1
|
Marsden JWN, Laclé MM, Severs M, Leavis HL. Paucity of gastrointestinal plasma cells in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:464-471. [PMID: 39479953 PMCID: PMC11537466 DOI: 10.1097/aci.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency enteropathy (CVID-E) is a noninfectious complication of CVID caused by chronic inflammation of the gastrointestinal (GI) tract. Based on literature, a paucity or lack of plasma cells, although not obligatory for diagnosis, is a pathognomonic feature of CVID and more frequent in CVID-E. However, there is no consensus on standardized histopathological analysis of this feature in biopsies. In this systematic review, we highlight methods of reproducible plasma cell quantification of biopsies in CVID and describe the plasma cell counts and classes as presented in the literature. RECENT FINDINGS Reduced plasma cell counts are commonly found over the entire GI tract, except for in the oesophagus. Immunoglobulin A+ (IgA+) plasma cells appear to be the most commonly reduced plasma cell class in CVID, yet there is scarce literature on the predictive value of low IgA+ plasma cell counts in CVID-E. SUMMARY We propose two optimized methodologies of quantification using a cut-of value of <10 plasma cells per HPF at 40× magnification, or a proportion of ≥1-5% of total mononuclear cells, recorded over ≥3 sections, and in ≥2 biopsies, as the most conservative agreeable definitions for a paucity of plasma cells to be used in diagnostics and further research.
Collapse
Affiliation(s)
- Jan Willem N. Marsden
- University Medical Center Utrecht, Department of Clinical Immunology and Rheumatology
| | - Miangela M. Laclé
- University Medical Center Utrecht, Department of Pathology, Utrecht University, Utrecht
| | - Mirjam Severs
- Radboud University Medical Center Nijmegen, Department of Gastroenterology, Nijmegen, The Netherlands
| | - Helen Louisa Leavis
- University Medical Center Utrecht, Department of Clinical Immunology and Rheumatology
| |
Collapse
|
2
|
Mohammed AD, Ball RAW, Jolly A, Nagarkatti P, Nagarkatti M, Kubinak JL. Studying the cellular basis of small bowel enteropathy using high-parameter flow cytometry in mouse models of primary antibody deficiency. Front Immunol 2024; 15:1278197. [PMID: 38803492 PMCID: PMC11128607 DOI: 10.3389/fimmu.2024.1278197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Background Primary immunodeficiencies are heritable defects in immune system function. Antibody deficiency is the most common form of primary immunodeficiency in humans, can be caused by abnormalities in both the development and activation of B cells, and may result from B-cell-intrinsic defects or defective responses by other cells relevant to humoral immunity. Inflammatory gastrointestinal complications are commonly observed in antibody-deficient patients, but the underlying immune mechanisms driving this are largely undefined. Methods In this study, several mouse strains reflecting a spectrum of primary antibody deficiency (IgA-/-, Aicda-/-, CD19-/- and JH -/-) were used to generate a functional small-bowel-specific cellular atlas using a novel high-parameter flow cytometry approach that allows for the enumeration of 59 unique cell subsets. Using this cellular atlas, we generated a direct and quantifiable estimate of immune dysregulation. This estimate was then used to identify specific immune factors most predictive of the severity of inflammatory disease of the small bowel (small bowel enteropathy). Results Results from our experiments indicate that the severity of primary antibody deficiency positively correlates with the degree of immune dysregulation that can be expected to develop in an individual. In the SI of mice, immune dysregulation is primarily explained by defective homeostatic responses in T cell and invariant natural killer-like T (iNKT) cell subsets. These defects are strongly correlated with abnormalities in the balance between protein (MHCII-mediated) versus lipid (CD1d-mediated) antigen presentation by intestinal epithelial cells (IECs) and intestinal stem cells (ISCs), respectively. Conclusions Multivariate statistical approaches can be used to obtain quantifiable estimates of immune dysregulation based on high-parameter flow cytometry readouts of immune function. Using one such estimate, we reveal a previously unrecognized tradeoff between iNKT cell activation and type 1 immunity that underlies disease in the small bowel. The balance between protein/lipid antigen presentation by ISCs may play a crucial role in regulating this balance and thereby suppressing inflammatory disease in the small bowel.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason L. Kubinak
