1
|
Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer's Disease: From Pathogenesis to Immunotherapy. Cells 2025; 14:264. [PMID: 39996737 PMCID: PMC11853524 DOI: 10.3390/cells14040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, affecting a significant proportion of the elderly population. AD is characterized by cognitive decline and functional impairments due to pathological hallmarks like amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglial activation, chronic neuroinflammation, and disruptions in neuronal communication further exacerbate the disease. Emerging research suggests that immune modulation could play a key role in AD treatment given the significant involvement of neuroinflammatory processes. This review focuses on recent advancements in immunotherapy strategies aimed at modulating immune responses in AD, with a specific emphasis on microglial behavior, amyloid clearance, and tau pathology. By exploring these immunotherapeutic approaches, we aim to provide insights into their potential to alter disease progression and improve patient outcomes, contributing to the evolving landscape of AD treatment.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| |
Collapse
|
2
|
Villegas García L, Patró E, Barbero JD, Esteve-Valverde E, Palao DJ, Soria V, Labad J, Cobo J. Lymphocyte-derived and lipoprotein-derived inflammatory ratios as biomarkers in bipolar disorder type I: Characteristics, predictive values, and influence of current psychopharmacological treatments. Psychoneuroendocrinology 2025; 171:107209. [PMID: 39442230 DOI: 10.1016/j.psyneuen.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE OF THIS RESEARCH The purpose of this research was to investigate peripheral inflammation by analyzing lymphocyte and lipoprotein-derived inflammatory ratios in patients with bipolar disorder type I (BD-I) and healthy controls (HCs), considering mood stabilizer drug treatments, sex and clinical trajectories. METHODS This was a cross-sectional case-control study of BD-I patients (n=252) and healthy controls (n=62). We investigated peripheral inflammation biomarkers through blood count values (CBCs), lipoproteins and a complex panel of inflammatory ratios, including the neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), neutrophil-to-HDL ratio (NHR), monocyte-to-HDL ratio (MHR), platelet-to-HDL ratio (PHR) and lymphocyte-to-HDL ratio (LHR). Furthermore, we examined the effects of sex, drug treatment and clinical outcome on the inflammatory profile. RESULTS We found that the monocyte-to-lymphocyte ratio (MLR) and lipoprotein-derived inflammatory ratio (NHR, MHR, PHR, and LHR) were significantly greater in BD-I patients than in control individuals. The monocyte-to-HDL ratio (MHR) showed acceptable accuracy as a disease predictor. Logistic regression analysis adjusted for sex, age and BMI indicated that the risk of having a BD-I diagnosis was greater for participants with MHR levels in quartiles 3 (OR= 5.2, p=0.001) and 4 (OR=13, p<0.001). There was a strong association between lithium treatment and increased inflammation represented by elevated lymphocyte-derived inflammatory ratios (NLR, MLR, PLR, SII, and SIRI) in lithium-treated BD-I patients compared to those in lithium-free or lithium treatment-naïve BD-I patients. The main limitations are the cross-sectional nature of the study and limited sample size of HCs. MAJOR CONCLUSIONS Several CBCs, lipoproteins, and a complex panel of inflammatory ratios, including lymphocyte-derived inflammatory ratios (NLR, MLR, PLR, SII, and SIRI) and lipoprotein-derived inflammatory ratios (NHR, MHR, PHR, and LHR), are altered in individuals diagnosed with BD-I. The monocyte-to-HDL ratio (MHR) emerged as a disease predictor in our BD-I sample. A remarkable finding is the association of lithium and valproate treatment with the inflammatory state. Considering the study limitations, our results underscore the importance of pharmacological treatments when researching inflammation markers in mood disorders. Lymphocyte-derived and lipoprotein-derived inflammatory ratios are easy-to-implement and relevant biomarkers in BD-I patients.
