1
|
Li T, Wang Q, Rui C, Ren L, Dai M, Bi Y, Yang Y. Targeted isolation and AI-based analysis of edible fungal polysaccharides: Emphasizing tumor immunological mechanisms and future prospects as mycomedicines. Int J Biol Macromol 2025; 284:138089. [PMID: 39603293 DOI: 10.1016/j.ijbiomac.2024.138089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities such as antioxidant, immune-modulatory, anti-inflammatory, and anti-obesity properties. In cancer therapy, members of this family show promise in inhibiting tumor growth and metastasis through mechanisms like apoptosis induction and modulation of the immune system. This review provides a detailed examination of contemporary techniques for the targeted isolation and structural elucidation of edible fungal polysaccharides. Additionally, the review highlights the application of advanced artificial intelligence (AI) methodologies to facilitate efficient and accurate structural analysis of these polysaccharides. It also explores their interactions with immune cells within the tumor microenvironment and their role in modulating gut microbiota, which can enhance overall immune function and potentially reduce cancer risks. Clinical studies further demonstrate their efficacy in various cancer treatments. Overall, edible fungal polysaccharides represent a promising frontier in cancer therapy, leveraging their natural origins and minimal toxicity to offer novel strategies for comprehensive cancer management.
Collapse
Affiliation(s)
- Tingting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China; College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qin Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuang Rui
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lu Ren
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mingcheng Dai
- Clinical Medical Institute, Harbin Medical University, Harbin, China
| | - Yong Bi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; National Engineering Research Center of Edible Fungi; Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
2
|
Jasionowska J, Gałecki P, Kalinka E, Skiba A, Szemraj J, Turska E, Talarowska M. Level of selected exponents of the kynurenine pathway in patients diagnosed with depression and selected cancers. J Psychiatr Res 2024; 179:175-181. [PMID: 39303569 DOI: 10.1016/j.jpsychires.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Altered immune system activity is one of the common pathomechanisms of depressive disorders and cancer. The aim of this study is to evaluate level of selected elements of the kynurenine pathway in groups of depressed and oncological patients. The study included 156 individuals, aged 19-65 years (M = 43.46, SD = 13.99), divided into three groups, namely depressive disorders (DD), oncology patients (OG), and a comparison group of healthy subjects (CG). A sociodemographic questionnaire and the Hamilton Depression Rating Scale (HDRS) were used in the study to assess the intensity of depressive symptoms. Level of TDO2, L-KYN, HK, AA and QA was significantly higher in patients from OG and DD groups than in the comparison group. TDO2 level in the OG group was positively correlated with the severity of depressive symptoms. When the OG and DD groups were analyzed together, level of TDO2, 3-HKYN, AA, QA correlated positively with the severity of depressive symptoms. Thus, kynurenine pathway might play an integral role in the pathogenesis of depression.
Collapse
Affiliation(s)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Aleksandra Skiba
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Turska
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
4
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
5
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
6
|
Krupa A, Łebkowska A, Kondraciuk M, Kaminski KA, Kowalska I. Alteration in kynurenine pathway metabolites in young women with autoimmune thyroiditis. Sci Rep 2024; 14:6851. [PMID: 38514790 PMCID: PMC10957988 DOI: 10.1038/s41598-024-57154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
The kynurenine pathway (KP) of tryptophan degradation includes several compounds that reveal immunomodulatory properties. The present study aimed to investigate the alteration in KP metabolites in young women with autoimmune thyroiditis (AIT) and their associations with thyroid function. The thyroid function tests, antithyroid antibodies measurement and ultrasonography of the thyroid gland have been performed in 57 young women with AIT and 38 age-matched healthy controls. The serum levels of tryptophan, kynurenine (KYN) and its metabolites were determined, and the activity of KP enzymes was calculated indirectly as product-to-substrate ratios. KP was activated and dysregulated in AIT, along with significantly elevated levels of KYN and anthranilic acid (AA), at the expense of the reduction of kynurenic acid (KYNA), which was reflected by the increase in the AA/KYNA ratio (p < 0.001). In univariate and multiple regression analyses, peripheral deiodinase (SPINA-GD) activity in AIT was positively associated with KYNA, AA, and quinolinic acid (QA). The merger of AA, AA/KYNA ratio, QA and SPINA-GD exhibited the highest sensitivity and specificity to predict AIT (p < 0.001) in receiver operating characteristic (ROC) analysis. In conclusion, the serum KYN metabolite profile is dysregulated in young women with AIT and could serve as a new predictor of AIT risk.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Białystok, Poland.
