1
|
Xu D, Luo XM, Reilly CM. HDAC6 Deletion Decreases Pristane-induced Inflammation. Immunohorizons 2024; 8:668-678. [PMID: 39259207 PMCID: PMC11447689 DOI: 10.4049/immunohorizons.2400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by excessive inflammation and production of pathogenic Abs. Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase. It has been reported that selective HDAC6 inhibition decreases inflammation in lupus mouse models. In this study, sex- and age-matched wild-type (WT) and HDAC6-/- mice on the C57BL/6 background were administered 0.5 ml of pristane or PBS i.p. at 8-12 wk of age and were euthanized 10 d later. At sacrifice, body weight and spleen weight were measured, sera were collected, and splenocytes and peritoneal cells were harvested for flow cytometry. We found pristane administration increased the spleen weight with no difference between WT and HDAC6-/- mice. Pristane administration promoted the population of CD11b+Ly6C++ inflammatory monocytes and CD11b+Ly6G+ neutrophils. Peritoneal recruitment of these inflammatory monocytes and neutrophils was significantly decreased in HDAC6-/- mice compared with the WT mice. Flow cytometry results showed that the number of CD69+ T and B cells was increased in HDAC6-/- mice. Pristane administration also induced the IFN signature genes as determined by RT-qPCR. Furthermore, IFN signature genes were not affected in HDAC6-/- mice compared with the WT mice. In vitro studies in J774A.1 cells revealed that the selective HDAC6 inhibitor (ACY-738) increased acetylation of NF-κB while increasing Stat1 phosphorylation, which resulted in inducible NO synthase production in LPS/IFN-γ-stimulated cells. Taken together, these results demonstrate that although HDAC6 inhibition may inhibit some inflammatory pathways, others remain unaffected.
Collapse
Affiliation(s)
- Dao Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Edward Via College of Osteopathic Medicine, Blacksburg, VA
| |
Collapse
|
2
|
Carullo G, Rossi S, Giudice V, Pezzotta A, Chianese U, Scala P, Carbone S, Fontana A, Panzeca G, Pasquini S, Contri C, Gemma S, Ramunno A, Saponara S, Galvani F, Lodola A, Mor M, Benedetti R, Selleri C, Varani K, Butini S, Altucci L, Vincenzi F, Pistocchi A, Campiani G. Development of Epigenetic Modifiers with Therapeutic Potential in FMS-Related Tyrosine Kinase 3/Internal Tandem Duplication (FLT3/ITD) Acute Myeloid Leukemia and Other Blood Malignancies. ACS Pharmacol Transl Sci 2024; 7:2125-2142. [PMID: 39022363 PMCID: PMC11249625 DOI: 10.1021/acsptsci.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sara Rossi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Valentina Giudice
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Alex Pezzotta
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Ugo Chianese
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
| | - Pasqualina Scala
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Sabrina Carbone
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Anna Fontana
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giovanna Panzeca
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Borsari 46, Ferrara 44121, Italy
| | - Chiara Contri
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Sandra Gemma
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Anna Ramunno
- Department
of Pharmacy, University of Salerno, Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Simona Saponara
- Department
of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Francesca Galvani
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Alessio Lodola
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Rosaria Benedetti
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
| | - Carmine Selleri
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Stefania Butini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Lucia Altucci
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
- Biogem
Institute of Molecular and Genetic Biology, Ariano Irpino 83031, Italy
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Anna Pistocchi
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Giuseppe Campiani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
- Bioinformatics
Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
3
|
Kan S, Hou Q, Yang R, Yang F, Zhang M, Liu Z, Jiang S. Inhibition of HDAC6 with CAY10603 alleviates acute and chronic kidney injury by suppressing the ATF6 branch of UPR. Arch Biochem Biophys 2024; 756:110009. [PMID: 38642631 DOI: 10.1016/j.abb.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.
Collapse
Affiliation(s)
- Shuyan Kan
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Hou
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixiang Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Kerns S, Owen KA, Schwalbe D, Grammer AC, Lipsky PE. Examination of the shared genetic architecture between multiple sclerosis and systemic lupus erythematosus facilitates discovery of novel lupus risk loci. Hum Genet 2024; 143:703-719. [PMID: 38609570 DOI: 10.1007/s00439-024-02672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.