Collapse
Affiliation(s)
| | - Esther Patró
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Barcelona, Spain; Unitat de Neurociència Traslacional, Barcelona, Spain; Mental Health Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Juan David Barbero
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Barcelona, Spain; Unitat de Neurociència Traslacional, Barcelona, Spain; Mental Health Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Enrique Esteve-Valverde
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari Parc Taulí, I3PT-CERCA, Sabadell, Barcelona, Spain
| | - Diego J Palao
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Barcelona, Spain; Unitat de Neurociència Traslacional, Barcelona, Spain; Mental Health Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Soria
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Barcelona, Spain; Unitat de Neurociència Traslacional, Barcelona, Spain; Mental Health Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Labad
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Mental Health, Consorci Sanitari del Maresme, Mataró, Spain
| | - Jesús Cobo
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Barcelona, Spain; Unitat de Neurociència Traslacional, Barcelona, Spain; Mental Health Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Liu C, Zhang W, Zhang H, Zhao C, Du X, Ren J, Qu X. Biomimetic engineering of a neuroinflammation-targeted MOF nanozyme scaffolded with photo-trigger released CO for the treatment of Alzheimer's disease. Chem Sci 2024; 15:13201-13208. [PMID: 39183930 PMCID: PMC11339965 DOI: 10.1039/d4sc02598a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most fatal and irreversible neurodegenerative diseases, which causes a huge emotional and financial burden on families and society. Despite the progress made with recent clinical use of inhibitors of acetylcholinesterase and amyloid-β (Aβ) antibodies, the curative effects of AD treatment remain unsatisfactory, which is probably due to the complexity of pathogenesis and the multiplicity of therapeutic targets. Thus, modulating complex pathological networks could be an alternative approach to treat AD. Here, a neutrophil membrane-coated MOF nanozyme (denoted as Neu-MOF/Fla) is biomimetically engineered to disturb the malignant Aβ deposition-inflammation cycle and ameliorate the pathological network for effective AD treatment. Neu-MOF/Fla could recognize the pathological inflammatory signals of AD, and deliver the photo-triggered anti-inflammatory CO and MOF based hydrolytic nanozymes to the lesion area of the brain in a spontaneous manner. Based on the in vitro and in vivo studies, Neu-MOF/Fla significantly suppresses neuroinflammation, mitigates the Aβ burden, beneficially modulates the pro-inflammatory microglial phenotypes and improves the cognitive defects of AD mice models. Our work presents a good example for developing biomimetic multifunctional nanotherapeutics against AD by means of amelioration of multiple symptoms and improvement of cognitive defects.
Collapse
Affiliation(s)
- Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
5
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
6
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniweski TM, de Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. Immun Ageing 2024; 21:32. [PMID: 38760856 PMCID: PMC11100119 DOI: 10.1186/s12979-024-00435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ + (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Sean R Jacobson
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeffrey S Berger
- Divisions of Cardiology and Hematology, Department of Medicine, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Alok Vedvyas
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Karyn Marsh
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Tianshe He
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | | | - Nathanael R Fillmore
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Gonzalez
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Luisa Figueredo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Naomi L Gaggi
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Chelsea Reichert Plaska
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Nunzio Pomara
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Esther Blessing
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Rebecca Betensky
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Radiology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Lidia Glodzik
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Wisniweski
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Retired director of Center for Brain Health, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
7
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Bubu OM, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniewski TM, Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. RESEARCH SQUARE 2024:rs.3.rs-4076789. [PMID: 38559231 PMCID: PMC10980096 DOI: 10.21203/rs.3.rs-4076789/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ+ (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- New York University (NYU) Grossman School of Medicine
| | | | - Juan Fortea
- Hospital de la Santa Creu y Sant Pau, Universitat Autònoma de Barcelona
| | | | - Alok Vedvyas
- New York University (NYU) Grossman School of Medicine
| | - Karyn Marsh
- New York University (NYU) Grossman School of Medicine
| | - Tianshe He
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | | | - Naomi L Gaggi
- New York University (NYU) Grossman School of Medicine
| | | | - Nunzio Pomara
- New York University (NYU) Grossman School of Medicine
| | | | | | - Henry Rusinek
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | - Mony J Leon
- New York University (NYU) Grossman School of Medicine
| | | | | |
Collapse
|
9
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
10
|
Pomierny B, Krzyżanowska W, Skórkowska A, Jurczyk J, Budziszewska B, Pera J. Chicago sky blue 6B exerts neuroprotective and anti-inflammatory effects on focal cerebral ischemia. Biomed Pharmacother 2024; 170:116102. [PMID: 38159376 DOI: 10.1016/j.biopha.2023.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Brain ischemia is one of the leading causes of death and long-term disability worldwide. Cessation of the blood supply to the brain directly stimulates many pathological events, including glutamate overload and neuroinflammation. Glial cell activation occurs shortly after ischemia onset, resulting in the release of proinflammatory cytokines and exacerbation of the detrimental effects of neuroinflammation. Proinflammatory signals influence the infiltration of a wide range of immune cells, including neutrophils, T cells and monocytes/macrophages. In this study, we aimed to verify the potential anti-inflammatory effect of Chicago Sky Blue 6B (CSB6B) in a rat model of focal cerebral ischemia (90-minute middle cerebral artery occlusion). CSB6B was administered 2 h before (pretreatment) or 1.5 h after reperfusion onset (posttreatment). A model of ischemic preconditioning was used as the comparator to pretreatment with CSB6B. The results of indicated that posttreatment with CSB6B had profound anti-inflammatory effects that were associated with reduced neurological deficits and a decreased infarct volume. At 24 h, 3 days and 7 days after brain ischemia, CSB6B administration reduced the protein levels of proinflammatory cytokines, such as Il1β, Il6, Il18 and TNFα, in the cerebral cortex and the dorsal striatum. Treatment with CSB6B also limited the scope of microglia and astrocyte activation and the infiltration of immune cells. Taken together, this study shows that compounds such as CSB6B might be promising pharmacological tools; however, further studies on the improvements in the drug-like properties of these compounds must be undertaken.