- Pathology, Microbiology, and Immunology Department, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
3
|
Mohammed AD, Ball RAW, Jolly A, Nagarkatti P, Nagarkatti M, Kubinak JL. Studying the cellular basis of small bowel enteropathy using high-parameter flow cytometry in mouse models of primary antibody deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577009. [PMID: 38352330 PMCID: PMC10862736 DOI: 10.1101/2024.01.25.577009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Background Primary immunodeficiencies are heritable defects in immune system function. Antibody deficiency is the most common form of primary immunodeficiency in humans, can be caused by abnormalities in both the development and activation of B cells, and may result from B-cell-intrinsic defects or defective responses by other cells relevant to humoral immunity. Inflammatory gastrointestinal complications are commonly observed in antibody-deficient patients, but the underlying immune mechanisms driving this are largely undefined. Methods In this study, several mouse strains reflecting a spectrum of primary antibody deficiency (IgA -/- , Aicda -/- , CD19 -/- and J H -/- ) were used to generate a functional small-bowel-specific cellular atlas using a novel high-parameter flow cytometry approach that allows for the enumeration of 59 unique cell subsets. Using this cellular atlas, we generated a direct and quantifiable estimate of immune dysregulation. This estimate was then used to identify specific immune factors most predictive of the severity of inflammatory disease of the small bowel (small bowel enteropathy). Results Results from our experiments indicate that the severity of primary antibody deficiency positively correlates with the degree of immune dysregulation that can be expected to develop in an individual. In the SI of mice, immune dysregulation is primarily explained by defective homeostatic responses in T cell and invariant natural killer-like T (iNKT) cell subsets. These defects are strongly correlated with abnormalities in the balance between protein (MHCII-mediated) versus lipid (CD1d-mediated) antigen presentation by intestinal epithelial cells (IECs) and intestinal stem cells (ISCs), respectively. Conclusions Multivariate statistical approaches can be used to obtain quantifiable estimates of immune dysregulation based on high-parameter flow cytometry readouts of immune function. Using one such estimate, we reveal a previously unrecognized tradeoff between iNKT cell activation and type 1 immunity that underlies disease in the small bowel. The balance between protein/lipid antigen presentation by ISCs may play a crucial role in regulating this balance and thereby suppressing inflammatory disease in the small bowel.
Collapse
|
4
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
5
|
Peng Y, Chen Y, Wang Y, Wang W, Qiao S, Lan J, Wang M. Dysbiosis and primary B-cell immunodeficiencies: current knowledge and future perspective. Immunol Res 2023; 71:528-536. [PMID: 36933165 DOI: 10.1007/s12026-023-09365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023]
Abstract
According to Elie Metchnikoff, an originator of modern immunology, several pivotal functions for disease and health are provided by indigenous microbiota. Nonetheless, important mechanistic insights have been elucidated more recently, owing to the growing availability of DNA sequencing technology. There are 10 to 100 trillion symbiotic microbes (such as viruses, bacteria, and yeast) in each human gut microbiota. Both locally and systemically, the gut microbiota has been demonstrated to impact immune homeostasis. Primary B-cell immunodeficiencies (PBIDs) are a group of primary immunodeficiency diseases (PIDs) referring to the dysregulated antibody production due to either intrinsic genetic defects or failures in functions of B cells. Recent studies have found that PBIDs cause disruptions in the gut's typical homeostatic systems, resulting in inadequate immune surveillance in the gastrointestinal (GI) tract, which is linked to increased dysbiosis, which is characterized by a disruption in the microbial homeostasis. This study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the crosstalk between the gut microbiome and PBID, the factors shaping the gut microbiota in PBID, as well as the potential clinical approaches for restoring a normal microbial community.