| | - Agnieszka Łebkowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Białystok, Poland
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Waszyngtona 15B, 15-269, Białystok, Poland
| | - Karol Adam Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Waszyngtona 15B, 15-269, Białystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Białystok, Poland
| |
Collapse
|
7
|
Nagy-Grócz G, Spekker E, Vécsei L. Kynurenines, Neuronal Excitotoxicity, and Mitochondrial Oxidative Stress: Role of the Intestinal Flora. Int J Mol Sci 2024; 25:1698. [PMID: 38338981 PMCID: PMC10855176 DOI: 10.3390/ijms25031698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal flora has been the focus of numerous investigations recently, with inquiries not just into the gastrointestinal aspects but also the pathomechanism of other diseases such as nervous system disorders and mitochondrial diseases. Mitochondrial disorders are the most common type of inheritable metabolic illness caused by mutations of mitochondrial and nuclear DNA. Despite the intensive research, its diagnosis is usually difficult, and unfortunately, treating it challenges physicians. Metabolites of the kynurenine pathway are linked to many disorders, such as depression, schizophrenia, migraine, and also diseases associated with impaired mitochondrial function. The kynurenine pathway includes many substances, for instance kynurenic acid and quinolinic acid. In this review, we would like to show a possible link between the metabolites of the kynurenine pathway and mitochondrial stress in the context of intestinal flora. Furthermore, we summarize the possible markers of and future therapeutic options for the kynurenine pathway in excitotoxicity and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | | | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Chen Y, Yang J, Jin H, Wen W, Xu Y, Zhang X, Wang Y. HtrA3: a promising prognostic biomarker and therapeutic target for head and neck squamous cell carcinoma. PeerJ 2023; 11:e16237. [PMID: 37842043 PMCID: PMC10573296 DOI: 10.7717/peerj.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The dysregulation of the human high-temperature requirement A (HtrA) family of serine proteases is associated with many malignancies. However, there are few reports on HtrAs in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the expression, prognostic value, and biological functions of HtrAs in HNSCC. Methods The RNA-sequencing data and clinical data of HNSCC were downloaded from The Cancer Genome Atlas (TCGA) database. The GSE30784 and GSE31056 datasets from the Gene Expression Omnibus (GEO) database were used for further verification. This study explored the differential expression of HtrAs and assessed their potential impact on the prognosis of HNSCC patients using a survival module. Correlations between clinical characteristics and HtrA expression levels were then explored using a Wilcoxon rank sum test. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed using "clusterProfile" in the R software. A Pearson/Spearman correlation test was applied to analyze the relationship between HtrAs and immune infiltration level/checkpoint genes. Validation of HtrA expression levels were carried out by RT-PCR and western blot in human squamous carcinoma cell lines (Fadu and Cal-27) and human non-tumorigenic bronchial epithelium cells (BEAS-2B). Finally, through cell transfection, CCK-8, Ki-67 immunofluorescence, and flow cytometry assays, the effect of HtrA3 knockdown on the malignant biological behavior of HNSCC cells was explored. Results The gene expression levels of HtrAs were significantly upregulated and associated with patient age, TNM stage, clinical stage, and TP53 mutation status in the TCGA-HNSCC cohort. High expressions of HtrA1/3 were associated with shorter overall survival, shorter progress-free interval, and lower disease-specific survival in HNSCC. A nomogram for HtrAs was constructed and validated. HtrA-related genes were significantly enriched in the immune response and cell apoptosis pathway. In addition, the expression of HtrAs showed significant correlations with B cells, M cells, DC cell infiltration, and immune infiltration checkpoint (CD276, TNFRSF14). Validation of HtrA expression was carried out by RT-PCR and western blot. Results of in vitro experiments indicated that HtrA3 gene knockdown inhibits the proliferation of FaDu and Cal-27 cells while concurrently promoting apoptosis. Conclusions HtrA3 shows significant potential as both a prognostic marker and a promising therapeutic target for HNSCC, highlighting its relevance and importance in future research and potential clinical applications.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Weiwei Wen
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou, China
| | - Ying Xu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| |
Collapse
|
9
|
Kamel R, Baetz D, Gueguen N, Lebeau L, Barbelivien A, Guihot AL, Allawa L, Gallet J, Beaumont J, Ovize M, Henrion D, Reynier P, Mirebeau-Prunier D, Prunier F, Tamareille S. Kynurenic Acid: A Novel Player in Cardioprotection against Myocardial Ischemia/Reperfusion Injuries. Pharmaceuticals (Basel) 2023; 16:1381. [PMID: 37895852 PMCID: PMC10610491 DOI: 10.3390/ph16101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.
