1
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
3
|
Knecht L, Dalsbøl K, Simonsen AH, Pilchner F, Ross JA, Winge K, Salvesen L, Bech S, Hejl AM, Løkkegaard A, Hasselbalch SG, Dodel R, Aznar S, Waldemar G, Brudek T, Folke J. Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns. J Neuroinflammation 2024; 21:317. [PMID: 39627772 PMCID: PMC11613470 DOI: 10.1186/s12974-024-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative disorders marked by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to maintain homeostasis and were previously found altered in AD and PD patients, among others. MAIN TEXT We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and affinity correlations were identified, highlighting altered immune responses. CONCLUSION This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies against pathological proteins. These insights into the autoreactive immune system's role in neurodegeneration suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding and possibly diagnosing these conditions.
Collapse
Affiliation(s)
- Luisa Knecht
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Katrine Dalsbøl
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
| | - Falk Pilchner
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Jean Alexander Ross
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Kristian Winge
- Odense University Hospital, University of Southern Denmark, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Richard Dodel
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany.
| |
Collapse
|
4
|
Ying C, Li Y, Zhang H, Pang S, Hao S, Hu S, Zhao L. Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy. Front Neurosci 2024; 18:1488820. [PMID: 39687490 PMCID: PMC11647036 DOI: 10.3389/fnins.2024.1488820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. Methods TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. Results No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all P > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted P = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted P = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted P = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation (P = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without (P = 0.008). Conclusion Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
7
|
Folke J, Skougaard M, Korsholm TL, Laursen ALS, Salvesen L, Hejl AM, Bech S, Løkkegaard A, Brudek T, Ditlev SB, Aznar S. Assessing serum anti-nuclear antibodies HEp-2 patterns in synucleinopathies. Immun Ageing 2024; 21:49. [PMID: 39026277 PMCID: PMC11256463 DOI: 10.1186/s12979-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the presence of antinuclear antibodies (ANA) in three primary synucleinopathies - Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), compared to healthy controls. Autoinflammatory disorders typically involve the immune system mistakenly attacking the body's own cells and start producing ANA. There is an increasing body of evidence that immune-mediated inflammation is a pathological feature linked to synucleinopathies. To investigate whether this could be autoimmune mediated we analyzed for ANA in the plasma of 25 MSA, 25 PD, and 17 DLB patients, along with 25 healthy controls, using the ANA HEp-2 indirect immunofluorescence antibody assay (ANA HEp-2 IFA). Contrary to initial expectations, results showed ANA HEp-2 positivity in 12% of PD, 8% of MSA patients, 18% of DLB patients, and 17% of healthy controls, indicating no increased prevalence of ANA in synucleinopathies compared to age-matched healthy individuals. Various ANA HEp-2 patterns were identified, but no specific pattern was associated with individual synucleinopathies. We conclude hereby that synucleinopathies are not associated with detectable presence of ANA in plasma.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Skougaard
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine-Line Korsholm
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
8
|
Goolla M, Cheshire WP, Ross OA, Kondru N. Diagnosing multiple system atrophy: current clinical guidance and emerging molecular biomarkers. Front Neurol 2023; 14:1210220. [PMID: 37840912 PMCID: PMC10570409 DOI: 10.3389/fneur.2023.1210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder characterized by motor and autonomic dysfunction. Accurate and early diagnosis of MSA is challenging due to its clinical similarity with other neurodegenerative disorders, such as Parkinson's disease and atypical parkinsonian disorders. Currently, MSA diagnosis is based on clinical criteria drawing from the patient's symptoms, lack of response to levodopa therapy, neuroimaging studies, and exclusion of other diseases. However, these methods have limitations in sensitivity and specificity. Recent advances in molecular biomarker research, such as α-synuclein protein amplification assays (RT-QuIC) and other biomarkers in cerebrospinal fluid and blood, have shown promise in improving the diagnosis of MSA. Additionally, these biomarkers could also serve as targets for developing disease-modifying therapies and monitoring treatment response. In this review, we provide an overview of the clinical syndrome of MSA and discuss the current diagnostic criteria, limitations of current diagnostic methods, and emerging molecular biomarkers that offer hope for improving the accuracy and early detection of MSA.