Collapse
Affiliation(s)
- B Pomierny
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland.
| | - W Krzyżanowska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - A Skórkowska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - J Jurczyk
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - B Budziszewska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - J Pera
- Department of Neurology, Jagiellonian University Medical College, Poland
| |
Collapse
|
11
|
Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci 2023; 46:764-779. [PMID: 37500363 DOI: 10.1016/j.tins.2023.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet-neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; INSERM UMRS 938, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei 11266, Taiwan; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 42023 Saint-Étienne, France; University Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023 Saint-Etienne, France
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000, France; NeuroTMULille International Laboratory, University of Lille, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; NeuroTMULille International Laboratory, Taipei Medical University, Taipei 10031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
12
|
Giannelli R, Canale P, Del Carratore R, Falleni A, Bernardeschi M, Forini F, Biagi E, Curzio O, Bongioanni P. Ultrastructural and Molecular Investigation on Peripheral Leukocytes in Alzheimer's Disease Patients. Int J Mol Sci 2023; 24:ijms24097909. [PMID: 37175616 PMCID: PMC10178539 DOI: 10.3390/ijms24097909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Thriving literature underlines white blood cell involvement in the inflammatory processes of Alzheimer's Disease (AD). Among leukocytes, lymphocytes have been considered sentinels of neuroinflammation for years, but recent findings highlighted the pivotal role of neutrophils. Since neutrophils that infiltrate the brain through the brain vascular vessels may affect the immune function of microglia in the brain, a close investigation of the interaction between these cells is important in understanding neuroinflammatory phenomena and the immunological aftermaths that follow. This study aimed to observe how peripheral leukocyte features change at different stages of AD to identify potential molecular markers when the first features of pathological neurodegeneration arise. For this purpose, the examined patients were divided into Mild Cognitive Impairment (MCI) and severely impaired patients (DAT) based on their Cognitive Dementia Rating (CDR). The evaluation of the neutrophil-to-lymphocytes ratio and the morphology and function of leukocytes showed a close relationship between the ultrastructural and the molecular features in AD progression and suggested putative markers for the early stages of the disease.