Collapse
Affiliation(s)
- Rima Kamel
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Delphine Baetz
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
| | - Naïg Gueguen
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Lucie Lebeau
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Agnès Barbelivien
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Anne-Laure Guihot
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Louwana Allawa
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Jean Gallet
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Justine Beaumont
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Michel Ovize
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
- Service d’Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69000 Lyon, France
| | - Daniel Henrion
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Pascal Reynier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Delphine Mirebeau-Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Fabrice Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Sophie Tamareille
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| |
Collapse
|
10
|
Mohan Chandra Sekhar Jaggarapu M, Thumsi A, Nile R, D Ridenour B, Khodaei T, P Suresh A, Esrafili A, Jin K, P Acharya A. Orally delivered 2D covalent organic frameworks releasing kynurenine generate anti-inflammatory T cell responses in collagen induced arthritis mouse model. Biomaterials 2023; 300:122204. [PMID: 37329683 DOI: 10.1016/j.biomaterials.2023.122204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) crystalline biomaterials have great potential for drug delivery since they can load large amounts of small molecules (e.g. metabolites) and release them in a controlled manner, as compared to their amorphous counterparts. Herein, we screened different metabolites for their ability to modulate T cell responses in vitro and identified Kynurenine (KyH) as a key metabolite that not only decreases frequency of pro-inflammatory RORgt + T cells but also supports frequency of anti-inflammatory GATA3+ T cells. Moreover, we developed a methodology to generate imine-based TAPB-PDA COF at room temperature and loaded these COFs with KyH. KyH loaded COFs (COF-KyH) were able to then release KyH in a controlled manner for 5 days in vitro. Notably, COF-KyH when delivered orally in mice induced with collagen-induced rheumatoid arthritis (CIA) were able to increase frequency of anti-inflammatory GATA3+CD8+ T cells in the lymph nodes and decrease antibody titers in the serum as compared to the controls. Overall, these data demonstrate that COFs can be an excellent drug delivery vehicle for delivering immune modulating small molecule metabolites.
Collapse
Affiliation(s)
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Richard Nile
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Brian D Ridenour
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Taravat Khodaei
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Kailong Jin
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
11
|
Basson C, Serem JC, Hlophe YN, Bipath P. The tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med 2023; 12:18691-18701. [PMID: 37644823 PMCID: PMC10557908 DOI: 10.1002/cam4.6484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The activation of the kynurenine pathway in cancer progression and metastasis through immunomodulatory pathways has drawn attention to the potential for kynurenine pathway inhibition. The activation of the kynurenine pathway, which results in the production of kynurenine metabolites through the degradation of tryptophan, promotes the development of intrinsically malignant properties in cancer cells while facilitating tumour immune escape. In addition, kynurenine metabolites act as biologically active substances to promote cancer development and metastasis. METHODS A literature review was conducted to investigate the role of the tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. RESULTS Evidence suggests that several enzymes and metabolites implicated in the kynurenine pathway are overexpressed in various cancers. As such, the tryptophan pathway represents a promising target for cancer treatment. However, downstream signalling pathways, including aryl hydrocarbon receptor activation, have previously induced diverse biological effects in various malignancies, which resulted in either the promotion or the inhibition of metastasis. CONCLUSION As a result, a thorough investigation of the kynurenine pathway and its regulatory mechanisms is necessary in order to properly comprehend the effects of kynurenine pathway activation involved in cancer development and metastasis.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Priyesh Bipath
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
12
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Fernandes BS, Inam ME, Enduru N, Quevedo J, Zhao Z. The kynurenine pathway in Alzheimer's disease: a meta-analysis of central and peripheral levels. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 45:286-297. [PMID: 36754068 PMCID: PMC10288481 DOI: 10.47626/1516-4446-2022-2962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Changes in the kynurenine pathway are recognized in psychiatric disorders, but their role in Alzheimer's disease (AD) is less clear. We aimed to conduct a systematic review and meta-analysis to determine whether tryptophan and kynurenine pathway metabolites are altered in AD. METHODS We performed a systematic review and random-effects meta-analyses. Inclusion criteria were studies that compared AD and cognitively normal (CN) groups and assessed tryptophan or kynurenine pathway metabolites in cerebrospinal fluid or peripheral blood. RESULTS Twenty-two studies with a total of 1,356 participants (664 with AD and 692 CN individuals) were included. Tryptophan was decreased only in peripheral blood. The kynurenine-to-tryptophan ratio was only increased in peripheral blood of the AD group. 3-Hydroxykynurenine was decreased only in cerebrospinal fluid and showed higher variability in the CN group than the AD group. Kynurenic acid was increased in cerebrospinal fluid and decreased in peripheral blood. Finally, there were no changes in kynurenine and quinolinic acid between the groups. CONCLUSIONS Our results suggested a shift toward the kynurenine pathway in both the brain and in the periphery, as well as a shift towards increased kynurenic acid production in the brain but decreased production in peripheral blood. In addition, our analysis indicated dissociation between the central and peripheral levels, as well as between plasma and serum for some of these metabolites. Finally, changes in the kynurenine pathway are suggested to be a core component of AD. More studies are warranted to verify and consolidate our results.