Collapse
Affiliation(s)
- Meghana Goolla
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, University of Illinois, Chicago, IL, United States
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
9
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
10
|
Scott KM, Chong YT, Park S, Wijeyekoon RS, Hayat S, Mathews RJ, Fitzpatrick Z, Tyers P, Wright G, Whitby J, Barker RA, Hu MT, Williams-Gray CH, Clatworthy MR. B lymphocyte responses in Parkinson's disease and their possible significance in disease progression. Brain Commun 2023; 5:fcad060. [PMID: 36993946 PMCID: PMC10042276 DOI: 10.1093/braincomms/fcad060] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Inflammation contributes to Parkinson's disease pathogenesis. We hypothesized that B lymphocytes are involved in Parkinson's disease progression. We measured antibodies to alpha-synuclein and tau in serum from patients with rapid eye movement sleep behaviour disorder (n = 79), early Parkinson's disease (n = 50) and matched controls (n = 50). Rapid eye movement sleep behaviour disorder cases were stratified by risk of progression to Parkinson's disease (low risk = 30, high risk = 49). We also measured B-cell activating factor of the tumour necrosis factor receptor family, C-reactive protein and total immunoglobulin G. We found elevated levels of antibodies to alpha-synuclein fibrils in rapid eye movement sleep behaviour disorder patients at high risk of Parkinson's disease conversion (ANOVA, P < 0.001) and lower S129D peptide-specific antibodies in those at low risk (ANOVA, P < 0.001). An early humoral response to alpha-synuclein is therefore detectable prior to the development of Parkinson's disease. Peripheral B lymphocyte phenotyping using flow cytometry in early Parkinson's disease patients and matched controls (n = 41 per group) revealed reduced B cells in Parkinson's disease, particularly in those at higher risk of developing an early dementia [t(3) = 2.87, P = 0.01]. Patients with a greater proportion of regulatory B cells had better motor scores [F(4,24) = 3.612, P = 0.019], suggesting they have a protective role in Parkinson's disease. In contrast, B cells isolated from Parkinson's disease patients at higher risk of dementia had greater cytokine (interleukin 6 and interleukin 10) responses following in vitro stimulation. We assessed peripheral blood lymphocytes in alpha-synuclein transgenic mouse models of Parkinson's disease: they also had reduced B cells, suggesting this is related to alpha-synuclein pathology. In a toxin-based mouse model of Parkinson's disease, B-cell deficiency or depletion resulted in worse pathological and behavioural outcomes, supporting the conclusion that B cells play an early protective role in dopaminergic cell loss. In conclusion, we found changes in the B-cell compartment associated with risk of disease progression in rapid eye movement sleep behaviour disorder (higher alpha-synuclein antibodies) and early Parkinson's disease (lower levels of B lymphocytes that were more reactive to stimulation). Regulatory B cells play a protective role in a mouse model, potentially by attenuating inflammation and dopaminergic cell loss. B cells are therefore likely to be involved in the pathogenesis of Parkinson's disease, albeit in a complex way, and thus warrant consideration as a therapeutic target.
Collapse
Affiliation(s)
- Kirsten M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Yen Ting Chong
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Seoyoung Park
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ruwani S Wijeyekoon
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Zachary Fitzpatrick
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Pam Tyers
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Georgia Wright
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Jennifer Whitby
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michele T Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
- Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
11
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
12
|
Standaert DG, Harms AS, Childers GM, Webster JM. Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:95-106. [PMID: 36803825 DOI: 10.1016/b978-0-323-85555-6.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neuroinflammation is a core feature of Parkinson disease (PD) and related disorders. Inflammation is detectable early in PD and persists throughout the disease state. Both the innate and the adaptive arms of the immune system are engaged in both human PD as well as in animal models of the disease. The upstream causes of PD are likely multiple and complex, which makes targeting of disease-modifying therapies based on etiological factors difficult. Inflammation is a broadly shared common mechanism and likely makes an important contribution to progression in most patients with manifest symptoms. Development of treatments targeting neuroinflammation in PD will require an understanding of the specific immune mechanisms which are active, their relative effects on both injury and neurorestoration, as well as the role of key variables likely to modulate the immune response: age, sex, the nature of the proteinopathies present, and the presence of copathologies. Studies characterizing the specific state of immune response in individuals and groups of people affected by PD will be essential to the development of targeted disease-modifying immunotherapies.