Collapse
Affiliation(s)
- Sophia Kerns
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA.
- The RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Katherine A Owen
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Dana Schwalbe
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
5
|
Delshad M, Davoodi-Moghaddam Z, Pourbagheri-Sigaroodi A, Faranoush M, Abolghasemi H, Bashash D. Translating mechanisms into therapeutic strategies for immune thrombocytopenia (ITP): Lessons from clinical trials. Thromb Res 2024; 235:125-147. [PMID: 38335568 DOI: 10.1016/j.thromres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liu XM, Yang L, Yang QB. Advanced Progress of Histone Deacetylases in Rheumatic Diseases. J Inflamm Res 2024; 17:947-955. [PMID: 38370467 PMCID: PMC10870932 DOI: 10.2147/jir.s447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.
Collapse
Affiliation(s)
- Xue-Mei Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Liu Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| |
Collapse
|
7
|
Hübner M, Zaiss MM, Azizov V. Double-edged sword: Alcohol's effect on rheumatoid arthritis and beyond. Joint Bone Spine 2024; 91:105626. [PMID: 37543136 DOI: 10.1016/j.jbspin.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
Daamen AR, Alajoleen RM, Grammer AC, Luo XM, Lipsky PE. Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice. Front Immunol 2023; 14:1282770. [PMID: 38155972 PMCID: PMC10752970 DOI: 10.3389/fimmu.2023.1282770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.
Collapse
Affiliation(s)
- Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Razan M. Alajoleen
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| |
Collapse
|
9
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
11
|
Azizov V, Hübner M, Frech M, Hofmann J, Kubankova M, Lapuente D, Tenbusch M, Guck J, Schett G, Zaiss MM. Alcohol-sourced acetate impairs T cell function by promoting cortactin acetylation. iScience 2023; 26:107230. [PMID: 37485352 PMCID: PMC10362326 DOI: 10.1016/j.isci.2023.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties. Here, we report how alcohol impairs T cell function via acetylation of cortactin, a protein that binds filamentous actin and facilitates branching. Upon alcohol consumption, acetate, the metabolite of alcohol, accumulates in lymphoid organs. T cells exposed to acetate, exhibit increased acetylation of cortactin. Acetylation of cortactin inhibits filamentous actin binding and hence reduces T cell migration, immune synapse formation and activation. While mutated, acetylation-resistant cortactin rescues the acetate-induced inhibition of T cell migration, primary mouse cortactin knockout T cells exhibited impaired migration. Acetate-induced cytoskeletal changes effectively inhibited activation, proliferation, and immune synapse formation in T cells in vitro and in vivo in an influenza infection model in mice. Together these findings reveal cortactin as a possible target for mitigation of T cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marketa Kubankova
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Cai B, Lu H, Ye Q, Xiao Q, Wu X, Xu H. Identification of potent target and its mechanism of action of Tripterygium wilfordii Hook F in the treatment of lupus nephritis. Int J Rheum Dis 2023. [PMID: 37317623 DOI: 10.1111/1756-185x.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
AIM The Chinese anti-rheumatic herbal remedy Tripterygium wilfordii Hook F (TWHF) has been widely shown to be effective in treating lupus nephritis (LN), but the therapeutic targets and mechanisms of action are still unclear. In this study, we aimed to combine mRNA expression profile analysis and network pharmacology analysis to screen the pathogenic genes and pathways involved in LN and to explore the potential targets of TWHF in the treatment of LN. METHODS The mRNA expression profiles of LN patients were used to screen differentially expressed genes (DEGs) and to predict associated pathogenic pathways and networks via the Ingenuity Pathway Analysis database. Through molecular docking, we predicted the mechanism by which TWHF interacts with candidate targets. RESULTS A total of 351 DEGs were screened from the glomeruli of LN patients and were mainly concentrated in the role of pattern recognition receptors in the recognition of bacteria and viruses and interferon signaling pathways. A total of 130 DEGs were screened from the tubulointerstitium of LN patients, which were concentrated in the interferon signaling pathway. TWHF might be effective in treating LN by hydrogen bonding to regulate the functions of 24 DEGs (including HMOX1, ALB, and CASP1), which are mainly concentrated in the B-cell signaling pathway. CONCLUSION The mRNA expression profile of renal tissue from LN patients revealed a large number of DEGs. TWHF has been shown to interact with the DEGs (including HMOX1, ALB and CASP1) through hydrogen bonding to treat LN.