Collapse
Affiliation(s)
- Brisa S. Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mehmet Enes Inam
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nitesh Enduru
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
14
|
Gao J, Cui Y, Bao W, Hao Y, Piao X, Gu X. Ubiquitylome study reveals the regulatory effect of α-lipoic acid on ubiquitination of key proteins in tryptophan metabolism pathway of pig liver. Int J Biol Macromol 2023; 236:123795. [PMID: 36828089 DOI: 10.1016/j.ijbiomac.2023.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The decline in antioxidant defenses make it easily for human and animals to suffer from liver damage and diseases induced by oxidative stress, causing enormous losses to human health and livestock production. As one of the canonical protein post-translational modifications (PTMs), ubiquitination is widely involved in cell proliferation, apoptosis and damage/repair response, and is proven to be involved in the ability of mammals to resist oxidative stress. To explore whether α-lipoic acid (LA), a safe and efficient antioxidant, plays a role in regulating liver antioxidant status by PTMs, proteins in livers of pigs fed with LA were analyzed at the level of proteome and ubiquitylome. Based on proteome-wide enrichment of ubiquitination, a total of 7274 proteins were identified and 5326 were quantified, we also identified 1564 ubiquitination sites in 580 ubiquitinated proteins, among which there were 136 differentially ubiquitinated sites in 103 differentially ubiquitinated proteins upon LA. Further bioinformatics analysis showed that these differential proteins were mainly enriched in tryptophan metabolic pathway, and accompanied by significantly improvement of liver antioxidant capacity. We revealed the regulatory effect of LA on ubiquitination of kynurenine 3-monooxygenase (KMO) and other key proteins in tryptophan metabolism pathway of pig liver for the first time.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiguang Bao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangshu Piao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Kynurenine Pathway in Diabetes Mellitus-Novel Pharmacological Target? Cells 2023; 12:cells12030460. [PMID: 36766803 PMCID: PMC9913876 DOI: 10.3390/cells12030460] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The tryptophan-kynurenine pathway (Trp-KYN) is the major route for tryptophan conversion in the brain and in the periphery. Kynurenines display a wide range of biological actions (which are often contrasting) such as cytotoxic/cytoprotective, oxidant/antioxidant or pro-/anti-inflammatory. The net effect depends on their local concentration, cellular environment, as well as a complex positive and negative feedback loops. The imbalance between beneficial and harmful kynurenines was implicated in the pathogenesis of various neurodegenerative disorders, psychiatric illnesses and metabolic disorders, including diabetes mellitus (DM). Despite available therapies, DM may lead to serious macro- and microvascular complications including cardio- and cerebrovascular disease, peripheral vascular disease, chronic renal disease, diabetic retinopathy, autonomic neuropathy or cognitive impairment. It is well established that low-grade inflammation, which often coincides with DM, can affect the function of KP and, conversely, that kynurenines may modulate the immune response. This review provides a detailed summary of findings concerning the status of the Trp-KYN pathway in DM based on available animal, human and microbiome studies. We highlight the importance of the molecular interplay between the deranged (functionally and qualitatively) conversion of Trp to kynurenines in the development of DM and insulin resistance. The Trp-KYN pathway emerges as a novel target in the search for preventive and therapeutic interventions in DM.
Collapse
|
16
|
Farinella DN, Kaur S, Tran V, Cabrera-Mora M, Joyner CJ, Lapp SA, Pakala SB, Nural MV, DeBarry JD, Kissinger JC, Jones DP, Moreno A, Galinski MR, Cordy RJ. Malaria disrupts the rhesus macaque gut microbiome. Front Cell Infect Microbiol 2023; 12:1058926. [PMID: 36710962 PMCID: PMC9880479 DOI: 10.3389/fcimb.2022.1058926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.