Collapse
Affiliation(s)
- David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gabrielle M Childers
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jhodi M Webster
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Denis HL, Alpaugh M, Alvarez CP, Fenyi A, Barker RA, Chouinard S, Arrowsmith CH, Melki R, Labib R, Harding RJ, Cicchetti F. Detection of antibodies against the huntingtin protein in human plasma. Cell Mol Life Sci 2023; 80:45. [PMID: 36651994 PMCID: PMC9849309 DOI: 10.1007/s00018-023-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia P Alvarez
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Roger A Barker
- John van Geest Center for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sylvain Chouinard
- Centre Hospitalier Universitaire de Montréal-Hôtel Dieu, Movement Disorders Unit, CHUM, Montréal, QC, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ronald Melki
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Richard Labib
- Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
14
|
Folke J, Bergholt E, Pakkenberg B, Aznar S, Brudek T. Alpha-Synuclein Autoimmune Decline in Prodromal Multiple System Atrophy and Parkinson's Disease. Int J Mol Sci 2022; 23:6554. [PMID: 35742998 PMCID: PMC9224313 DOI: 10.3390/ijms23126554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple-system trophy (MSA) and Parkinson's Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Emil Bergholt
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
| | - Bente Pakkenberg
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| |
Collapse
|
15
|
Rydbirk R, Østergaard O, Folke J, Hempel C, DellaValle B, Andresen TL, Løkkegaard A, Hejl AM, Bode M, Blaabjerg M, Møller M, Danielsen EH, Salvesen L, Starhof CC, Bech S, Winge K, Rungby J, Pakkenberg B, Brudek T, Olsen JV, Aznar S. Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology. Cell Mol Life Sci 2022; 79:336. [PMID: 35657417 PMCID: PMC9164190 DOI: 10.1007/s00018-022-04378-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit β (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients. CONCLUSION Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.
Collapse
Affiliation(s)
- Rasmus Rydbirk
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Brian DellaValle
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annemette Løkkegaard
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Matthias Bode
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Charlotte C Starhof
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Kristian Winge
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Jørgen Rungby
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
| |
Collapse
|
16
|
Garg P, Maass F, Sundaram SM, Mollenhauer B, Mahajani S, van Riesen C, Kügler S, Bähr M. The relevance of synuclein autoantibodies as a biomarker for Parkinson's disease. Mol Cell Neurosci 2022; 121:103746. [PMID: 35660088 DOI: 10.1016/j.mcn.2022.103746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
Several studies have investigated if the levels of α-synuclein autoantibodies (α-syn AAb) differ in serum of Parkinson's disease (PD) patients and healthy subjects. Reproducible differences in their levels could serve as a biomarker for PD. The results of previous studies however remain inconclusive. With the largest sample size examined so far, we aimed to validate serum α-syn AAb levels as a biomarker for PD and investigated the presence of AAbs against other synucleins. We performed ELISA and immunoblots to determine synuclein AAb levels in the serum of 295 subjects comprising 157 PD patients from two independent cohorts, 46 healthy subjects, and 92 patients with other neurodegenerative disorders. Although serum α- and β-syn AAb levels were significantly reduced in patients with PD and other neurodegenerative disorders as compared to controls, the AAb levels displayed high inter-and intra-cohort variability. Furthermore, α-syn AAb levels showed no correlation to clinical parameters like age, disease duration, disease severity, and gender, that might also be directed against beta- and gamma-syn. In conclusion, serum synuclein AAb levels do allow the separation of PD from healthy subjects but not from other neurodegenerative disorders. Thus, synuclein AAbs cannot be regarded as a reliable biomarker for PD.
Collapse
Affiliation(s)
- Pretty Garg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany.
