1
|
Ali YB, Hasan NM, El-Maadawy EA, Bassyouni IH, El-Shahat M, Talaat RM. Association between IL-6, miRNA-146a, MALAT1 genetic polymorphisms and risk of rheumatoid arthritis. Per Med 2024; 21:277-294. [PMID: 39263956 DOI: 10.1080/17410541.2024.2393072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 09/13/2024]
Abstract
Aim: This study aimed to investigate the associations between single nucleotide polymorphisms (SNPs) of IL-6 (-174G/C), microRNA146a (rs2910164C/G) and MALAT1 (rs619586A/G) and susceptibility to rheumatoid arthritis (RA) in Egyptians.Methods: SNPs were genotyped in 101 RA patients and 104 controls. Expression levels were evaluated either by Enzyme-linked immunosorbent assay (ELISA) for IL-6 or quantitative real-time PCR (qRT-PCR) for miR-146a and MALAT1.Results: IL-6-174 GC (OR = 3.422) genotype, IL-6-174 C allele (OR = 2.565), miR-146a (rs2910164) CG (OR = 2.190) and MALAT1 (rs619586) AA (OR = 4.125) genotypes and A allele (OR = 6.122) could be considered as risk factors for RA. An increase in the expression of IL-6, miR-146a and MALAT1 was detected in RA patients, which was independent of any SNP.Conclusion: SNPs of IL-6, miR-146a and MALAT1were linked to RA predisposition in Egyptians.
Collapse
Affiliation(s)
- Yasser Bm Ali
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Noura Ma Hasan
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Iman H Bassyouni
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 32958, Egypt
| | - Mohamed El-Shahat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| |
Collapse
|
2
|
Zhang W, Su Y, Yue G, Zhao L, Li H, Jia M, Wang Y, Liu D, Wang H, Gao Y. Correlations of SDF-1ɑ and XRCC1 gene polymorphisms with the risk of renal cancer development and bioinformatics studies of SDF-1α and XRCC1 and the prognosis of renal cancer. Sci Rep 2024; 14:3367. [PMID: 38337001 PMCID: PMC10858090 DOI: 10.1038/s41598-024-53808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
To study the relationships between stromal cell-derived factor-1 (SDF-1ɑ) and renal cell carcinoma (RCC) susceptibility and the presence of single nucleotide polymorphisms in the human X-ray cross-complementary repair gene (XRCC1). Compare SDF-1 based on RCC related data in the TCGA database α, The expression difference of XRCC1 between RCC tissue and normal tissue; Collect 166 newly diagnosed RCC cases and 166 healthy individuals who underwent physical examinations during the same period, and detect genotype using iMLDR method. The results The rs1801157 locus (C:T) of the SDF-1α gene was not significantly associated with the pathohistological type, the rs1799782 locus (G:A) of the XRCC1 gene was associated with the pathohistological type of RCC, and there were interactions between rs1799782 and smoking, alcohol consumption, pesticide exposure, hair dye, and urine holding. The rs1799782 locus of the XRCC1 gene may be a key factor in the pathogenesis and pathological development of RCC. High SDF-1ɑ expression is a protective factor for the overall survival of patients with RCC, and SDF-1ɑ and XRCC1 may be important for the treatment of RCC.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yubo Su
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Genquan Yue
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lingyan Zhao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Hailing Li
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Min Jia
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yuqi Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Dongyang Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Haisheng Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| | - Yumin Gao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
3
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Chang WW, Zhang L, Wen LY, Huang Q, Tong X, Tao YJ, Chen GM. Association of tag single nucleotide polymorphisms (SNPs) at lncRNA MALAT1 with type 2 diabetes mellitus susceptibility in the Chinese Han population: A case-control study. Gene X 2023; 851:147008. [DOI: 10.1016/j.gene.2022.147008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
|
6
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
7
|
Wei YB, Liang DM, Zhang ML, Li YJ, Sun HF, Wang Q, Liang Y, Li YM, Wang RR, Yang ZL, Wang P, Xie SY. WFDC21P promotes triple-negative breast cancer proliferation and migration through WFDC21P/miR-628/SMAD3 axis. Front Oncol 2022; 12:1032850. [PMID: 36387210 PMCID: PMC9659817 DOI: 10.3389/fonc.2022.1032850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 08/26/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.