Collapse
Affiliation(s)
- Roberta Giannelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Alessandra Falleni
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Margherita Bernardeschi
- Italian Institute of Technology, Center for Materials Interfaces, Smart Bio-Interfaces, 56025 Pontedera, Italy
| | - Francesca Forini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elisa Biagi
- BMS Multispecialistic Biobank-Biobank Unit, AOUP-Pisa University Hospital, 56126 Pisa, Italy
| | - Olivia Curzio
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| |
Collapse
|
13
|
Kaneko R, Matsui A, Watanabe M, Harada Y, Kanamori M, Awata N, Kawazoe M, Takao T, Kobayashi Y, Kikutake C, Suyama M, Saito T, Saido TC, Ito M. Increased neutrophils in inflammatory bowel disease accelerate the accumulation of amyloid plaques in the mouse model of Alzheimer's disease. Inflamm Regen 2023; 43:20. [PMID: 36922861 PMCID: PMC10015716 DOI: 10.1186/s41232-023-00257-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the neurodegenerative diseases and characterized by the appearance and accumulation of amyloid-β (Aβ) aggregates and phosphorylated tau with aging. The aggregation of Aβ, which is the main component of senile plaques, is closely associated with disease progression. AppNL-G-F mice, a mouse model of AD, have three familial AD mutations in the amyloid-β precursor gene and exhibit age-dependent AD-like symptoms and pathology. Gut-brain interactions have attracted considerable attention and inflammatory bowel disease (IBD) has been associated with a higher risk of dementia, especially AD, in humans. However, the underlying mechanisms and the effects of intestinal inflammation on the brain in AD remain largely unknown. Therefore, we aimed to investigate the effects of intestinal inflammation on AD pathogenesis. METHODS Wild-type and AppNL-G-F mice at three months of age were fed with water containing 2% dextran sulfate sodium (DSS) to induce colitis. Immune cells in the brain were analyzed using single-cell RNA sequencing (scRNA-seq) analysis, and the aggregation of Aβ protein in the brain was analyzed via immunohistochemistry. RESULTS An increase in aggregated Aβ was observed in the brains of AppNL-G-F mice with acute intestinal inflammation. Detailed scRNA-seq analysis of immune cells in the brain showed that neutrophils in the brain increased after acute enteritis. Eliminating neutrophils by antibodies suppressed the accumulation of Aβ, which increased because of intestinal inflammation. CONCLUSION These results suggest that neutrophils infiltrate the AD brain parenchyma when acute colitis occurs, and this infiltration is significantly related to disease progression. Therefore, we propose that neutrophil-targeted therapies could reduce Aβ accumulation observed in early AD and prevent the increased risk of AD due to colitis.
Collapse
Affiliation(s)
- Ryusei Kaneko
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mahiro Watanabe
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Harada
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuhiro Kanamori
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Natsumi Awata
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mio Kawazoe
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Takao
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaro Kobayashi
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, Kate MT, Verhey F, Ramakers I, Scheltens P, Teunissen CE, Vandenberghe R, Schaeverbeke J, Gabel S, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2023; 19:807-820. [PMID: 35698882 DOI: 10.1002/alz.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS Individuals were classified based on CSF amyloid beta (Aβ)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Mara Ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, the Netherlands
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, Psychiatry University Hospital Zürich, Zürich, Switzerland
| | | | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, United Kingdom (currently at Johnson and Johnson Medical Ltd.), London, UK
| | - Johannes Streffer
- Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Belgium
- UCB Biopharma SPRL, Brain-l'Alleud, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, UCL London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
15
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
16
|
Microglia-Neutrophil Interactions Drive Dry AMD-like Pathology in a Mouse Model. Cells 2022; 11:cells11223535. [PMID: 36428965 PMCID: PMC9688699 DOI: 10.3390/cells11223535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In dry age-related macular degeneration (AMD), inflammation plays a key role in disease pathogenesis. Innate immune cells such as microglia and neutrophils infiltrate the sub-retinal space (SRS) to induce chronic inflammation and AMD progression. But a major gap in our understanding is how these cells interact with each other in AMD. Here, we report a novel concept of how dynamic interactions between microglia and neutrophils contribute to AMD pathology. Using well-characterized genetically engineered mouse models as tools, we show that in the diseased state, retinal pigmented epithelial (RPE) cells trigger pro-inflammatory (M1) transition in microglia with diminished expression of the homeostatic marker, CX3CR1. Activated microglia localize to the SRS and regulate local neutrophil function, triggering their activation and thereby inducing early RPE changes. Ligand receptor (LR)-loop analysis and cell culture studies revealed that M1 microglia also induce the expression of neutrophil adhesion mediators (integrin β1/α4) through their interaction with CD14 on microglia. Furthermore, microglia-induced neutrophil activation and subsequent neutrophil-mediated RPE alterations were mitigated by inhibiting Akt2 in microglia. These results suggest that the Akt2 pathway in microglia drives M1 microglia-mediated neutrophil activation, thereby triggering early RPE degeneration and is a novel therapeutic target for early AMD, a stage without treatment options.