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sivaraj M Sundaram
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Paracelsus-Elena-Klinik Kassel, Kassel, Germany
| | - Sameehan Mahajani
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neuropathology, Stanford University, California, USA
| | - Christoph van Riesen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
18
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
19
|
Abstract
It is well known that B lymphocytes differentiate into plasma cells that produce antibodies. B cells also perform a number of less well-known roles including antigen presentation, regulation of T cells and innate immune cells, cytokine production, and maintenance of subcapsular sinus macrophages. Given that there is clear evidence of inflammation in Parkinson's disease (PD) both in the central nervous system and in the periphery, it is almost certain that B lymphocytes are involved. This involvement is likely to be complicated given the variety of roles B cells play via a number of distinct subsets. They have received less attention to date than their counterparts, T cells, and monocytes. B lymphocytes are decreased in PD overall with some limited evidence that this may be driven by a decrease in regulatory subsets. There is also evidence that regulatory B cells are protective in PD. There is evidence for a role played by antibodies to alpha-synuclein in PD with a possible increase in early disease. There are many exciting potential future avenues for further exploration of the role of B lymphocytes including improving our understanding of the role of meningeal and calvarial (skull bone marrow) based B cells in health and disease, the use of larger, well phenotyped clinical cohorts to understand changes in peripheral and cerebrospinal fluid B cells over time and the potential application of B cell targeted therapies in PD.
Collapse
Affiliation(s)
- Kirsten M. Scott
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Puentes F, Benkert P, Amor S, Kuhle J, Giovannoni G. Antibodies to neurofilament light as potential biomarkers in multiple sclerosis. BMJ Neurol Open 2021; 3:e000192. [PMID: 34786556 PMCID: PMC8587694 DOI: 10.1136/bmjno-2021-000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background and objective The concentration of neurofilament light (NfL) protein in cerebrospinal fluid (CSF) and blood is widely considered as a quantitative measure of neuro-axonal injury. Immune reactivity to NfL released into extracellular fluids induces specific autoantibody response. We investigated the levels and avidity of antibodies to NfL in patients with multiple sclerosis (MS) treated with disease-modifying therapies (DMTs) and their correlation with disease worsening and NfL protein concentration. Methods We conducted a prospective longitudinal study in 246 patients with MS (125 DMT-treated and 121 untreated at baseline). Serum levels of NfL antibodies, antibody avidity and immune complexes were determined by ELISA. NfL protein was measured using the Simoa platform. Clinical variables were tested for their association with the measured parameters in multivariate generalised estimating equation models. Results Multivariate analysis showed that levels of NfL antibodies were higher in progressive MS compared with clinically isolated syndrome (CIS)/relapsing remitting multiple sclerosis (RRMS) (p=0.010). Anti-NfL levels drop with increasing disability score (Expanded Disability Status Scale (EDSS)) (p=0.002), although conversely, were significantly elevated in CIS/RRMS after a recent EDSS increase (p=0.012). Patients receiving DMTs showed decreased levels of anti-NfL (p=0.008), high-avidity antibodies (p=0.017) and immune-complexes compared with untreated CIS/RRMS. Patients with MS switching to natalizumab showed lower levels of anti-NfL but higher immune complexes compared with healthy controls (p=0.0071). A weak association was observed between the levels of NfL protein and NfL antibodies. Conclusions These results support the potential usefulness of quantifying antibody response to NfL as potential markers of progression and treatment response in MS and need to be considered when interpreting peripheral blood NfL levels.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Sandra Amor
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Pathology Department, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Jens Kuhle
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Puentes F, Lombardi V, Lu CH, Yildiz O, Fratta P, Isaacs A, Bobeva Y, Wuu J, Benatar M, Malaspina A. Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann Clin Transl Neurol 2021; 8:1831-1844. [PMID: 34318620 PMCID: PMC8419401 DOI: 10.1002/acn3.51428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To appraise the utility as biomarkers of blood antibodies and immune complexes to neurofilaments and dipeptide repeat proteins, the products of translation of the most common genetic mutation in amyotrophic lateral sclerosis (ALS). Methods Antibodies and immune complexes against neurofilament light, medium, heavy chains as well as poly‐(GP)‐(GR) dipeptide repeats were measured in blood samples from the ALS Biomarkers (n = 107) and the phenotype–genotype biomarker (n = 129) studies and in 140 healthy controls. Target analyte levels were studied longitudinally in 37 ALS cases. Participants were stratified according to the rate of disease progression estimated before and after baseline and C9orf72 genetic status. Survival and longitudinal analyses were undertaken with reference to matched neurofilament protein expression. Results Compared to healthy controls, total neurofilament proteins and antibodies, neurofilament light immune complexes (p < 0.0001), and neurofilament heavy antibodies (p = 0.0061) were significantly elevated in ALS, patients with faster progressing disease (p < 0.0001) and in ALS cases with a C9orf72 mutation (p < 0.0003). Blood neurofilament light protein discriminated better ALS from healthy controls (AUC: 0.92; p < 0.0001) and faster from slower progressing ALS (AUC: 0.86; p < 0.0001) compared to heavy‐chain antibodies and light‐chain immune complexes (AUC: 0.79; p < 0.0001 and AUC: 0.74; p < 0.0001). Lower neurofilament heavy antibodies were associated with longer survival (Log‐rank Chi‐square: 7.39; p = 0.0065). Increasing levels of antibodies and immune complexes between time points were observed in faster progressing ALS. Conclusions We report a distinctive humoral response characterized by raising antibodies against neurofilaments and dipeptide repeats in faster progressing and C9orf72 genetic mutation carriers ALS patients. We confirm the significance of plasma neurofilament proteins in the clinical stratification of ALS.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Vittoria Lombardi