Collapse
Affiliation(s)
- Bin Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyi Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Owen KA, Bell KA, Price A, Bachali P, Ainsworth H, Marion MC, Howard TD, Langefeld CD, Shen N, Yazdany J, Dall'era M, Grammer AC, Lipsky PE. Molecular pathways identified from single nucleotide polymorphisms demonstrate mechanistic differences in systemic lupus erythematosus patients of Asian and European ancestry. Sci Rep 2023; 13:5339. [PMID: 37005464 PMCID: PMC10067935 DOI: 10.1038/s41598-023-32569-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of Asian-Ancestry (AsA) disproportionately experience more severe SLE compared to individuals of European-Ancestry (EA), including increased renal involvement and tissue damage. However, the mechanisms underlying elevated severity in the AsA population remain unclear. Here, we utilized available gene expression data and genotype data based on all non-HLA SNP associations in EA and AsA SLE patients detected using the Immunochip genotyping array. We identified 2778 ancestry-specific and 327 trans-ancestry SLE-risk polymorphisms. Genetic associations were examined using connectivity mapping and gene signatures based on predicted biological pathways and were used to interrogate gene expression datasets. SLE-associated pathways in AsA patients included elevated oxidative stress, altered metabolism and mitochondrial dysfunction, whereas SLE-associated pathways in EA patients included a robust interferon response (type I and II) related to enhanced cytosolic nucleic acid sensing and signaling. An independent dataset derived from summary genome-wide association data in an AsA cohort was interrogated and identified similar molecular pathways. Finally, gene expression data from AsA SLE patients corroborated the molecular pathways predicted by SNP associations. Identifying ancestry-related molecular pathways predicted by genetic SLE risk may help to disentangle the population differences in clinical severity that impact AsA and EA individuals with SLE.
Collapse
Affiliation(s)
- Katherine A Owen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Kristy A Bell
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Andrew Price
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Hannah Ainsworth
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Miranda C Marion
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Timothy D Howard
- Department of Biochemistry, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinoos Yazdany
- University of California San Francisco, San Francisco, CA, 94117, USA
| | - Maria Dall'era
- University of California San Francisco, San Francisco, CA, 94117, USA
| | - Amrie C Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
14
|
Khunsriraksakul C, Li Q, Markus H, Patrick MT, Sauteraud R, McGuire D, Wang X, Wang C, Wang L, Chen S, Shenoy G, Li B, Zhong X, Olsen NJ, Carrel L, Tsoi LC, Jiang B, Liu DJ. Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus. Nat Commun 2023; 14:668. [PMID: 36750564 PMCID: PMC9905560 DOI: 10.1038/s41467-023-36306-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qinmengge Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Havell Markus
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renan Sauteraud
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel McGuire
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xingyan Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chen Wang
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lida Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Siyuan Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Olsen
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dajiang J Liu
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Kain J, Owen KA, Marion MC, Langefeld CD, Grammer AC, Lipsky PE. Mendelian randomization and pathway analysis demonstrate shared genetic associations between lupus and coronary artery disease. Cell Rep Med 2022; 3:100805. [PMID: 36334592 PMCID: PMC9729823 DOI: 10.1016/j.xcrm.2022.100805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Coronary artery disease (CAD) is a leading cause of death in patients with systemic lupus erythematosus (SLE). Despite clinical evidence supporting an association between SLE and CAD, pleiotropy-adjusted genetic association studies are limited and focus on only a few common risk loci. Here, we identify a net positive causal estimate of SLE-associated non-HLA SNPs on CAD by traditional Mendelian randomization (MR) approaches. Pathway analysis using SNP-to-gene mapping followed by unsupervised clustering based on protein-protein interactions (PPIs) identifies biological networks composed of positive and negative causal sets of genes. In addition, we confirm the casual effects of specific SNP-to-gene modules on CAD using only SNP mapping to each PPI-defined functional gene set as instrumental variables. This PPI-based MR approach elucidates various molecular pathways with causal implications between SLE and CAD and identifies biological pathways likely causative of both pathologies, revealing known and novel therapeutic interventions for managing CAD in SLE.