Collapse
Affiliation(s)
- Yu-Bo Wei
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong-Min Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Mei-Ling Zhang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Qin Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yan-Mei Li
- Department of Immune Rheumatism, Yantaishan Hospital, Yantai, Shandong, China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhen-Lin Yang
- Department of Breast and Thyroid Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Epidemiology, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Li HM, Wang LJ, Tang F, Pan HF, Zhang TP. Association Between Genetic Polymorphisms of lncRNA NEAT1 and Pulmonary Tuberculosis Risk, Clinical Manifestations in a Chinese Population. Infect Drug Resist 2022; 15:2481-2489. [PMID: 35586561 PMCID: PMC9109893 DOI: 10.2147/idr.s354863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Recent studies have shown that abnormal expression of lncRNA NEAT1 is associated with the progression of pulmonary tuberculosis (PTB). The aim of our study was to analyze the relationship between single nucleotide polymorphisms (SNPs) of NEAT1 gene and susceptibility to PTB. Methods Four SNPs (rs2239895, rs3741384, rs3825071, rs512715) in NEAT1 gene were genotyped in 479 patients with PTB and 476 controls by improved multiple ligase detection reaction (iMLDR) in a Chinese population. Results We found no significant differences in allele and genotype frequencies of NEAT1 gene rs2239895, rs3741384, rs3825071, rs512715 between PTB patients and controls (all P > 0.05). There was no statistically significant association between genotype frequency distribution of dominant model, as well as recessive model, and genetic susceptibility to PTB patients (all P > 0.05). The TT genotype, T allele frequencies of rs3825071 were significantly increased in sputum smear-positive PTB patients when compared to sputum smear-negative PTB patients (P = 0.010, P = 0.003, respectively). Haplotype analysis shown that NEAT1 haplotype frequency was not associated with PTB susceptibility. Conclusion NEAT1 gene polymorphisms were not associated with the risk of PTB in Chinese population, and rs3825071 polymorphism might be related to sputum smear-positive in PTB patients.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People’s Republic of China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Fei Tang
- Anhui Chest Hospital (Anhui Provincial TB Institute), Hefei, Anhui, People’s Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People’s Republic of China
- Hai-Feng Pan, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People’s Republic of China, Email
| | - Tian-Ping Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Tian-Ping Zhang, The First Affiliated Hospital of USTC, 17 Lujiang Road, Hefei, Anhui, 230001, People’s Republic of China, Email
| |
Collapse
|
9
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
11
|
Emerging Role of LncRNAs in Autoimmune Lupus. Inflammation 2022; 45:937-948. [DOI: 10.1007/s10753-021-01607-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
|
12
|
Mohammed SR, Abdelaleem OO, Ahmed FA, Abdelaziz AA, Hussein HA, Eid HM, Kamal M, Ezzat MA, Ali MA. Expression of lncRNAs NEAT1 and lnc-DC in Serum From Patients With Behçet’s Disease Can Be Used as Predictors of Disease. Front Mol Biosci 2022; 8:797689. [PMID: 35127819 PMCID: PMC8809491 DOI: 10.3389/fmolb.2021.797689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Behçet’s disease (BD) is a chronic autoimmune disease. The early diagnosis of BD is very important to avoid serious and/or fatal complications such as eye damage, severe neurological involvement, and large vessel occlusion. New, sensitive biomarkers would aid in rapid diagnosis, the monitoring of disease activity, and the response to treatment. Methods: This study’s aim is to identify two immune system-related BD biomarkers. We measured long non-coding RNAs (lncRNAs) NEAT1 (nuclear-enriched abundant transcript 1), and lnc-DC (lncRNA in dendritic cells) in serum by real-time polymerase chain reaction (RT-PCR) in 52 BD patients and 52 controls. We analyzed the association between NEAT1 and lnc-DC and the clinical parameters of BD. Receiver operating characteristic (ROC) curve analysis was performed to explore the diagnostic performance of the studied genes. Results: Compared to controls, the significant upregulation of NEAT1 {median [interquartile range (IQR)] = 1.68 (0.38–7.7), p < 0.0001} and downregulation of lnc-DC [median (IQR) = 0.2 (0.12–1.39), p = 0.03] were detected in the sera collected from BD patients. Higher serum expression levels of NEAT1 and lnc-DC were significantly associated with the following clinical presentations: cutaneous lesions, vascular manifestations, articular manifestations, neurological manifestations, and higher disease activity score. Also, high NEAT1 levels were significantly associated with a negative pathergy test, while higher lnc-DC was significantly associated with a positive family history. ROC curves showed that NEAT1 and lnc-DC levels in serum could be used as predictors of BD with high specificity and fair sensitivity. NEAT1 had an area under the curve (AUC) of 0.692 (95% CI: 0.591–0.794, p = 0.001), and lnc-DC had an AUC of 0.615 (95% CI: 0.508–0.723, p = 0.043). Conclusion: Serum lncRNAs NEAT1 and lnc-DC are biomarkers for BD.