Collapse
Affiliation(s)
- Ye Peng
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Wensong Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Jianping Lan
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| | - Manling Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| |
Collapse
|
6
|
Mohammed AD, Ball RAW, Kubinak JL. The interplay between bile acids and mucosal adaptive immunity. PLoS Pathog 2023; 19:e1011356. [PMID: 37347728 PMCID: PMC10286976 DOI: 10.1371/journal.ppat.1011356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ryan A. W. Ball
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Jason L. Kubinak
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
7
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
8
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Mohammed AD, Hall N, Chatzistamou I, Jolly A, Kubinak JL. Gluten-free diet exposure prohibits pathobiont expansion and gluten sensitive enteropathy in B cell deficient JH-/- mice. PLoS One 2022; 17:e0264977. [PMID: 35324937 PMCID: PMC8946719 DOI: 10.1371/journal.pone.0264977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
In humans, celiac disease (CeD) is a T-cell-driven gluten-sensitive enteropathy (GSE) localized to the small bowel (duodenum). The presence of antibodies specific for gluten- and self-antigens are commonly used diagnostic biomarkers of CeD and are considered to play a role in GSE pathogenesis. Previously, we have described an apparent T-cell-mediated GSE in CD19-/- mice, which develop weak and abnormal B cell responses. Here, we expand on this observation and use a mouse model of complete B cell deficiency (JH-/- mice), to show that absence of a humoral immune response also promotes development of a GSE. Furthermore, 16S analysis of microbial communities in the small intestine demonstrates that a gluten-free diet suppresses the expansion of anaerobic bacteria in the small intestine and colonization of the small intestine by a specific pathobiont. Finally, we also observe that SI enteropathy in mice fed a gluten-rich diet is positively correlated with the abundance of several microbial peptidase genes, which supports that bacterial metabolism of gluten may be an important driver of GSE in our model. Collectively, results from our experiments indicate that JH-/- mice will be a useful resource to investigators seeking to empirically delineate the contribution of humoral immunity on GSE pathogenesis, and support the hypothesis that humoral immunity promotes tolerance to gluten.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Nia Hall
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Amy Jolly
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Jason Lee Kubinak
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| |
Collapse
|
10
|
Mohammed AD, Mohammed Z, Roland MM, Chatzistamou I, Jolly A, Schoettmer LM, Arroyo M, Kakar K, Tian Y, Patterson A, Nagarkatti M, Nagarkatti P, Kubinak JL. Defective humoral immunity disrupts bile acid homeostasis which promotes inflammatory disease of the small bowel. Nat Commun 2022; 13:525. [PMID: 35082296 PMCID: PMC8792037 DOI: 10.1038/s41467-022-28126-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Mucosal antibodies maintain gut homeostasis by promoting spatial segregation between host tissues and luminal microbes. Whether and how mucosal antibody responses influence gut health through modulation of microbiota composition is unclear. Here, we use a CD19-/- mouse model of antibody-deficiency to demonstrate that a relationship exists between dysbiosis, defects in bile acid homeostasis, and gluten-sensitive enteropathy of the small intestine. The gluten-sensitive small intestine enteropathy that develops in CD19-/- mice is associated with alterations to luminal bile acid composition in the SI, marked by significant reductions in the abundance of conjugated bile acids. Manipulation of bile acid availability, adoptive transfer of functional B cells, and ablation of bacterial bile salt hydrolase activity all influence the severity of small intestine enteropathy in CD19-/- mice. Collectively, results from our experiments support a model whereby mucosal humoral immune responses limit inflammatory disease of the small bowel by regulating bacterial BA metabolism.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,University of Baghdad School of Veterinary Medicine, Baghdad, Iraq