Collapse
Affiliation(s)
| | - Sukhpreet Kaur
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Suman B. Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Department of Genetics, University of Georgia, Athens, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Alberto Moreno
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,*Correspondence: Regina Joice Cordy,
| |
Collapse
|
17
|
Hu Y, Liu Z, Tang H. Tryptophan 2,3-dioxygenase may be a potential prognostic biomarker and immunotherapy target in cancer: A meta-analysis and bioinformatics analysis. Front Oncol 2022; 12:977640. [PMID: 36263228 PMCID: PMC9574363 DOI: 10.3389/fonc.2022.977640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tryptophan 2,3-dioxygenase (TDO2) is one of the emerging immune checkpoints. Meanwhile, TDO2 is also a key enzyme in the tryptophan (Trp)–kynurenine (Kyn) signaling pathway. Many studies have evaluated that TDO2 is highly expressed in various malignant tumor patients and plays a prognostic role. However, the sample size of a single prognostic study was small, and the results were still controversial. Methods We used Stata software and referenced the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement to conduct a meta-analysis on TDO2 and its clinical features and prognosis. We searched the PubMed, Cochrane Library, and Web of Science databases to find publications concerning TDO2 expression in malignant tumor patients up to June 2021. We used the Newcastle–Ottawa Scale (NOS) to evaluate the bias risk of the included literature. Risk ratios (RRs) and hazard ratios (HRs) were used for clinical outcomes, specifically overall survival (OS) and progression-free survival (PFS). In addition, we used data from The Cancer Genome Atlas (TCGA) to verify our conclusions. Results Nine studies including 667 patients with malignant tumors were identified. Our results suggested that overexpression of TDO2 was statistically correlated with poor OS and poor PFS (HR = 2.58, 95% CI = 1.52–4.40, p = 0.0005; HR = 2.38, 95% CI = 0.99–5.73, p = 0.05). In terms of clinicopathological characteristics, the overexpression level of TDO2 was statistically correlated with TNM (tumor–node–metastasis) stage (RR = 0.65, 95% CI = 0.48–0.89, p = 0.002) and regional lymph node metastasis (RR = 0.76, 95% CI = 0.59–0.99, p = 0.04). Subgroup analysis revealed the potential sources of heterogeneity. In addition, bioinformatics studies suggested that the level of TDO2 was high in malignant tumors and higher in cancer tissue than in matched paracarcinoma tissue. Gene enrichment analysis showed that TDO2 was closely related to immune response. Conclusion Overall, TDO2 may be a biomarker for the survival and prognosis of patients with malignant tumors and a potential therapeutic target in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=260442, identifier (CRD42021260442)
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Hui Tang,
| |
Collapse
|
18
|
Qian M, Xia Y, Zhang G, Yu H, Cui Y. Research progress on microRNA-1258 in the development of human cancer. Front Oncol 2022; 12:1024234. [PMID: 36249037 PMCID: PMC9556982 DOI: 10.3389/fonc.2022.1024234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
microRNAs (miRNAs) are small endogenous RNAs composed of 20-22 nucleotides that do not encode proteins, which regulate the expression of downstream genes by targeting the 3' untranslated region of mRNA. Plentiful research has demonstrated that miRNAs participate in the initiation and development of diverse diseases and malignant tumors. miR-1258 exerts great influence on tumors, including tumor growth, distant metastasis, migration, invasion, chemosensitivity, cell glycolysis, apoptosis, and stemness. Interestingly, miR-1258 is a miRNA with explicit functions and has been investigated to act as a tumor suppressor in studies on various types of tumors. With accumulating research on miR-1258, it has been found to be used as a biomarker in the early diagnosis and prognosis prediction of tumor patients. In this review, we outline the development of miR-1258 research, describe its regulatory network, and discuss its roles in cancer. Additionally, we generalize the potential clinical applications of miR-1258. This review offers emerging perspectives and orientations for further comprehending the function of miR-1258 as a diagnostic and prognostic biomarker and potent therapeutic target in cancer.
Collapse
|
19
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
20
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
22
|
Gáspár R, Halmi D, Demján V, Berkecz R, Pipicz M, Csont T. Kynurenine Pathway Metabolites as Potential Clinical Biomarkers in Coronary Artery Disease. Front Immunol 2022; 12:768560. [PMID: 35211110 PMCID: PMC8861075 DOI: 10.3389/fimmu.2021.768560] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading cause of mortality worldwide. Several risk factors including unhealthy lifestyle, genetic background, obesity, diabetes, hypercholesterolemia, hypertension, smoking, age, etc. contribute to the development of coronary atherosclerosis and subsequent coronary artery disease. Inflammation plays an important role in coronary artery disease development and progression. Pro-inflammatory signals promote the degradation of tryptophan via the kynurenine pathway resulting in the formation of several immunomodulatory metabolites. An unbalanced kynurenic pathway has been implicated in the pathomechanisms of various diseases including CAD. Significant improvements in detection methods in the last decades may allow simultaneous measurement of multiple metabolites of the kynurenine pathway and such a thorough analysis of the kynurenine pathway may be a valuable tool for risk stratification and determination of CAD prognosis. Nevertheless, imbalance in the activities of different branches of the kynurenine pathway may require careful interpretation. In this review, we aim to summarize clinical evidence supporting a possible use of kynurenine pathway metabolites as clinical biomarkers in various manifestations of CAD.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Halmi
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains. Int J Mol Sci 2022; 23:ijms23031079. [PMID: 35163002 PMCID: PMC8835130 DOI: 10.3390/ijms23031079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.