Collapse
Affiliation(s)
- Jessica Kain
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| | - Katherine A Owen
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA.
| | - Miranda C Marion
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| |
Collapse
|
16
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
17
|
Wu S, Yin Y, Wang X. The epigenetic regulation of the germinal center response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194828. [PMID: 35643396 DOI: 10.1016/j.bbagrm.2022.194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Mei X, Jin H, Zhao M, Lu Q. Association of Immune-Related Genetic and Epigenetic Alterations with Lupus Nephritis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:286-296. [PMID: 36157263 PMCID: PMC9386430 DOI: 10.1159/000524937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The familial clustering phenomenon together with environmental influences indicates the presence of a genetic and epigenetic predisposition to systematic lupus erythematosus (SLE). Interestingly, regarding lupus nephritis (LN), the worst complication of SLE, mortality, and morbidity were not consistent with SLE in relation to sexuality and ethnicity. SUMMARY Genetic and epigenetic alterations in LN include genes and noncoding RNAs that are involved in antigen-presenting, complements, immune cell infiltration, interferon pathways, and so on. Once genetic or epigenetic change occurs alone or simultaneously, they will promote the formation of immune complexes with autoantibodies that target various autoantigens, which results in inflammatory cytokines and autoreactive immune cells colonizing renal tissues and contributing to LN. KEY MESSAGES Making additional checks for immunopathology-related heredity and epigenetic factors may lead to a more holistic perspective of LN.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Hui Jin
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
19
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
20
|
Gkoutsias A, Makis A. The role of epigenetics in childhood autoimmune diseases with hematological manifestations. Pediatr Investig 2022; 6:36-46. [PMID: 35382418 PMCID: PMC8960932 DOI: 10.1002/ped4.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune diseases with hematological manifestations are often characterized by chronicity and relapses despite treatment, and the underlying pathogenetic mechanisms remain unknown. Epigenetic alterations play a vital role in the deregulation of immune tolerance and the development of autoimmune diseases. In recent years, study of epigenetic mechanisms in both adult and childhood autoimmune disorders has been seeking to explain the pathophysiology of these heterogeneous diseases and to elucidate the interaction between genetic and environmental factors. Various mechanisms, including DNA methylation, histone modifications (chromatin remodeling), and noncoding RNAs (ncRNAs), have been studied extensively in the context of autoimmune diseases. This paper summarizes the epigenetic patterns in some of the most common childhood autoimmune disorders with hematological manifestations, based on epigenetic studies in children with primary immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), and juvenile idiopathic arthritis (JIA). Research findings indicate that methylation changes in genes expressed on T cells, modifications at a variety of histone sites, and alterations in the expression of several ncRNAs are involved in the pathogenesis of these diseases. These mechanisms not only determine the development of these diseases but also affect the severity of the clinical presentation and biochemical markers. Further studies will provide new tools for the prevention and diagnosis of childhood autoimmune disorders, and possible novel treatment options.
