1
|
Chen Y, Li E, Yang Q, Chang Z, Yu B, Lu J, Wu H, Zheng P, Cheng ZJ, Sun B. Predicting Time to First Rejection Episode in Lung Transplant Patients Using a Comprehensive Multi-Indicator Model. J Inflamm Res 2025; 18:477-491. [PMID: 39816954 PMCID: PMC11734520 DOI: 10.2147/jir.s495515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
Background Rejection hinders long-term survival in lung transplantation, and no widely accepted biomarkers exist to predict rejection risk. This study aimed to develop and validate a prognostic model using laboratory data to predict the time to first rejection episode in lung transplant recipients. Methods Data from 160 lung transplant recipients were retrospectively collected. Univariate Cox analysis assessed the impact of patient characteristics on time to first rejection episode. Kaplan-Meier survival analysis, LASSO regression, and multivariate Cox analysis were used to select prognostic indicators and develop a riskScore model. Model performance was evaluated using Kaplan-Meier analysis, time-dependent ROC curves, and multivariate Cox regression. Results Patient characteristics were not significantly associated with the time to the first rejection episode. Six laboratory indicators-Activated Partial Thromboplastin Time, IL-10, estimated intrapulmonary shunt, 50% Hemolytic Complement, IgA, and Complement Component 3-were identified as significant predictors and integrated into the riskScore. The riskScore demonstrated good predictive performance. It outperformed individual indicators, was an independent risk factor for rejection, and was validated in the validation dataset. Conclusion The riskScore model effectively predicts time to first rejection episode in lung transplant recipients.
Collapse
Affiliation(s)
- Youpeng Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Enzhong Li
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qingqing Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Zhenglin Chang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Baodan Yu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Jiancai Lu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Haojie Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People’s Republic of China
| |
Collapse
|
2
|
Kulkarni HS, Tague LK, Calabrese DR, Liao F, Liu Z, Garnica L, Shankar N, Wu X, Kulkarni DH, Bernardt C, Byers D, Chen C, Huang HJ, Witt CA, Hachem RR, Kreisel D, Atkinson JP, Greenland JR, Gelman AE. Impaired complement regulation drives chronic lung allograft dysfunction after lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623951. [PMID: 39605452 PMCID: PMC11601477 DOI: 10.1101/2024.11.17.623951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of mortality after lung transplantation, is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early post-lung transplantation to form the C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3R102G) that increases complement activation through impaired C3 convertase inactivation in two independent LTx recipient cohorts. C3R102G, identified in at least one out of three LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSA). In a mouse orthotopic lung transplantation model, impaired recipient complement regulation resulted in more severe obstructive airway lesions when compared to wildtype controls, despite only moderate differences in graft-infiltrating effector T cells. Impaired complement regulation promoted the intragraft accumulation of memory B cells and antibody-secreting cells, resulting in increased DSA levels. In summary, genetic predisposition to complement activation is associated with B cell activation and worse CLAD-free survival.
Collapse
Affiliation(s)
- Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel R. Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lorena Garnica
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nishanth Shankar
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H. Kulkarni
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Cory Bernardt
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Chad A. Witt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramsey R. Hachem
- Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Biczo A, Bereczki F, Koch K, Varga PP, Lazary A. Genetic variants of interleukin 1B and 6 are associated with clinical outcome of surgically treated lumbar degenerative disc disease. BMC Musculoskelet Disord 2022; 23:774. [PMID: 35964023 PMCID: PMC9375337 DOI: 10.1186/s12891-022-05711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successfully surgically treating degenerative disc diseases can be challenging to the spine surgeons, the long-term outcome relies on both the physical and mental status of the patient before and after treatment. Numerous studies underlined the role of inflammatory cytokines - like interleukin 1B and 6 - in the development of chronic diseases such as failed back surgery syndrome (FBSS) and major depressive disorder (MDD) which alter the outcome after spinal surgery. Our aim was to evaluate the associations of IL6 and IL1B gene polymorphisms with the long-term outcome of degenerative lumbar spine surgeries. METHODS An international genetical database (GENODISC) was combined with our institute's clinical database to create a large pool with long term follow up data. Altogether 431 patient's data were analysed. Patient reported outcome measures and surgical outcome was investigated in association with IL1B and IL6 SNPs with the help of 'SNPassoc' R genome wide association package. RESULTS Interleukin 1B variants analysis confirmed association with improvement of pain after surgery on individual SNP level and on haplotype level, moreover relationship with patient reported outcome and preoperative level of depression was found on individual SNP level. IL6 variants were associated with preoperative depression, somatization and with subsequent surgery. CONCLUSION Understanding the complexity of spinal surgery patients' long-term well-being is crucial in effectively treating chronic debilitating somatic diseases and the associated mental illnesses. Further studies should investigate more comprehensively the linkage of chronic physical and mental illnesses focusing on their simultaneous treatment.