| | - Zahraa Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,Al-Mustansiriyah University School of Medicine Department of Microbiology, Baghdad, Iraq
| | - Mary M Roland
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Ioulia Chatzistamou
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Amy Jolly
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Lillian M Schoettmer
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mireya Arroyo
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Khadija Kakar
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Yuan Tian
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Andrew Patterson
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
| |
Collapse
|
11
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
12
|
Klag KA, Round JL. Microbiota-Immune Interactions Regulate Metabolic Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1719-1724. [PMID: 34544814 PMCID: PMC9105212 DOI: 10.4049/jimmunol.2100419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are common worldwide and include diseases of overnutrition, such as obesity, or undernutrition, such as kwashiorkor. Both the immune system and the microbiota contribute to a variety of metabolic diseases; however, these two processes have largely been studied independently of one another in this context. The gastrointestinal system houses the greatest density of microbes but also houses one of the largest collections of immune molecules, especially Abs. The IgA isotype dominates the Ab landscape at mucosal sites, and a number of studies have demonstrated the importance of this Ab to the stability of the microbiota. In this article, we review the literature that demonstrates how homeostatic Ab responses control microbiota composition and function to influence metabolic disease. We propose that many metabolic diseases may arise from disruptions to homeostatic immune control of gut commensals and that further understanding this interaction can offer a novel opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Kendra A Klag
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; and .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
13
|
Comparative Transcriptome Analysis Reveals Relationship among mRNAs, lncRNAs, and circRNAs of Slow Transit Constipation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6672899. [PMID: 34513995 PMCID: PMC8427675 DOI: 10.1155/2021/6672899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
Background Slow transit constipation (STC) is characterized by persistent, infrequent, or incomplete defecation. Systematic analyses of mRNA, lncRNA, and circRNA expression profiling in STC provide insights to understand the molecular mechanisms of STC pathogenesis. The present study is aimed at observing the interaction of mRNAs, lncRNAs, and circRNAs by RNA sequencing in vivo of STC. Methods A rat model of STC was induced by loperamide. The expression profiles of both mRNAs and miRNAs were performed by RNA sequencing. Enrichment analyses of anomalous expressed mRNAs, lncRNAs, and circRNAs were performed in order to identify the related biological functions and pathologic pathways through the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results In total, 26435 mRNAs, 5703 lncRNAs, and 7708 circRNAs differentially expressed were identified between the two groups. The analyses of GO and KEGG show that (1) upregulated genes were enriched in a positive regulation of GTPase activity, cell migration, and protein binding and lipid binding and (2) GO annotations revealed that most trans-target mRNAs are involved in the regulation process of immune signal together with the proliferation and differentiation of immune cells. Additionally, the protein-protein interaction (PPI) network of differentially expressed (DE) mRNAs was constructed. Interestingly, all of the core lncRNAs and their coexpression mRNAs in this network are downregulated. Moreover, downregulated circRNAs have a set of target mRNAs related to immunoreaction, which was consistent with the overall tendency. Conclusion Our investigation enriches the STC transcriptome database and provides a preliminary exploration of novel candidate genes and avenues expression profiles in vivo. The dysregulation of mRNAs, lncRNAs, and circRNAs might contribute to the pathological processes during STC.