Collapse
Affiliation(s)
- Shereen Rashad Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O. Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Fatma A. Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ahmed Ali Abdelaziz
- Departments of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Hanaa M. Eid
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Kamal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mostafa Ahmed Ezzat
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa A. Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- *Correspondence: Marwa A. Ali, ,
| |
Collapse
|
13
|
Zhang D, Xue J, Peng F. The regulatory activities of MALAT1 in the development of bone and cartilage diseases. Front Endocrinol (Lausanne) 2022; 13:1054827. [PMID: 36452326 PMCID: PMC9701821 DOI: 10.3389/fendo.2022.1054827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been comprehensively implicated in various cellular functions by mediating transcriptional or post-transcriptional activities. MALAT1 is involved in the differentiation, proliferation, and apoptosis of multiple cell lines, including BMSCs, osteoblasts, osteoclasts, and chondrocytes. Interestingly, MALAT1 may interact with RNAs or proteins, regulating cellular processes. Recently, MALAT1 has been reported to be associated with the development of bone and cartilage diseases by orchestrating the signaling network. The involvement of MALAT1 in the pathological development of bone and cartilage diseases makes it available to be a potential biomarker for clinical diagnosis or prognosis. Although the potential mechanisms of MALAT1 in mediating the cellular processes of bone and cartilage diseases are still needed for further elucidation, MALAT1 shows great promise for drug development.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fang Peng
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Fang Peng,
| |
Collapse
|
14
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
15
|
Hernández-Bello J, Baños-Hernández CJ, Muñoz-Valle JF. Commentary: Long Non-Coding RNA Gene Polymorphisms and Their Expression Levels in Patients With Rheumatoid Arthritis. Front Immunol 2021; 12:801266. [PMID: 34956240 PMCID: PMC8695717 DOI: 10.3389/fimmu.2021.801266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jorge Hernández-Bello
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Christian Johana Baños-Hernández
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
16
|
Sun Q, Chong F, Jiang X, Wang Y, Xu K, Zou Y, Song C. Association study of SNPs in LncRNA CDKN2B-AS1 with breast cancer susceptibility in Chinese Han population. Int J Biochem Cell Biol 2021; 143:106139. [PMID: 34954153 DOI: 10.1016/j.biocel.2021.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The study aimed to analysis the genetic variation of the lncRNA CDKN2B-AS1 SNPs, and explored the regulation of SNPs on the invasion and metastasis of Breast cancer (BC). METHODS The SNPs (Single Nucleotide Polymorphisms) was screened for genotyping among 504 Chinese Han patients and 505 controls, which were frequency-matched for age ( ± 2 years). Logistic analysis was to explore the relationship between SNPs and the BC risk. Interactions between SNPs and reproductive factors was explored using the multifactor dimensionality reduction (MDR) method. qRT-PCR was conducted to detect the CDKN2B-AS1 expression in plasma of different rs10965215 and rs2518723 genotypes. The effect of rs10965215 A>G mutation on the binding ability of CDKN2B-AS1 and miR-4440 was verified by dual luciferase experiment. CCK-8, scratch and Transwell experiment were performed to explore the effect of miR-4440 over-expression on BC cell proliferation, migration and invasion. RESULTS A total of 13 SNP was screened. The individuals with SNPs rs2518723C>T, rs10965215 A>G, rs77792598C>G, rs4977753 T > C, rs75917766C>T and rs78545330C>G mutations might increase the BC risk. MDR results revealed that individuals with rs10965215 G genotype who age at menarche≥ 13 and regardless of the number of abortion< 2 or ≥ 2 had a higher risk of BC. The relative expression of CDKN2B-AS1 in rs10965215 homozygous wild AA genotype (8.88 ± 3.43) was lower than heterozygous GA (11.08 ± 2.90) and homozygous mutant GG genotype (11.31 ± 2.90). When rs10965215 wild A genotype was carried, there was an interaction between CDKN2B-AS1 and miR-4440. The CCK-8, Transwell, and scratch experiment were all found that miR-4440 over-expression might enhance the proliferation, invasion and migration of BC cells. - CONCLUSION CDKN2B-AS1 gene polymorphism might be related to the susceptibility of BC, CDKN2B-AS1 rs10965215 A/G genotype probably affect the proliferation, invasion and migration of BC cells by modulating the interactions with of miR-4440.