Collapse
|
24
|
Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther 2022; 28:19-35. [PMID: 34862742 PMCID: PMC8673711 DOI: 10.1111/cns.13768] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA. DISCUSSION The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects. CONCLUSIONS Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandra Ostapiuk
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
- Present address:
Department of Clinical Digestive OncologyKU LeuvenLeuvenBelgium
| | - Ewa M. Urbanska
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
| |
Collapse
|
25
|
The effect of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase gene overexpression in the kynurenine pathway on the expression levels of indoleamine 2,3-dioxygenase 1 and interferon-γ in inflammatory conditions: an in vitro study. Mol Biol Rep 2021; 49:1103-1111. [PMID: 34775574 DOI: 10.1007/s11033-021-06935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) can be involved in the pathogenesis of neurodegenerative diseases and excessive neurotoxic metabolite production. This study aimed to evaluate the effects of overexpression of murine 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (Acmsd) gene in inflammatory conditions in RAW 264.7 cell line to present more information about the effect of this gene on inflammatory conditions and the KP cycle. METHODS AND RESULTS The coding sequence of the Acmsd gene was cloned into pCMV6-AC-IRES-GFP expression vector with a green fluorescent protein (GFP) marker. To simulate inflammatory conditions, RAW 264.7 macrophage cells were stimulated by Lipopolysaccharide (LPS) 24 h before transfection, and transfected by Polyethyleneimine (PEI) with constructed plasmids expressing the Acmsd gene. The effect of Acmsd gene expression level on murine Interferon-gamma (Ifn-γ) and murine Indoleamine 2,3-dioxygenase 1 (Ido1) gene expression level was investigated by Real-Time PCR. According to the results of this study, good transfection efficiency was observed 72 h after transfection, and Acmsd expression level increased 29-fold (P < 0.001) in transfected LPS-stimulated cells compared to the control group (LPS-stimulated cells that were not transfected). Additionally, increased Acmsd expression level significantly down-regulated Ifn-γ (P < 0.001) and Ido1 (P < 0.01) expression level in transfected LPS-stimulated cells compared to LPS-stimulated cells. CONCLUSIONS Acmsd gene overexpression in inflammatory conditions can reduce the expression levels of the Ido1 gene, and its regulator, Ifn-γ. Consequently, it may be considered as a novel regulatory factor in the KP balance.
Collapse
|
26
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
27
|
Kynurenine Monooxygenase Expression and Activity in Human Astrocytomas. Cells 2021; 10:cells10082028. [PMID: 34440798 PMCID: PMC8393384 DOI: 10.3390/cells10082028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.
Collapse
|
28
|
Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol 2021; 41:326-345. [PMID: 34289794 DOI: 10.1080/08830185.2021.1954638] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan is an essential amino acid, going through three different metabolic pathways in the intestines. Indole pathway in the gut microbiota, serotonin system in the enterochromaffin cells and kynurenine pathway in the immune cells and intestinal lining are the three arms of tryptophan metabolism in the intestines. Clinical, in vivo and in vitro studies showed that each one of these arms has a significant impact on IBD. This review explains how different metabolites of tryptophan are involved in the pathophysiology of IBD and colorectal cancer, as a major complication of IBD. Indole metabolites alleviate colitis and protect against colorectal cancer while serotonin arm follows a more complicated and receptor-specific pattern. Indole metabolites and kynurenine interact with aryl hydrocarbon receptor (AHR) to induce T regulatory cells differentiation, confine Th17 and Th1 response and produce anti-inflammatory mediators. Kynurenine decreases tumor-infiltrating CD8+ cells and mediates tumor cells immune evasion. Serotonin system also increases colorectal cancer cells proliferation and metastasis while, indole metabolites can profoundly decrease colorectal cancer growth. Targeted therapy for tryptophan metabolites may improve the management of IBD and colorectal cancer, e.g. supplementation of indole metabolites such as indole-3-carbinol (I3C), inhibition of kynurenine monooxygenase (KMO) and selective stimulation or inhibition of specific serotonergic receptors can mitigate colitis. Furthermore, it will be explained how indole metabolites supplementation, inhibition of indoleamine 2,3-dioxygenase 1 (IDO1), KMO and serotonin receptors can protect against colorectal cancer. Additionally, extensive molecular interactions between tryptophan metabolites and intracellular signaling pathways will be thoroughly discussed.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