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Ching-Hua Lu
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom.,School of Medicine, China Medical University, 91 Xueshi Road, North District, Taichung City, 404, Taiwan
| | - Ozlem Yildiz
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Adrian Isaacs
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Yoana Bobeva
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, USA
| | -
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | -
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Andrea Malaspina
- Neurodegeneration Group, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
22
|
Chantran Y, Capron J, Doukhi D, Felix J, Féroul M, Kruse F, Chaigneau T, Dorothée G, Allou T, Ayrignac X, Barrou Z, de Broucker T, Cret C, Turc G, Peres R, Wacongne A, Sarazin M, Renard D, Cordonnier C, Alamowitch S, Aucouturier P. Letter to the editor: Serum anti-Aβ antibodies in cerebral amyloid angiopathy. Autoimmun Rev 2021; 20:102870. [PMID: 34118456 DOI: 10.1016/j.autrev.2021.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Yannick Chantran
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France; Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean Capron
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France; Service de Neurologie et d'Urgences Neurovasculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Diana Doukhi
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Johanna Felix
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Mélanie Féroul
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Florian Kruse
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Thomas Chaigneau
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Guillaume Dorothée
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France
| | | | - Xavier Ayrignac
- Service de Neurologie, CHU Montpellier, Hôpital Guy de Chauliac, Montpellier, France
| | - Zina Barrou
- Service de Gériatrie, Hôpital Pitié Salpêtrière, AP-HP, Paris, France
| | - Thomas de Broucker
- Service de Neurologie, Centre Hospitalier de Saint-Denis, Saint-Denis, France
| | - Corina Cret
- Service de Neurologie, Centre Hospitalier de Meaux, Meaux, France
| | - Guillaume Turc
- Service de Neurologie, GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc, Paris, France
| | - Roxane Peres
- Service de Neurologie, Hôpital Lariboisière, AP-HP, Paris, France
| | - Anne Wacongne
- Service de Neurologie, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Marie Sarazin
- Service de Neurologie de la Mémoire et du Langage, Centre Hospitalier Sainte-Anne, Université Sorbonne Paris Cité, Paris, France
| | - Dimitri Renard
- Service de Neurologie, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Charlotte Cordonnier
- U1172 - LilNCog - Lille Neuroscience & Cognition, Inserm, CHU Lille, Univ. Lille, Lille, France
| | - Sonia Alamowitch
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France; Service de Neurologie et d'Urgences Neurovasculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Aucouturier
- UMRS 938, Hôpital St-Antoine, Sorbonne Université, Inserm, Paris, France; Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
23
|
Folke J, Rydbirk R, Løkkegaard A, Hejl AM, Winge K, Starhof C, Salvesen L, Pedersen LØ, Aznar S, Pakkenberg B, Brudek T. Cerebrospinal fluid and plasma distribution of anti-α-synuclein IgMs and IgGs in multiple system atrophy and Parkinson's disease. Parkinsonism Relat Disord 2021; 87:98-104. [PMID: 34020303 DOI: 10.1016/j.parkreldis.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Ubiquitous naturally occurring autoantibodies (nAbs) against alpha-synuclein (α-syn) may play important roles in the pathogenesis of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Recently, we reported reduced high-affinity/avidity anti-α-syn nAbs levels in plasma from MSA and PD patients, along with distinct inter-group immunoglobulin (Ig)G subclass distributions. The extent to which these observations in plasma may reflect corresponding levels in the cerebrospinal fluid (CSF) is unknown. METHODS Using competitive and indirect ELISAs, we investigated the affinity/avidity of CSF anti-α-syn nAbs as well as the CSF and plasma distribution of IgG subclasses and IgM nAbs in a cross-sectional cohort of MSA and PD patients. RESULTS Repertoires of high-affinity/avidity anti-α-syn IgG nAbs were reduced in CSF samples from MSA and PD patients compared to controls. Furthermore, anti-α-syn IgM nAb levels were relatively lower in CSF and plasma from MSA patients but were reduced only in plasma from PD patients. Interestingly, anti-α-syn IgG subclasses presented disease-specific profiles both in CSF and plasma. Anti-α-syn IgG1, IgG2 and IgG3 levels were relatively increased in CSF of MSA patients, whereas PD patients showed increased anti-α-syn IgG2 and reduced anti-α-syn IgG4 levels. CONCLUSIONS Differences in the plasma/CSF distribution of anti-α-syn nAbs seem to be a common feature of synucleinopathies. Our data add further support to the notion that MSA and PD patients may have compromised immune reactivity towards α-syn. The differing α-syn-specific systemic immunological responses may reflect their specific disease pathophysiologies. These results are encouraging for further investigation of these immunological mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark.
