type-I interferon signaling pathway. The molecular functions of the DEGs were mainly comprised of 2'-5'-oligoadenylate synthetase activity, double-stranded RNA binding, and actin-binding. Moreover, the cellular components of these DEGs included integrin complex, myosin II complex, and blood microparticle. Our findings alleviate the concerns over the safety of the S2 vaccine on primates and provide a genetic basis for the response from a mammalian host following vaccination with the S2 vaccine.
Collapse
Affiliation(s)
- Shijing Sun
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Hui Jiang
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qiaoling Li
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Yufu Liu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qiang Gao
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Wei Liu
- Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China
| | - Yuming Qin
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Yu Feng
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Xiaowei Peng
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Guanlong Xu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qingchun Shen
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Xuezheng Fan
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Jiabo Ding
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Liangquan Zhu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| |
Collapse
|
16
|
Yang S, Yuan X, Kang T, Xia Y, Xu S, Zhang X, Chen W, Jin Z, Ma Y, Ye Z, Qian S, Huang M, Lv Z, Fei H. Molecular cloning and binding analysis of polymeric immunoglobulin receptor in largemouth bass (Micropterus salmoides). Mol Immunol 2021; 133:14-22. [PMID: 33610122 DOI: 10.1016/j.molimm.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
The polymeric immunoglobulin receptor (pIgR) is an important molecule in the mucosal immunity of teleosts. Previous studies have shown that pIgR can bind and transport polymeric immunoglobulins (pIgs), but few studies have focused on the binding of teleost pIgR to bacteria. In this study, we identified a gene encoding pIgR in largemouth bass (Micropterus salmoides). The pIgR gene contained two Ig-like domains (ILDs), which were homologous to ILD1 and ILD5 of mammalian pIgR. Our results showed that largemouth bass pIgR-ILD could combine with IgM. Moreover, we also found that largemouth bass pIgR-ILD could bind to Aeromonas hydrophila and Micrococcus luteus. Further analysis showed that largemouth bass pIgR-ILD could also combine with lipopolysaccharide (LPS), peptidoglycan (PGN) and various saccharides, and reduced binding to bacteria was observed with LPS and PGN treatment, indicating that largemouth bass pIgR could bind to bacteria to prevent infection and that saccharide binding is an important interaction mechanism between pIgR and bacteria. These results collectively demonstrated that largemouth bass pIgR not only combines with IgM but also binds to bacteria by various saccharides.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xiangyu Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Ting Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yanting Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shuqi Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xintang Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Wenqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zhihong Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yuanxin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zifeng Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., 313000 Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Benedicenti O, Wang T, Morel E, Secombes CJ, Soleto I, Díaz-Rosales P, Tafalla C. Type I Interferon Regulates the Survival and Functionality of B Cells in Rainbow Trout. Front Immunol 2020; 11:1494. [PMID: 32733485 PMCID: PMC7363951 DOI: 10.3389/fimmu.2020.01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Interferons (IFNs) orchestrate antiviral responses in jawed vertebrates and can be classified into three types based on different aspects of their genomic organization, structure and receptors through which they signal and function. Generally, type I and type III IFNs include cytokines that directly induce an antiviral response, whereas type II IFNs are well-known for their immunomodulatory role during viral infections. In mammals, type I IFNs have been shown to also regulate many aspects of B cell development and differentiation. Yet, these functions have been only faintly investigated for teleost IFNs. Thus, in the current study, we have examined the effects of a model type I rainbow trout IFN molecule (IFNa) on blood naïve (IgM+IgD+) B cells, comparing them to those exerted by type II IFN (IFNγ). Our results demonstrate that IFNa increases the survival of naïve rainbow trout B cells, in the absence of lymphoproliferative effects, by rescuing them from spontaneous apoptosis. Additionally, IFNa increased the phagocytic capacity of blood IgM+IgD+ B cells and augmented the number of IgM-secreting cells in blood leukocyte cultures. IFNγ, on the other hand, had only minor effects up-regulating IgM secretion, whereas it increased the phagocytic capacity of IgM− cells in the cultures. Finally, given the recent identification of 9 mx genes in rainbow trout, we have also established which of these genes were transcriptionally regulated in blood naïve B cells in response to IFNa. This study points to a previously undescribed role for teleost type I IFNs in the regulation of B cell responses.
Collapse
Affiliation(s)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
18
|
Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol 2020; 11:824. [PMID: 32536909 PMCID: PMC7267004 DOI: 10.3389/fimmu.2020.00824] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
The momentous discovery of phagocytic activity in teleost B cells has caused a dramatic paradigm shift from the belief that phagocytosis is performed mainly by professional phagocytes derived from common myeloid progenitor cells, such as macrophages/monocytes, neutrophils, and dendritic cells. Recent advances on phagocytic B cells and their microbicidal ability in teleost fish position B cells at the crossroads, bridging innate with adaptive immunity. Most importantly, an increasing body of experimental evidence demonstrates that, in both teleosts and mammals, phagocytic B cells can recognize, take up, and destroy particulate antigens and then present those processed antigens to CD4+ T cells to elicit adaptive immune responses and that the phagocytosis is mediated by pattern recognition receptors and involves multiple cytokines. Thus, current findings collectively indicate that teleost phagocytic B cells, as well as their counterpart mammalian B1-B cells, can be considered one kind of professional phagocyte. The aim of this review is to summarize recent advances regarding teleost phagocytic B cells, with a particular focus on the recognizing receptors and modulating mechanisms of phagocytic B cells and the process of antigen presentation for T-cell activation. We also attempt to provide new insights into the adaptive evolution of the teleost fish phagocytic B cell on the basis of its innate and adaptive roles.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| |
Collapse
|