Collapse
|
14
|
Varricchi G, Poto R, Ianiro G, Punziano A, Marone G, Gasbarrini A, Spadaro G. Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Front Immunol 2021; 12:712915. [PMID: 34408753 PMCID: PMC8366412 DOI: 10.3389/fimmu.2021.712915] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary antibody immunodeficiency, characterized by reduced serum levels of IgG, IgA, and/or IgM. The vast majority of CVID patients have polygenic inheritance. Immune dysfunction in CVID can frequently involve the gastrointestinal tract and lung. Few studies have started to investigate the gut microbiota profile in CVID patients. Overall, the results suggest that in CVID patients there is a reduction of alpha and beta diversity compared to controls. In addition, these patients can exhibit increased plasma levels of lipopolysaccharide (LPS) and markers (sCD14 and sCD25) of systemic immune cell activation. CVID patients with enteropathy exhibit decreased IgA expression in duodenal tissue. Mouse models for CVID unsatisfactorily recapitulate the polygenic causes of human CVID. The molecular pathways by which gut microbiota contribute to systemic inflammation and possibly tumorigenesis in CVID patients remain poorly understood. Several fundamental questions concerning the relationships between gut microbiota and the development of chronic inflammatory conditions, autoimmune disorders or cancer in CVID patients remain unanswered. Moreover, it is unknown whether it is possible to modify the microbiome and the outcome of CVID patients through specific therapeutic interventions.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianluca Ianiro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Tofighi Zavareh F, Mirshafiey A, Yazdani R, Keshtkar AA, Abolhassani H, Bagheri Y, Rezaei A, Delavari S, Rezaei N, Aghamohammadi A. Lymphocytes subsets in correlation with clinical profile in CVID patients without monogenic defects. Expert Rev Clin Immunol 2021; 17:1041-1051. [PMID: 34252322 DOI: 10.1080/1744666x.2021.1954908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objectives: Common variable immunodeficiency (CVID) patients experience clinical manifestations rather than recurrent respiratory infections including autoimmunity, enteropathy, and lymphoproliferation. We evaluated the correlation of lymphocyte subpopulations with such manifestations.Methods: Twenty-six genetically unsolved CVID patients were subdivided into four phenotypes: infection only (IO), autoimmunity (AI), chronic enteropathy (CE), and lymphoproliferative disorders (LP) and examined for lymphocyte subsets by flow cytometry and TCD4+ proliferation by Carboxyfluorescein succinimidyl ester (CFSE) test.Results: We detected reduced memory B and increased total, effector memory (EM), cytotoxic, and activated TCD8+ in IO, AI and CE, decreased plasmablasts, total and naive TCD4+, Regulatory TCD4+ (Treg) and naive TCD8+ in IO and CE, elevated CD21low B and terminally differentiated effector memory (TEMRA) TCD8+ in IO and AI, increased helper T (Th2) and Th17 in IO, decreased Th1 in AI and defective total and naive B and central memory (CM) TCD4+ in CE. IO showed reduced TCD4+ proliferation response.Conclusions: In genetically unsolved CVID patients, increased Th2 and Th17 and reduced Treg is associated with IO, increased CD21low B and TEMRA TCD8+ and reduced Th1 is contributed to AI and reduced total and naive B, CM TCD4+ and naive TCD8+ and expanded total TCD8+ is correlated with CE.
Collapse
Affiliation(s)
- Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (Pidnet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (Pidnet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Bosák J, Lexa M, Fiedorová K, Gadara DC, Micenková L, Spacil Z, Litzman J, Freiberger T, Šmajs D. Patients With Common Variable Immunodeficiency (CVID) Show Higher Gut Bacterial Diversity and Levels of Low-Abundance Genes Than the Healthy Housemates. Front Immunol 2021; 12:671239. [PMID: 34054845 PMCID: PMC8163231 DOI: 10.3389/fimmu.2021.671239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a clinically and genetically heterogeneous disorder with inadequate antibody responses and low levels of immunoglobulins including IgA that is involved in the maintenance of the intestinal homeostasis. In this study, we analyzed the taxonomical and functional metagenome of the fecal microbiota and stool metabolome in a cohort of six CVID patients without gastroenterological symptomatology and their healthy housemates. The fecal microbiome of CVID patients contained higher numbers of bacterial species and altered abundance of thirty-four species. Hungatella hathewayi was frequent in CVID microbiome and absent in controls. Moreover, the CVID metagenome was enriched for low-abundance genes likely encoding nonessential functions, such as bacterial motility and metabolism of aromatic compounds. Metabolomics revealed dysregulation in several metabolic pathways, mostly associated with decreased levels of adenosine in CVID patients. Identified features have been consistently associated with CVID diagnosis across the patients with various immunological characteristics, length of treatment, and age. Taken together, this initial study revealed expansion of bacterial diversity in the host immunodeficient conditions and suggested several bacterial species and metabolites, which have potential to be diagnostic and/or prognostic CVID markers in the future.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Kristýna Fiedorová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darshak C. Gadara