Collapse
Affiliation(s)
- Adam Biczo
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Ferenc Bereczki
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Kristóf Koch
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | | | - Aron Lazary
- National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary. .,Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Kiralyhago street 1, Budapest, 1126, Hungary.
| |
Collapse
|
4
|
Li Y, Nieuwenhuis LM, Keating BJ, Festen EA, de Meijer VE. The Impact of Donor and Recipient Genetic Variation on Outcomes After Solid Organ Transplantation: A Scoping Review and Future Perspectives. Transplantation 2022; 106:1548-1557. [PMID: 34974452 PMCID: PMC9311456 DOI: 10.1097/tp.0000000000004042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
At the outset of solid organ transplantation, genetic variation between donors and recipients was recognized as a major player in mechanisms such as allograft tolerance and rejection. Genome-wide association studies have been very successful in identifying novel variant-trait associations, but have been difficult to perform in the field of solid organ transplantation due to complex covariates, era effects, and poor statistical power for detecting donor-recipient interactions. To overcome a lack of statistical power, consortia such as the International Genetics and Translational Research in Transplantation Network have been established. Studies have focused on the consequences of genetic dissimilarities between donors and recipients and have reported associations between polymorphisms in candidate genes or their regulatory regions with transplantation outcomes. However, knowledge on the exact influence of genetic variation is limited due to a lack of comprehensive characterization and harmonization of recipients' or donors' phenotypes and validation using an experimental approach. Causal research in genetics has evolved from agnostic discovery in genome-wide association studies to functional annotation and clarification of underlying molecular mechanisms in translational studies. In this overview, we summarize how the recent advances and progresses in the field of genetics and genomics have improved the understanding of outcomes after solid organ transplantation.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne M. Nieuwenhuis
- Department of Surgery, section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brendan J. Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleonora A.M. Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Kayawake H, Chen-Yoshikawa TF, Tanaka S, Tanaka Y, Ohdan H, Yutaka Y, Yamada Y, Ohsumi A, Nakajima D, Hamaji M, Egawa H, Date H. Impacts of single nucleotide polymorphisms in Fc gamma receptor IIA (rs1801274) on lung transplant outcomes among Japanese lung transplant recipients. Transpl Int 2021; 34:2192-2204. [PMID: 34255889 DOI: 10.1111/tri.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to analyze the influences of single nucleotide polymorphisms (SNPs) in Fc gamma receptor IIA (FCGR2A) on postoperative outcomes after lung transplantation (LTx). We enrolled 191 lung transplant recipients (80 undergoing living-donor lobar lung transplants [LDLLTs] and 111 undergoing deceased-donor lung transplants [DDLTs]) in this study. We identified SNPs in FCGR2A (131 histidine [H] or arginine [R]; rs1801274) and reviewed the infectious complication-free survival after ICU discharge. The SNPs in FCGR2A comprised H/H (n=53), H/R (n=24), and R/R (n=3) in LDLLT, and H/H (n=67), H/R (n=42), and R/R (n=2) in DDLT. Recipients with H/H (H/H group) and those with H/R or R/R (R group) were compared in the analyses of infectious complications. In multivariate analyses, the R group of SNPs in FCGR2A was associated with pneumonia-free survival (HR: 2.52 [95% confidence interval {CI}: 1.35-4.71], p=0.004), fungal infection-free survival (HR: 2.50 [95% CI: 1.07-5.84], p=0.035), and cytomegalovirus infection-free survival (HR: 2.24 [95% CI: 1.07-4.69], p=0.032) in LDLLT but it was not associated with infectious complication-free survival in DDLT. Therefore, in LDLLT, more attention to infectious complications might need to be paid for LTx recipients with H/R or R/R than for those with H/H.