Collapse
|
17
|
Hou JH, Ou YN, Xu W, Zhang PF, Tan L, Yu JT. Association of peripheral immunity with cognition, neuroimaging, and Alzheimer's pathology. Alzheimers Res Ther 2022; 14:29. [PMID: 35139899 PMCID: PMC8830026 DOI: 10.1186/s13195-022-00968-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Background Neuroinflammation has been considered to be a driving force of Alzheimer’s disease. However, the association between peripheral immunity and AD has been rarely investigated. Methods Separate regression analyses were conducted to explore the associations among peripheral immune markers and cognition, neuroimaging, and AD pathology. Causal mediation analyses were used to investigate whether the associations with cognition were mediated by AD pathology. Results A total of 1107 participants (43.9% female, mean age of 73.2 years) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included. Regression analyses indicated that elevated neutrophils (NEU) count and neutrophil-lymphocyte ratio (NLR) were associated with lower levels of global cognition, memory function (MEM), and executive function (EF), and reduced brain metabolism by 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) as well as greater ventricular volume. An elevated NLR was associated with a lower level of β-amyloid (Aβ) and a higher level of total tau (T-tau) in cerebrospinal fluid (CSF), smaller hippocampal volume (HV), and lesser entorhinal cortex (EC) thickness. On the contrary, an elevated level of lymphocytes (LYM) was associated with a higher level of Aβ and a lower level of T-tau in CSF, better cognition, and less atrophy of brain regions (ventricular volume, HV, and EC thickness). The associations of LYM and NLR with cognition were mediated by Aβ and T-tau pathology (proportion: 18%~64%; p < 0.05). Conclusions We revealed that two types of peripheral immune cells (NEU and LYM) and the ratio of these two cell types (NLR) had associations with cognition, neuroimaging, and AD pathology. The associations might be mediated by Aβ and tau pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00968-y.
Collapse
Affiliation(s)
- Jia-Hui Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| | | |
Collapse
|
18
|
Muldur S, Vadysirisack DD, Ragunathan S, Tang Y, Ricardo A, Sayegh CE, Irimia D. Human Neutrophils Respond to Complement Activation and Inhibition in Microfluidic Devices. Front Immunol 2021; 12:777932. [PMID: 34899737 PMCID: PMC8653703 DOI: 10.3389/fimmu.2021.777932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Complement activation is key to anti-microbial defenses by directly acting on microbes and indirectly by triggering cellular immune responses. Complement activation may also contribute to the pathogenesis of numerous inflammatory and immunological diseases. Consequently, intense research focuses on developing therapeutics that block pathology-causing complement activation while preserving anti-microbial complement activities. However, the pace of research is slowed down significantly by the limitations of current tools for evaluating complement-targeting therapeutics. Moreover, the effects of potential therapeutic agents on innate immune cells, like neutrophils, are not fully understood. Here, we employ microfluidic assays and measure chemotaxis, phagocytosis, and swarming changes in human neutrophils ex vivo in response to various complement-targeting agents. We show that whereas complement factor 5 (C5) cleavage inhibitor eculizumab blocks all neutrophil anti-microbial functions, newer compounds like the C5 cleavage inhibitor RA101295 and C5a receptor antagonist avacopan inhibit chemotaxis and swarming while preserving neutrophil phagocytosis. These results highlight the utility of microfluidic neutrophil assays in evaluating potential complement-targeting therapeutics.
Collapse
Affiliation(s)
- Sinan Muldur
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Shriners Burns Hospital, Boston, MA, United States
| | | | | | - Yalan Tang
- Ra Pharmaceuticals, Inc., Cambridge, MA, United States
| | | | | | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Shriners Burns Hospital, Boston, MA, United States
| |
Collapse
|
19
|
The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10102790. [PMID: 34685770 PMCID: PMC8534363 DOI: 10.3390/cells10102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.