Collapse
Affiliation(s)
- Qiuyu Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Feifei Chong
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaoru Jiang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yanli Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Kedi Xu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yuanlin Zou
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
17
|
Zhang TP, Li HM, Huang Q, Wang L, Li XM. Vitamin D Metabolic Pathway Genes Polymorphisms and Their Methylation Levels in Association With Rheumatoid Arthritis. Front Immunol 2021; 12:731565. [PMID: 34925313 PMCID: PMC8677352 DOI: 10.3389/fimmu.2021.731565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
Abnormal vitamin D metabolism is involved in the pathogenesis of rheumatoid arthritis (RA). In this study, we evaluated the association of single nucleotide polymorphisms (SNPs) and methylation levels in vitamin D metabolic pathway genes with RA susceptibility. Ten SNPs in vitamin D metabolic pathway genes (CYP2R1, CYP24A1, VDR, CYP27B1) were genotyped in 477 RA patients and 496 controls by improved multiple ligase detection reaction (iMLDR). The methylation levels of the promoter regions of these genes were detected in 122 RA patients and 123 controls using Illumina Hiseq platform. We found that the CYP2R1 rs1993116 GA genotype, CYP27B1 rs4646536 GA genotype, rs4646536 A allele frequencies were significantly increased in RA patients when compared to controls. The decreased risk of rs1993116, rs4646536 was found under the dominant mode in RA patients. However, no significant association was found between CYP2R1 rs7936142, rs12794714, CYP24A1 rs2762934, rs6068816, rs2296239, rs2296241, VDR rs11574129, rs3847987 polymorphism, and RA susceptibility. The VDR, CYP27B1 methylation levels in RA patients were significantly lower than those in controls, while CYP2R1, CYP24A1 methylation levels were not associated with RA. There were no statistical associations between CYP2R1, CYP24A1, VDR, CYP27B1 methylation levels and their respective genotype in RA patients. In addition, plasma 25OHD level in RA patients was significantly lower than that in healthy controls. In summary, our results showed that CYP2R1, CYP27B1 genetic variations were associated with the genetic background of RA, while altered VDR, CYP27B1 methylation levels were related to the risk of RA.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Qian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Li Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Jiang H, Fan C, Lu Y, Cui X, Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR‑17‑5p/PDK1 axis to inhibit the proliferation of fibroblast‑like synoviocytes in rats with rheumatoid arthritis. Int J Mol Med 2021; 48:130. [PMID: 34013364 PMCID: PMC8136124 DOI: 10.3892/ijmm.2021.4963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have confirmed that astragaloside (AST) exerts a positive effect on alleviating synovial and joint injury in rheumatoid arthritis (RA). However, the precise mechanisms through which AST acts in the treatment of RA remain unclear. Long non-coding RNA (lncRNA) LOC100912373 was identified as a key gene related to RA and has been proven to interact with miR-17-5p, in order to regulate the pyruvate dehydrogenase kinase 1 and protein kinase B axis (PDK1/AKT axis). The present study aimed to determine whether AST may treat RA through the interaction between lncRNA LOC100912373 and the miR-17-5p/PDK1 axis. MTT assays and flow cytometry were used to detect the proliferation and cell cycle progression of AST-treated fibroblast-like synoviocytes (FLSs). The expression of lncRNA LOC100912373 and miR-17-5p, as well as relative the mRNA expression of the PDK1 and AKT genes following AST intervention was detected by reverse transcription-quantitative PCR (RT-qPCR), immunofluorescence and western blot analysis. The results revealed that AST inhibited FLS proliferation, reduced lncRNA LOC100912373 expression levels, increased miR-17-5p expression levels, and decreased the PDK1 and p-AKT expression levels. Additionally, consecutive rescue experiments revealed that AST counteracted the effects of lncRNA LOC100912373 overexpression on FLS proliferation and cell cycle progression. On the whole, the present study demonstrates that AST inhibits FLS proliferation by regulating the expression of lncRNA LOC100912373 and the miR-17-5p/PDK1 axis.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yunqi Lu