| | - Rasmus Rydbirk
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, N, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark; Novo Nordisk Foundation, Tuborg Havnevej 19, DK-2900, Hellerup, Denmark
| | - Charlotte Starhof
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | | | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, N, Denmark
| | - Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark
| |
Collapse
|
24
|
Conti E, Sala G, Diamanti S, Casati M, Lunetta C, Gerardi F, Tarlarini C, Mosca L, Riva N, Falzone Y, Filippi M, Appollonio I, Ferrarese C, Tremolizzo L. Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci Rep 2021; 11:1978. [PMID: 33479441 PMCID: PMC7820419 DOI: 10.1038/s41598-021-81599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) patients express significant clinical heterogeneity that often hinders a correct diagnostic definition. Intracellular deposition of TDP-43, a protein involved in RNA metabolism characterizes the pathology. Interestingly, this protein can be detected in serum, wherein cognate naturally-occurring auto-antibodies (anti-TDP-43 NAb) might be also present, albeit they have never been documented before. In this exploratory study, we quantified the levels of both anti-TDP-43 NAb and TDP-43 protein as putative accessible markers for improving the ALS diagnostic process by using ELISA in N = 70 ALS patients (N = 4 carrying TARDBP mutations), N = 40 age-comparable healthy controls (CTRL), N = 20 motor neuron disease mimics (MN-m), N = 20 Alzheimer's disease (AD) and N = 15 frontotemporal lobar degeneration (FTLD) patients. Anti-TDP-43 NAb were found to be significantly increased in ALS patients compared to all the other groups (p < 0.001). On the other hand, the distribution of serum levels of TDP-43 protein was highly variable among the various groups. Levels were increased in ALS patients, albeit the highest values were detected in MN-m patients. NAb and protein serum levels failed to correlate. For the first time, we report that serum anti-TDP-43 NAb are detectable in human serum of both healthy controls and patients affected by a variety of neurodegenerative disorders; furthermore, their levels are increased in ALS patients, representing a potentially interesting trait core marker of this disease. Further studies are needed to clarify the exact role of the NAb. This information might be extremely useful for paving the way toward targeting TDP-43 by immunotherapy in ALS.
Collapse
Affiliation(s)
- Elisa Conti
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Gessica Sala
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Susanna Diamanti
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy.,Neurology Unit, "San Gerardo" Hospital, ASST Monza, Monza, Italy
| | - Marco Casati
- Laboratory of Chemical and Clinical Analyses, "San Gerardo" Hospital, ASST Monza, Monza, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milano, Italy
| | - Francesca Gerardi
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milano, Italy
| | - Claudia Tarlarini
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milano, Italy
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy.,Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy
| | - Yuri Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy.,Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS "San Raffaele" Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Ildebrando Appollonio
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy.,Neurology Unit, "San Gerardo" Hospital, ASST Monza, Monza, Italy
| | - Carlo Ferrarese
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy.,Neurology Unit, "San Gerardo" Hospital, ASST Monza, Monza, Italy
| | - Lucio Tremolizzo
- Lab of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy. .,Neurology Unit, "San Gerardo" Hospital, ASST Monza, Monza, Italy. .,, Room 2043, U8 building, Via Cadore 48, 20900, Monza, MB, Italy.