Collapse
|
20
|
Yonker LM, Marand A, Muldur S, Hopke A, Leung HM, De La Flor D, Park G, Pinsky H, Guthrie LB, Tearney GJ, Irimia D, Hurley BP. Neutrophil dysfunction in cystic fibrosis. J Cyst Fibros 2021; 20:1062-1071. [PMID: 33589340 DOI: 10.1016/j.jcf.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms. METHODS Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls. Using microfluidic assays and advanced imaging technologies, we characterized 1) spontaneous neutrophil migration using microfluidic motility mazes, 2) neutrophil migration to and phagocytosis of Staphylococcal aureus particles in a microfluidic arena, 3) neutrophil swarming on Candida albicans clusters, and 4) Pseudomonas aeruginosa-induced neutrophil transepithelial migration using micro-optical coherence technology (µOCT). RESULTS Participants included 44 individuals: 16 Outpatient CF, 13 Hospitalized CF, and 15 Non-CF individuals. While no differences were seen with spontaneous migration, CF neutrophils migrated towards S. aureus particles more quickly than non-CF neutrophils (p < 0.05). CF neutrophils, especially Hospitalized CF neutrophils, generated significantly larger aggregates around S. aureus particles over time. Hospitalized CF neutrophils were more likely to have dysfunctional swarming (p < 0.01) and less efficient clearing of C. albicans (p < 0.0001). When comparing trans-epithelial migration towards Pseudomonas aeruginosa epithelial infection, Outpatient CF neutrophils displayed an increase in the magnitude of transmigration and adherence to the epithelium (p < 0.05). CONCLUSIONS Advanced technologies for characterizing CF neutrophil function reveal significantly altered migratory responses, cell-to-cell clustering, and microbe containment. Future investigations will probe mechanistic basis for abnormal responses in CF to identify potential avenues for novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States; Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States.
| | - Anika Marand
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Sinan Muldur
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Alex Hopke
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Hui Min Leung
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Denis De La Flor
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States
| | - Grace Park
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Hanna Pinsky
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Lauren B Guthrie
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Guillermo J Tearney
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Pathology, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Daniel Irimia
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States
| |
Collapse
|
21
|
Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, Pasinetti GM. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun 2021; 91:350-368. [PMID: 33096252 PMCID: PMC7986984 DOI: 10.1016/j.bbi.2020.10.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.
Collapse
Affiliation(s)
- Susan Westfall
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Francesca Caracci
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Tal Frolinger
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
22
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
23
|
Wyatt-Johnson SK, Brutkiewicz RR. The Complexity of Microglial Interactions With Innate and Adaptive Immune Cells in Alzheimer's Disease. Front Aging Neurosci 2020; 12:592359. [PMID: 33328972 PMCID: PMC7718034 DOI: 10.3389/fnagi.2020.592359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the naïve mouse brain, microglia and astrocytes are the most abundant immune cells; however, there is a complexity of other immune cells present including monocytes, neutrophils, and lymphocytic cells, such as natural killer (NK) cells, T cells, and B cells. In Alzheimer’s disease (AD), there is high inflammation, reactive microglia, and astrocytes, leaky blood–brain barrier, the buildup of amyloid-beta (Aβ) plaques, and neurofibrillary tangles which attract infiltrating peripheral immune cells that are interacting with the resident microglia. Limited studies have analyzed how these infiltrating immune cells contribute to the neuropathology of AD and even fewer have analyzed their interactions with the resident microglia. Understanding the complexity and dynamics of how these immune cells interact in AD will be important for identifying new and novel therapeutic targets. Thus, this review will focus on discussing our current understanding of how macrophages, neutrophils, NK cells, T cells, and B cells, alongside astrocytes, are altered in AD and what this means for the disorder, as well as how these cells are affected relative to the resident microglia.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro Models of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:328. [PMID: 32528949 PMCID: PMC7247860 DOI: 10.3389/fcell.2020.00328] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive degenerative conditions characterized by the functional deterioration and ultimate loss of neurons. These incurable and debilitating diseases affect millions of people worldwide, and therefore represent a major global health challenge with severe implications for individuals and society. Recently, several neuroprotective drugs have failed in human clinical trials despite promising pre-clinical data, suggesting that conventional cell cultures and animal models cannot precisely replicate human pathophysiology. To bridge the gap between animal and human studies, three-dimensional cell culture models have been developed from human or animal cells, allowing the effects of new therapies to be predicted more accurately by closely replicating some aspects of the brain environment, mimicking neuronal and glial cell interactions, and incorporating the effects of blood flow. In this review, we discuss the relative merits of different cerebral models, from traditional cell cultures to the latest high-throughput three-dimensional systems. We discuss their advantages and disadvantages as well as their potential to investigate the complex mechanisms of human neurodegenerative diseases. We focus on in vitro models of the most frequent age-related neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease and prion disease, and on multiple sclerosis, a chronic inflammatory neurodegenerative disease affecting young adults.
Collapse
Affiliation(s)
- Anna Slanzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Iannoto
- Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy.,Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|