- Department of Biochemistry, Drew University, Madison, NJ 07940, USA
| | - Xiaoya Cui
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
19
|
Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 2021; 18:619-632. [PMID: 33094664 PMCID: PMC8078528 DOI: 10.1080/15476286.2020.1838783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune system is responsible for generating immunological response and immunological memory. Regulation of adaptive immunity including B cell and T cell biology was mainly understood from the protein and microRNA perspective. However, long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs (ncRNAs) that influence key factors in lymphocyte biology such as NOTCH, PAX5, MYC and EZH2. LncRNAs were described to modulate lymphocyte activation by regulating pathways such as NFAT, NFκB, MYC, interferon and TCR/BCR signalling (NRON, NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-AS1, TH2-LCR). Here we review lncRNA involvement in adaptive immunity and the implications for autoimmune diseases (multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis) and T/B cell leukaemias and lymphomas (CLL, MCL, DLBCL, T-ALL). It is becoming clear that lncRNAs are important in adaptive immune response and provide new insights into its orchestration.
Collapse
Affiliation(s)
- Pedro Faria Zeni
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Wu CY, Yang HY, Luo SF, Lai JH. From Rheumatoid Factor to Anti-Citrullinated Protein Antibodies and Anti-Carbamylated Protein Antibodies for Diagnosis and Prognosis Prediction in Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22020686. [PMID: 33445768 PMCID: PMC7828258 DOI: 10.3390/ijms22020686] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mainly involving synovial inflammation and articular bone destruction. RA is a heterogeneous disease with diverse clinical presentations, prognoses and therapeutic responses. Following the first discovery of rheumatoid factors (RFs) 80 years ago, the identification of both anti-citrullinated protein antibodies (ACPAs) and anti-carbamylated protein antibodies (anti-CarP Abs) has greatly facilitated approaches toward RA, especially in the fields of early diagnosis and prognosis prediction of the disease. Although these antibodies share many common features and can function synergistically to promote disease progression, they differ mechanistically and have unique clinical relevance. Specifically, these three RA associating auto-antibodies (autoAbs) all precede the development of RA by years. However, while the current evidence suggests a synergic effect of RF and ACPA in predicting the development of RA and an erosive phenotype, controversies exist regarding the additive value of anti-CarP Abs. In the present review, we critically summarize the characteristics of these autoantibodies and focus on their distinct clinical applications in the early identification, clinical manifestations and prognosis prediction of RA. With the advancement of treatment options in the era of biologics, we also discuss the relevance of these autoantibodies in association with RA patient response to therapy.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
22
|
Peripheral expression of ANRIL is increased in axial spondyloarthritis patients, and particularly in females. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Ayoub SE, Hefzy EM, Abd El-Hmid RG, Ahmed NA, Khalefa AA, Ali DY, Ali MA. Analysis of the expression profile of long non-coding RNAs MALAT1 and THRIL in children with immune thrombocytopenia. IUBMB Life 2020; 72:1941-1950. [PMID: 32563217 DOI: 10.1002/iub.2310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Pediatric immune thrombocytopenia (ITP) is an autoimmune disease; whose etiology is not exactly understood and seems to be highly multifactorial. Long non-coding RNAs (lncRNAs) are key regulators of different actions, which contribute to the development of many autoimmune diseases. To gain a further understanding, we estimated the relative expression of