| |
Collapse
|
25
|
Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific Autoantibody Decline in Patients With Amyotrophic Lateral Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/2/e937. [PMID: 33361387 PMCID: PMC7768943 DOI: 10.1212/nxi.0000000000000937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We hypothesize alterations in the quality and quantity of anti-43-kDa TAR DNA-binding protein (TDP-43) naturally occurring autoantibodies (NAbs) in patients with amyotrophic lateral sclerosis (ALS); therefore, we assessed relative binding properties of anti-TDP-43 NAbs composite in plasma from patients with ALS in comparison with healthy individuals. METHODS ELISA competition assay was used to explore the apparent avidity/affinity of anti-TDP-43 NAbs in plasma from 51 normal controls and 30 patients with ALS. Furthermore, the relative levels of anti-TDP-43 NAbs within the immunoglobulin (Ig) classes of IgG (isotype IgG1-4) and IgMs were measured using classical indirect ELISA. The occurring results were hereafter correlated with the measures of disease duration and disease progression. RESULTS High-avidity/affinity anti-TDP-43 NAbs levels were significantly reduced in plasma samples from patients with ALS. In addition, a significant decrease in relative levels of anti-TDP-43 IgG3 and IgM NAbs and a significant increase in anti-TDP-43 IgG4 NAbs were observed in ALS plasma vs controls. Furthermore, a decrease in global IgM and an increase in IgG4 levels were observed in ALS. These aberrations of humoral immunity correlated with disease duration, but did not correlate with ALS Functional Rating Scale-Revised scores. CONCLUSIONS Our results may suggest TDP-43-specific immune aberrations in patients with ALS. The skewed immune profiles observed in patients with ALS could indicate a deficiency in the clearance capacity and/or blocking of TDP-43 transmission and propagation. The decrease in levels of high affinity/avidity anti-TDP-43 NAbs and IgMs correlates with disease progression and may be disease predictors.
Collapse
Affiliation(s)
- Anne Kallehauge Nielsen
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jonas Folke
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Sylwia Owczarek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kirsten Svenstrup
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kristian Winge
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Bente Pakkenberg
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Susana Aznar
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Tomasz Brudek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
26
|
Wang J, Zheng B, Yang S, Hu M, Wang JH. Differential Circulating Levels of Naturally Occurring Antibody to α-Synuclein in Parkinson's Disease Dementia, Alzheimer's Disease, and Vascular Dementia. Front Aging Neurosci 2020; 12:571437. [PMID: 33088272 PMCID: PMC7544955 DOI: 10.3389/fnagi.2020.571437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Aggregation of alpha-synuclein (α-Syn) is considered to be a significant pathological hallmark and a driving force of Parkinson’s disease (PD). PD dementia (PDD) occurs in a substantial number of PD patients. Naturally occurring antibody against α-Syn (NAb-α-Syn) exists ubiquitously in human blood and is reported to be altered in PD. However, it is not clear yet whether PDD had similar changes of circulating NAb-α-Syn. Methods: In this study, we recruited 61 PDD patients, 52 patients with Alzheimer’s disease (AD), 51 patients with vascular dementia (VaD), and 50 normal controls (NCs). ELISA was used to examine NAb-α-Syn levels in serum. Results: In comparison with NCs, serum levels of NAb-α-Syn were significantly lower in patients with PDD. However, serum levels of NAb-α-Syn were comparable among AD, VaD, and NC groups. Serum levels of NAb-α-Syn were positively correlated with the cognitive function, as reflected by Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Serum levels of NAb-α-Syn were negatively correlated with the severity of PD [as reflected by the Unified Parkinson Disease Rating Scale (UPDRS)] and the duration of PD and PDD. Serum NAb-α-Syn can differentiate PDD patients from AD and VaD patients. Conclusion: These results suggest that circulating NAb-α-Syn might be a potential biomarker of PDD.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Yaan People's Hospital, Yaan, China
| | - Bo Zheng
- Department of Neurology, Yaan People's Hospital, Yaan, China
| | - Shu Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Hu
- Department of Imaging, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Hong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
28
|
Kumar M, Arora P, Sandhir R. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. J Neuroimmune Pharmacol 2020; 16:483-499. [DOI: 10.1007/s11481-020-09920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|