Collapse
Affiliation(s)
- Athanasios Gkoutsias
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| | - Alexandros Makis
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| |
Collapse
|
21
|
Wang X, Zhang Q, Luo S, Zhang H, Lu Q, Long H. Advances in therapeutic targets-related study on systemic lupus erythematosus. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1267-1275. [PMID: 34911862 PMCID: PMC10929849 DOI: 10.11817/j.issn.1672-7347.2021.200056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and autoimmunity-mediated diffuse connective tissue disease. The mainstay of treatments for SLE mainly relies on corticosteroids and immunosuppressants, which have a series of unavoidable side effects. Therefore, it is of fundamental importance to search novel therapeutic targets for better treatment with favorable efficacy and minor side effects. Recent studies shed light on potential therapeutic targets for SLE, mainly covering the followings: B-cell/plasmocyte-related targets [B cell activating factor (BAFF), a proliferation-inducing ligand (APRIL), CD20, CD22, CD19/FcγRIIb, Bruton tyrosine kinase (Btk), and proteasome], T cell-related targets [calcineurin, mammalian target of rapamycin (mTOR), regulatory factor X1 (RFX1), and Rho kinase], macrophage-related targets (macrophage migration inhibitory factor), intracellular signaling molecules, cytokines (cereblon, histone deacetylase 6, Janus activated kinase/signal transducer and activator of transcription), co-stimulating factors (CD28/B7, CD40/CD154), IgE autoantibody, and gut microbiome. Among them, belimumab (a humanized monoclonal antibody against B-lymphocyte stimulator) and telitacicept (a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein) have been sequentially approved for the clinical treatment of SLE in China. A variety of new targeted-therapy drugs are in the Phase 2 or Phase 3 clinical trials,among which anifrolumab (a human monoclonal antibody against type I interferon receptor subunit 1) has completed a Phase 3 clinical trial with good responses achieved, although its incidence of herpes zoster is higher than that in the control group. The research progress in both molecular mechanisms and new drug development for different therapeutic targets have greatly promoted our better and in-depth understanding of the pathogenesis of SLE, and have also reflected the complexity and heterogeneity of the disease. Successful development and clinical application of more novel therapies would no doubt usher in a new era of individualized treatment for SLE in the future.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011.
| | - Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
| | - Shuaihantian Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
| | - Huilin Zhang
- Department of Nursing, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
- Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011.
| |
Collapse
|
22
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Zhuo Y, Yuan R, Chen X, He J, Chen Y, Zhang C, Sun K, Yang S, Liu Z, Gao H. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med 2021; 16:48. [PMID: 34183021 PMCID: PMC8240219 DOI: 10.1186/s13020-021-00458-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tanshinone I (TI) is a primary component of Salvia miltiorrhiza Bunge (Danshen), which confers a favorable role in a variety of pharmacological activities including cardiovascular protection. However, the exact mechanism of the cardiovascular protection activity of TI remains to be illustrated. In this study, the cardiovascular protective effect and its mechanism of TI were investigated. METHODS In this study, tert-butyl hydroperoxide (t-BHP)-stimulated H9c2 cells model was employed to investigate the protective effect in vitro. The cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) kit. The reactive-oxygen-species (ROS) level and mitochondrial membrane potential (MMP) were investigated by the flow cytometry and JC-1 assay, respectively. While in vivo experiment, the cardiovascular protective effect of TI was determined by using myocardial ischemia-reperfusion (MI/R) model including hematoxylin-eosin (H&E) staining assay and determination of superoxide dismutase (SOD) and malondialdehyde (MDA). Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release were detected by Enzyme-linked immunosorbent assay (ELISA). Receptor interacting protein kinase 1 (RIP1), receptor interacting protein kinase 3 (RIP3), receptor interacting protein kinase 3 (MLKL), protein kinase B (Akt), Nuclear factor erythroid 2 related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1) were determined by western blotting. RESULTS Our data demonstrated that TI pretreatment attenuated t-BHP and MI/R injury-induced necroptosis by inhibiting the expression of p-RIP1, p-RIP3, and p-MLKL. TI activated the Akt/Nrf2 pathway to promote the expression of antioxidant-related proteins such as phosphorylation of Akt, nuclear factor erythroid 2 related factor 2 (Nrf2), quinone oxidoreductase-1 (NQO-1) and heme oxygenase-1 (HO-1) expression in t-BHP-stimulated H9c2 cells. TI relieved oxidative stress by mitigating ROS generation and reversing MMP loss. In vivo experiment, TI made electrocardiograph (ECG) recovery better and lessened the degree of myocardial tissue damage. The counts of white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), and the release of TNF-α and IL-6 were reversed by TI treatment. SOD level was increased, while MDA level was decreased by TI treatment. CONCLUSION Collectively, our findings indicated that TI exerted cardiovascular protective activities in vitro and in vivo through suppressing RIP1/RIP3/MLKL and activating Akt/Nrf2 signaling pathways, which could be developed into a cardiovascular protective agent.