29
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
30
|
Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:734. [PMID: 34202246 PMCID: PMC8301407 DOI: 10.3390/biomedicines9070734] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
The tryptophan (TRP)-kynurenine (KYN) metabolic pathway is a main player of TRP metabolism through which more than 95% of TRP is catabolized. The pathway is activated by acute and chronic immune responses leading to a wide range of illnesses including cancer, immune diseases, neurodegenerative diseases and psychiatric disorders. The presence of positive feedback loops facilitates amplifying the immune responses vice versa. The TRP-KYN pathway synthesizes multifarious metabolites including oxidants, antioxidants, neurotoxins, neuroprotectants and immunomodulators. The immunomodulators are known to facilitate the immune system towards a tolerogenic state, resulting in chronic low-grade inflammation (LGI) that is commonly present in obesity, poor nutrition, exposer to chemicals or allergens, prodromal stage of various illnesses and chronic diseases. KYN, kynurenic acid, xanthurenic acid and cinnabarinic acid are aryl hydrocarbon receptor ligands that serve as immunomodulators. Furthermore, TRP-KYN pathway enzymes are known to be activated by the stress hormone cortisol and inflammatory cytokines, and genotypic variants were observed to contribute to inflammation and thus various diseases. The tryptophan 2,3-dioxygenase, the indoleamine 2,3-dioxygenases and the kynurenine-3-monooxygenase are main enzymes in the pathway. This review article discusses the TRP-KYN pathway with special emphasis on its interaction with the immune system and the tolerogenic shift towards chronic LGI and overviews the major symptoms, pro- and anti-inflammatory cytokines and toxic and protective KYNs to explore the linkage between chronic LGI, KYNs, and major psychiatric disorders, including depressive disorder, bipolar disorder, substance use disorder, post-traumatic stress disorder, schizophrenia and autism spectrum disorder.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Fanni Tóth
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
| | - Helga Polyák
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Yvette Mándi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| |
Collapse
|
31
|
Liu CY, Huang TT, Chen JL, Chu PY, Lee CH, Lee HC, Lee YH, Chang YY, Yang SH, Jiang JK, Chen WS, Chao Y, Teng HW. Significance of Kynurenine 3-Monooxygenase Expression in Colorectal Cancer. Front Oncol 2021; 11:620361. [PMID: 33937026 PMCID: PMC8085544 DOI: 10.3389/fonc.2021.620361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Because of the lack of reliable prognostic and predictive biomarkers for CRC, most patients are often diagnosed at a late stage. The tryptophan–kynurenine pathway plays a crucial role in promoting cancer progression. Kynurenine is considered an oncometabolite in colon cancer, and its downstream metabolites are also associated with CRC. Kynurenine 3-monooxygenase (KMO), a pivotal enzyme that catalyzes kynurenine metabolism, is essential for several cellular processes. In the current study, we explored the role of KMO in CRC. Immunohistochemical results showed that KMO was upregulated in CRC tissues relative to paired healthy tissue and polyps. Moreover, CRC patients with higher KMO expression were associated with higher metastasis and poorer survival rates. Knockdown of KMO decreased the expression of cancer stem cell markers, as well as the sphere-forming, migration, and invasion abilities of CRC cells. Additionally, blockade of the enzymatic activity of KMO using an inhibitor suppressed sphere formation and cell motility in CRC cells. These findings suggest the clinical relevance of KMO in CRC tumorigenesis and aggressiveness.