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lenka Micenková
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zdenek Spacil
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Jørgensen SF, Fevang B, Aukrust P. Commentary: Gut Antibody Deficiency in a Mouse Model of CVID Results in Spontaneous Development of a Gluten-Sensitive Enteropathy. Front Immunol 2020; 11:1921. [PMID: 32983117 PMCID: PMC7481324 DOI: 10.3389/fimmu.2020.01921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Silje F Jørgensen
- Division of Surgery, Inflammatory Diseases and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Børre Fevang
- Division of Surgery, Inflammatory Diseases and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Division of Surgery, Inflammatory Diseases and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
van Schewick CM, Nöltner C, Abel S, Burns SO, Workman S, Symes A, Guzman D, Proietti M, Bulashevska A, Moreira F, Soetedjo V, Lowe DM, Grimbacher B. Altered Microbiota, Impaired Quality of Life, Malabsorption, Infection, and Inflammation in CVID Patients With Diarrhoea. Front Immunol 2020; 11:1654. [PMID: 32849570 PMCID: PMC7412961 DOI: 10.3389/fimmu.2020.01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Diarrhoea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Objective: The aim of this study was to describe the prevalence and clinical presentation of chronic and recurrent diarrhoea in the Royal-Free-Hospital (RFH) London CVID cohort, including symptoms, infections, level of inflammation, and microbial diversity. Methods: A cross-sectional study of adult CVID patients (139 out of 172 diagnosed with CVID completed the screening questionnaire). Those with diarrhoea ≥6 days/month had stool and blood samples analysed and completed the short Inflammatory Bowel Disease Questionnaire (sIBDQ). BMI, spleen-size, lymphocytes and gut-microbial diversity were compared. Due to logistical and clinical restraints, not all patients could be analysed on all measures. Results: 46/139 (33.1%) patients had current significant diarrhoea. In patients with past or present diarrhoea, BMI was lower (median 23.7 vs. 26, p = 0.005), malabsorption more common (57.97 vs. 35.71%, p = 0.011). CD4+ lymphocytes were higher in patients with diarrhoea (p = 0.028; n = 138), but CD4+ naïve lymphocytes were significantly higher in non-diarrhoea patients (p = 0.009, N = 28). Nine patients had confirmed or probable current gastrointestinal infections. Calprotectin was >60 μg/g in 13/29 with significant diarrhoea including 9 without infection. SIBDQ revealed a low median score of 4.74. Microbial alpha diversity was significantly lower in CVID patients compared to healthy household controls. There was no significant difference in alpha diversity in relation to antibiotic intake during the 6 weeks prior to providing samples. Conclusion: Patients with CVID and significant diarrhoea had infections, raised calprotectin, malabsorption, a lower BMI, an impaired quality of life (comparable to active IBD), and they differed from non-diarrhoea patients in their lymphocyte phenotyping. Furthermore, microbial diversity was altered. These findings strongly imply that there may be an inflammatory nature and a systemic predisposition to diarrhoea in CVID, which necessitates further investigation.
Collapse
Affiliation(s)
- Cornelia M van Schewick
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Christina Nöltner
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Svenja Abel
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Sarita Workman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Andrew Symes
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - David Guzman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fernando Moreira
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Veronika Soetedjo
- Freiburg Center for Data Analysis and Modeling (FDM), IMBI/ZKS, Freiburg, Germany
| | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Bodo Grimbacher
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
21
|
Zhang X, Pan Z. Influence of microbiota on immunity and immunotherapy for gastric and esophageal cancers. Gastroenterol Rep (Oxf) 2020; 8:206-214. [PMID: 32665852 PMCID: PMC7333930 DOI: 10.1093/gastro/goaa014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|