Collapse
Affiliation(s)
- Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China.
| |
Collapse
|
24
|
Maul RW, Catalina MD, Kumar V, Bachali P, Grammer AC, Wang S, Yang W, Hasni S, Ettinger R, Lipsky PE, Gearhart PJ. Transcriptome and IgH Repertoire Analyses Show That CD11c hi B Cells Are a Distinct Population With Similarity to B Cells Arising in Autoimmunity and Infection. Front Immunol 2021; 12:649458. [PMID: 33815408 PMCID: PMC8017342 DOI: 10.3389/fimmu.2021.649458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
A distinct B cell population marked by elevated CD11c expression is found in patients with systemic lupus erythematosus (SLE). Cells with a similar phenotype have been described during chronic infection, but variable gating strategies and nomenclature have led to uncertainty of their relationship to each other. We isolated CD11chi cells from peripheral blood and characterized them using transcriptome and IgH repertoire analyses. Gene expression data revealed the CD11chi IgD+ and IgD- subsets were highly similar to each other, but distinct from naive, memory, and plasma cell subsets. Although CD11chi B cells were enriched in some germinal center (GC) transcripts and expressed numerous negative regulators of B cell receptor (BCR) activation, they were distinct from GC B cells. Gene expression patterns from SLE CD11chi B cells were shared with other human diseases, but not with mouse age-associated B cells. IgH V-gene sequencing analysis showed IgD+ and IgD- CD11chi B cells had somatic hypermutation and were clonally related to each other and to conventional memory and plasma cells. However, the IgH repertoires expressed by the different subsets suggested that defects in negative selection during GC transit could contribute to autoimmunity. The results portray a pervasive B cell population that accumulates during autoimmunity and chronic infection and is refractory to BCR signaling.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michelle D Catalina
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Varsha Kumar
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Amrie C Grammer
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Shu Wang
- Viela Bio, Gaithersburg, MD, United States
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | | | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Wardowska A. m6A RNA Methylation in Systemic Autoimmune Diseases-A New Target for Epigenetic-Based Therapy? Pharmaceuticals (Basel) 2021; 14:ph14030218. [PMID: 33807762 PMCID: PMC8001529 DOI: 10.3390/ph14030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
The general background of autoimmune diseases is a combination of genetic, epigenetic and environmental factors, that lead to defective immune reactions. This erroneous immune cell activation results in an excessive production of autoantibodies and prolonged inflammation. During recent years epigenetic mechanisms have been extensively studied as potential culprits of autoreactivity. Alike DNA and proteins, also RNA molecules are subjected to an extensive repertoire of chemical modifications. N6-methyladenosine is the most prevalent form of internal mRNA modification in eukaryotic cells and attracts increasing attention due to its contribution to human health and disease. Even though m6A is confirmed as an essential player in immune response, little is known about its role in autoimmunity. Only few data have been published up to date in the field of RNA methylome. Moreover, only selected autoimmune diseases have been studied in respect of m6A role in their pathogenesis. In this review, I attempt to present all available research data regarding m6A alterations in autoimmune disorders and appraise its role as a potential target for epigenetic-based therapies.
Collapse
Affiliation(s)
- Anna Wardowska
- Department of Embryology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
26
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
27
|
Owen KA, Price A, Ainsworth H, Aidukaitis BN, Bachali P, Catalina MD, Dittman JM, Howard TD, Kingsmore KM, Labonte AC, Marion MC, Robl RD, Zimmerman KD, Langefeld CD, Grammer AC, Lipsky PE. Analysis of Trans-Ancestral SLE Risk Loci Identifies Unique Biologic Networks and Drug Targets in African and European Ancestries. Am J Hum Genet 2020; 107:864-881. [PMID: 33031749 PMCID: PMC7675009 DOI: 10.1016/j.ajhg.2020.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Black People
- Bortezomib/therapeutic use
- DNA, Intergenic/genetics
- DNA, Intergenic/immunology
- Enhancer Elements, Genetic
- Gene Expression
- Gene Ontology
- Gene Regulatory Networks
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Heterocyclic Compounds/therapeutic use
- Humans
- Interferons/genetics
- Interferons/immunology
- Isoquinolines/therapeutic use
- Lactams
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/ethnology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Molecular Sequence Annotation
- Polymorphism, Single Nucleotide
- Protein Array Analysis
- Quantitative Trait Loci
- Quantitative Trait, Heritable
- White People
Collapse
Affiliation(s)
| | - Andrew Price