Collapse
Affiliation(s)
- Chun-Yu Liu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chen Lee
- School of Medicine, Institute of Pharmacology, National Yang-Ming Chiao Tung University, New Taipei City, Taiwan
| | - Yu-Hsuan Lee
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shung-Haur Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hao-Wei Teng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
32
|
Yuasa HJ, Stocker R. Methylene blue and ascorbate interfere with the accurate determination of the kinetic properties of IDO2. FEBS J 2021; 288:4892-4904. [PMID: 33686747 DOI: 10.1111/febs.15806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
Indoleamine 2,3-dioxygenases (IDOs) catalyze the oxidative cleavage of L-tryptophan (Trp) to N-formylkynurenine. Two IDOs, IDO1 and IDO2, are present in vertebrates. IDO1 is a high-affinity Trp-degrading enzyme involved in several physiological processes. By comparison, IDO2 generally has been reported to have low affinity (high Km -value) for Trp, and the enzyme's in vivo function remains unclear. Using IDOs from different species, we show that compared with ferrous-oxy (Fe2+ -O2 ) IDO1, Fe2+ -O2 IDO2 is substantially more stable and engages in multiple turnovers of the reaction in the absence of a reductant. Without reductant, Fe2+ -O2 IDO2 showed Km -values in the range of 80-356 μM, that is, values substantially lower than reported previously and close to the physiological concentrations of Trp. Methylene blue and ascorbate (Asc), used commonly as the reducing system for IDO activity determination, significantly affected the enzymatic activity of IDO2: In combination, the two reductants increased the apparent Km - and kcat -values 8- to 117-fold and 2-fold, respectively. Asc alone both activated and inhibited IDO2 by acting as a source of electrons and as a weak competitive inhibitor, respectively. In addition, ferric (Fe3+ ) IDO1 and IDO2 exhibited weak dioxygenase activity, similar to tryptophan 2,3-dioxygenase. Our results shed new light in the enzymatic activity of IDO2, and they support the view that this isoform of IDO also participates in the metabolism of Trp in vivo.
Collapse
Affiliation(s)
- Hajime J Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Japan
| | - Roland Stocker
- Arterial Inflammation and Redox Biology Group, Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
33
|
Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22041921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
|
34
|
Effect of IFN-γ on the kynurenine/tryptophan ratio in monolayer-cultured keratinocytes and a 3D reconstructed human epidermis model. J Dermatol Sci 2020; 99:177-184. [DOI: 10.1016/j.jdermsci.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
35
|
Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int J Mol Sci 2020; 21:ijms21072431. [PMID: 32244523 PMCID: PMC7177899 DOI: 10.3390/ijms21072431] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDs), presenting a broad range of symptoms from motor dysfunctions to psychobehavioral manifestations. A common clinical course is the proteinopathy-induced neural dysfunction leading to anatomically corresponding neuropathies. However, current diagnostic criteria based on pathology and symptomatology are of little value for the sake of disease prevention and drug development. Overviewing the pathomechanism of NDs, this review incorporates systematic reviews on inflammatory cytokines and tryptophan metabolites kynurenines (KYNs) of human samples, to present an inferential method to explore potential links behind NDs. The results revealed increases of pro-inflammatory cytokines and neurotoxic KYNs in NDs, increases of anti-inflammatory cytokines in AD, PD, Huntington's disease (HD), Creutzfeldt-Jakob disease, and human immunodeficiency virus (HIV)-associated neurocognitive disorders, and decreases of neuromodulatory KYNs in AD, PD, and HD. The results reinforced a strong link between inflammation and neurotoxic KYNs, confirmed activation of adaptive immune response, and suggested a possible role in the decrease of neuromodulatory KYNs, all of which may contribute to the development of chronic low grade inflammation. Commonalities of multifactorial NDs were discussed to present a current limit of diagnostic criteria, a need for preclinical biomarkers, and an approach to search the initiation factors of NDs.
Collapse
|
36
|
Tanaka M, Bohár Z, Vécsei L. Are Kynurenines Accomplices or Principal Villains in Dementia? Maintenance of Kynurenine Metabolism. Molecules 2020; 25:molecules25030564. [PMID: 32012948 PMCID: PMC7036975 DOI: 10.3390/molecules25030564] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Worldwide, 50 million people suffer from dementia, a group of symptoms affecting cognitive and social functions, progressing severely enough to interfere with daily life. Alzheimer’s disease (AD) accounts for most of the dementia cases. Pathological and clinical findings have led to proposing several hypotheses of AD pathogenesis, finding a presence of positive feedback loops and additionally observing the disturbance of a branch of tryptophan metabolism, the kynurenine (KYN) pathway. Either causative or resultant of dementia, elevated levels of neurotoxic KYN metabolites are observed, potentially upregulating multiple feedback loops of AD pathogenesis. Memantine is an N-methyl-D-aspartate glutamatergic receptor (NMDAR) antagonist, which belongs to one of only two classes of medications approved for clinical use, but other NMDAR modulators have been explored so far in vain. An endogenous KYN pathway metabolite, kynurenic acid (KYNA), likewise inhibits the excitotoxic NMDAR. Besides its anti-excitotoxicity, KYNA is a multitarget compound that triggers anti-inflammatory and antioxidant activities. Modifying the KYNA level is a potential multitarget strategy to normalize the disturbed KYN pathway and thus to alleviate juxtaposing AD pathogeneses. In this review, the maintenance of KYN metabolism by modifying the level of KYNA is proposed and discussed in search for a novel lead compound against the progression of dementia.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|