Collapse
Affiliation(s)
- Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Renaud-Picard B, Koutsokera A, Cabanero M, Martinu T. Acute Rejection in the Modern Lung Transplant Era. Semin Respir Crit Care Med 2021; 42:411-427. [PMID: 34030203 DOI: 10.1055/s-0041-1729542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute cellular rejection (ACR) remains a common complication after lung transplantation. Mortality directly related to ACR is low and most patients respond to first-line immunosuppressive treatment. However, a subset of patients may develop refractory or recurrent ACR leading to an accelerated lung function decline and ultimately chronic lung allograft dysfunction. Infectious complications associated with the intensification of immunosuppression can also negatively impact long-term survival. In this review, we summarize the most recent evidence on the mechanisms, risk factors, diagnosis, treatment, and prognosis of ACR. We specifically focus on novel, promising biomarkers which are under investigation for their potential to improve the diagnostic performance of transbronchial biopsies. Finally, for each topic, we highlight current gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| | - Angela Koutsokera
- Division of Pulmonology, Lung Transplant Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| |
Collapse
|
7
|
Awad SM, Taha M, Omar M, Khalil A. The implication of genetic variation in the complement C3 allotypes on the first-year allograft outcome after live donor liver transplantation. Transpl Immunol 2020; 60:101294. [PMID: 32305505 DOI: 10.1016/j.trim.2020.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The component (C3) of the complement system constitutes a central element in liver transplantation. C3 is produced mainly by the liver and comprises both slow (C3-S), and fast (C3-F) components. METHODS The effect of a single nucleotide variation in the C3 gene on the first-year outcome examined by ARMS PCR in 30 recipients of living donor allograft. RESULTS Frequencies of C3-S and C3-F in the Egyptian recipients' population were 67% and 33%. C3-F allele frequency was prevalent than the C3-S allele in recipients who developed acute rejection. The C3-SF and C3-FF genotypes significantly associated with acute rejection with 6.25 times increase in the risk of rejection than C3-SS (OR: 6.25; CI:1.05-37.07, p < .05). C3-SS increases the survival 2.5 times more than C3-SF or C3-FF but without significant association (OR: 0.40, CI: 0.07-2.44, p = .3). C3 genotypes or allotypes had no significant association with the recipient's survival, death, graft loss, infection, or serum levels of tacrolimus (all p > .05). C3-FF and C3-SF genotypes had the highest HCV recurrence rate but without significant association (p > .05). CONCLUSION In liver allograft recipients, C3-SF and C3-FF genotypes significantly associated with acute rejection with the C3-F allele more prevalent than the C3-S. C3-SS genotype increases survival without significant association.
Collapse
Affiliation(s)
- Samah Mohamed Awad
- Department of Clinical Microbiology and Immunology, National Liver Institute, Menoufia University, Egypt
| | - Mohammed Taha
- Department of Hepatobiliary and Pancreatic Surgery and Gastroenterology, National Liver Institute, Menoufia University, Egypt
| | - Mahmoud Omar
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Egypt
| | - Ashraf Khalil
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt.
| |
Collapse
|
8
|
Greer M, Werlein C, Jonigk D. Surveillance for acute cellular rejection after lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:410. [PMID: 32355854 PMCID: PMC7186718 DOI: 10.21037/atm.2020.02.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cellular rejection (ACR) is a common complication following lung transplantation (LTx), affecting almost a third of recipients in the first year. Established, comprehensive diagnostic criteria exist but they necessitate allograft biopsies which in turn increases clinical risk and can pose certain logistical and economic problems in service delivery. Undermining these challenges further, are known problems with inter-observer interpretation of biopsies and uncertainty as to the long-term implications of milder or indeed asymptomatic episodes. Increased risk of chronic lung allograft dysfunction (CLAD) has long been considered the most significant consequence of ACR. Consensus is lacking as to whether this applies to mild ACR, with contradictory evidence available. Given these issues, research into alternative, minimal or non-invasive biomarkers represents the main focus of research in ACR. A number of potential markers have been proposed, but none to date have demonstrated adequate sensitivity and specificity to allow translation from bench to bedside.
Collapse
Affiliation(s)
- Mark Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|