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | | | | | | | | | | | | | | | | | | | - Robert D Robl
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | - Kip D Zimmerman
- Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
28
|
Catalina MD, Bachali P, Yeo AE, Geraci NS, Petri MA, Grammer AC, Lipsky PE. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight 2020; 5:140380. [PMID: 32759501 PMCID: PMC7455079 DOI: 10.1172/jci.insight.140380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gene expression signatures can stratify patients with heterogeneous diseases, such as systemic lupus erythematosus (SLE), yet understanding the contributions of ancestral background to this heterogeneity is not well understood. We hypothesized that ancestry would significantly influence gene expression signatures and measured 34 gene modules in 1566 SLE patients of African ancestry (AA), European ancestry (EA), or Native American ancestry (NAA). Healthy subject ancestry-specific gene expression provided the transcriptomic background upon which the SLE patient signatures were built. Although standard therapy affected every gene signature and significantly increased myeloid cell signatures, logistic regression analysis determined that ancestral background significantly changed 23 of 34 gene signatures. Additionally, the strongest association to gene expression changes was found with autoantibodies, and this also had etiology in ancestry: the AA predisposition to have both RNP and dsDNA autoantibodies compared with EA predisposition to have only anti-dsDNA. A machine learning approach was used to determine a gene signature characteristic to distinguish AA SLE and was most influenced by genes characteristic of the perturbed B cell axis in AA SLE patients. Transcriptional profiling of lupus patients and healthy controls reveals ancestry-related differences and transcriptional heterogeneity among lupus patients.
Collapse
Affiliation(s)
- Michelle D Catalina
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA.,EMD Serono Research & Development Institute, Billerica, Massachusetts, USA
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | | | - Nicholas S Geraci
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Michelle A Petri
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amrie C Grammer
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Akbaba TH, Sag E, Balci-Peynircioglu B, Ozen S. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases. Curr Rheumatol Rep 2020; 22:46. [DOI: 10.1007/s11926-020-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Yang J, Li D, Zhou J. Histone Deacetylase 6 as a Therapeutic Target in B cell-associated Hematological Malignancies. Front Pharmacol 2020; 11:971. [PMID: 32676030 PMCID: PMC7333221 DOI: 10.3389/fphar.2020.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes play a critical role in humoral immunity. Abnormal B cell development and function cause a variety of hematological malignancies such as myeloma, B cell lymphoma, and leukemia. Histone deacetylase 6 (HDAC6) inhibitors alone or in combination with other drugs have shown efficacy in several hematological malignancies, including those resistant to targeted therapies. Mechanistically, HDAC6 inhibitors promote malignant tumor cell apoptosis by inhibiting protein degradation, reinvigorating anti-tumor immunity, and inhibiting cell survival signaling pathways. Due to their specificity, HDAC6 inhibitors represent a very promising and feasible new development pipeline for high-efficacy drugs with limited side effects. This article reviews recent progress in the mechanisms of action of HDAC6 inhibitors for the treatment of B cell-associated hematological malignancies, such as multiple myeloma and B cell non-Hodgkin lymphoma, which are often resistant to targeted therapies.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
31
|
Gupta SS, Wang J, Chen M. Metabolic Reprogramming in CD8 + T Cells During Acute Viral Infections. Front Immunol 2020; 11:1013. [PMID: 32670270 PMCID: PMC7326043 DOI: 10.3389/fimmu.2020.01013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/28/2020] [Indexed: 01/21/2023] Open
Abstract
CD8+ T cells represent one of the most versatile immune cells critical for clearing away viral infections. Due to their important role, CD8+ T cell activation and memory formation during viral infection have been the focus of several studies recently. Although CD8+ T cell activation and memory formation have been associated with metabolic alterations, the molecular understanding behind T cells choosing one type of metabolism over others based on their differentiation stage is still unclear. This review focuses on how the signaling molecules and cellular processes that are characteristic of CD8+ T cell activation and memory formation also play a critical role in selecting specific type of metabolism during viral infections. In addition, we will summarize the epigenetic factors regulating these metabolic alterations.
Collapse
Affiliation(s)
- Shubhranshu S. Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 2019; 110:102359. [PMID: 31806421 DOI: 10.1016/j.jaut.2019.102359] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.
Collapse
|