lncRNAs Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor-α (TNF-α) and heterogeneous nuclear ribonucleoprotein L (hnRNPL) immune-regulatory lncRNA (THRIL) in pediatric ITP. METHODS In this case-control study, analysis of the expression profiles of these lncRNAs in blood samples from children with ITP and healthy controls (HCs) using quantitative real-time PCR was done. The association of MALAT1 and THRIL with ITP clinical features and their potential usage as non-invasive circulating biomarkers for ITP diagnosis was also evaluated. The receiver operating characteristic curve was constructed, and an area under the curve was analyzed. RESULTS Both lncRNAs MALAT1 and THRIL were significantly upregulated in ITP patients in comparison to HCs ( p < .0001 and = .001 respectively). In addition, there was a positive significant correlation between the expression level of both biomarkers among patients (r = 0.745, p < .0001). At cutoff points of 1.17 and 1.27 for lncRNAs MALAT1and THRIL, respectively, both biomarkers had an excellent specificity (100% for both) and fair sensitivity (63.6 and 73.3% for lncRNAs MALAT1and THRIL, respectively). Improvement of biomarkers specificity was obtained by evaluation of the combined expression of both biomarkers. Serum lncRNAs MALAT1 and THRIL could be used as potential biomarkers in differentiating childhood ITP patients and HCs.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| | - Enas M Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Rehab G Abd El-Hmid
- Department of Pediatric Medicine, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, El Zagazig, Egypt
| | - Abeer A Khalefa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Doaa Y Ali
- Department of Clinical Pathology, Fayoum University, Al Fayoum, Egypt
| | - Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
24
|
Wang Y, Gu XX, Huang HT, Liu CH, Wei YS. A genetic variant in the promoter of lncRNA MALAT1 is related to susceptibility of ischemic stroke. Lipids Health Dis 2020; 19:57. [PMID: 32238151 PMCID: PMC7110643 DOI: 10.1186/s12944-020-01236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) was aberrantly expressed in diverse diseases. Particularly in ischemic stroke (IS), the abnormal expression of MALAT1 played important roles including promotion of angiogenesis, inhibition of apoptosis and inflammation and regulation of autophagy. However, the effects of genetic variation (single nucleotide polymorphisms, SNPs) of MALAT1 on IS have rarely been explored. This study aimed to investigate whether SNPs in promoter of MALAT1 were associated with the susceptibility to IS. Methods A total of 316 IS patients and 320 age-, gender-, and ethnicity-matched controls were enrolled in this study. Four polymorphisms in the promoter of MALAT1 (i.e., rs600231, rs1194338, rs4102217, and rs591291) were genotyped by using a custom-by-design 48-Plex SNPscan kit. Results The rs1194338 C > A variant in the promoter of MALAT1 was associated with the risk of IS (AC vs. CC: adjusted OR = 0.623, 95% CI, 0.417–0.932, P = 0.021; AA vs. CC: adjusted OR = 0.474, 95% CI, 0.226–0.991, P = 0.047; Dominant model: adjusted OR = 0.596, 95% CI, 0.406–0.874, P = 0.008; A vs. C adjusted OR = 0.658, 95% CI, 0.487–0.890, P = 0.007). The haplotype analysis showed that rs600231-rs1194338-rs4102217-rs591291 (A-C-G-C) had a 1.3-fold increased risk of IS (95% CI, 1.029–1.644, P = 0.027). Logistic regression analysis identified some independent impact factors for IS including rs1194338 AC/AA, TC, TG, HDL-C, LDL-C, Apo-A1, Apo-B and NEFA (P < 0.05). Conclusions These results suggest that the rs1194338 AC/AA genotypes may be a protective factor for IS.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Lequn Road No.15, Guilin, 541001, Guangxi Province, China.,Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xi-Xi Gu
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Lequn Road No.15, Guilin, 541001, Guangxi Province, China
| | - Hua-Tuo Huang
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chun-Hong Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ye-Sheng Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Lequn Road No.15, Guilin, 541001, Guangxi Province, China. .,Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| |
Collapse
|