1
|
Anderberg RH, Andersson EA, Bucher V, Preissner KT, Mallard C, Ek CJ. Treatment with RNase alleviates brain injury but not neuroinflammation in neonatal hypoxia/ischemia. J Neurosci Res 2024; 102:e25329. [PMID: 38597144 DOI: 10.1002/jnr.25329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Axel Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bucher
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klaus T Preissner
- Department of Cardiology, Medical School, Kerckhoff-Heart Research Institute, Justus-Liebig-University, Giessen, Germany
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
4
|
Munro J, Gillen SL, Mitchell L, Laing S, Karim SA, Rink CJ, Waldron JA, Bushell M. Optimisation of Sample Preparation from Primary Mouse Tissue to Maintain RNA Integrity for Methods Examining Translational Control. Cancers (Basel) 2023; 15:3985. [PMID: 37568801 PMCID: PMC10417042 DOI: 10.3390/cancers15153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The protein output of different mRNAs can vary by two orders of magnitude; therefore, it is critical to understand the processes that control gene expression operating at the level of translation. Translatome-wide techniques, such as polysome profiling and ribosome profiling, are key methods for determining the translation rates occurring on specific mRNAs. These techniques are now widely used in cell lines; however, they are underutilised in tissues and cancer models. Ribonuclease (RNase) expression is often found to be higher in complex primary tissues in comparison to cell lines. Methods used to preserve RNA during lysis often use denaturing conditions, which need to be avoided when maintaining the interaction and position of the ribosome with the mRNA is required. Here, we detail the cell lysis conditions that produce high-quality RNA from several different tissues covering a range of endogenous RNase expression levels. We highlight the importance of RNA integrity for accurate determination of the global translation status of the cell as determined by polysome gradients and discuss key aspects to optimise for accurate assessment of the translatome from primary mouse tissue.
Collapse
Affiliation(s)
- June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah L. Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah Laing
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Saadia A. Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Curtis J. Rink
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Joseph A. Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
5
|
Gotte G, Menegazzi M. Protein Oligomerization. Int J Mol Sci 2023; 24:10648. [PMID: 37445826 DOI: 10.3390/ijms241310648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Protein self-association is a biologically remarkable event that involves and affects the structural and functional properties of proteins [...].
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
6
|
Narbona J, Gordo RG, Tomé-Amat J, Lacadena J. A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin. Cancers (Basel) 2023; 15:cancers15041114. [PMID: 36831456 PMCID: PMC9954630 DOI: 10.3390/cancers15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Due to its incidence and mortality, cancer remains one of the main risks to human health and lifespans. In order to overcome this worldwide disease, immunotherapy and the therapeutic use of immunotoxins have arisen as promising approaches. However, the immunogenicity of foreign proteins limits the dose of immunotoxins administered, thereby leading to a decrease in its therapeutic benefit. In this study, we designed two different variants of non-immunogenic immunotoxins (IMTXA33αSDI and IMTXA33furαSDI) based on a deimmunized variant of the ribotoxin α-sarcin. The inclusion of a furin cleavage site in IMTXA33furαSDI would allow a more efficient release of the toxic domain to the cytosol. Both immunotoxins were produced and purified in the yeast Pichia pastoris and later functionally characterized (both in vitro and in vivo), and immunogenicity assays were carried out. The results showed that both immunotoxins were functionally active and less immunogenic than the wild-type immunotoxin. In addition, IMTXA33furαSDI showed a more efficient antitumor effect (both in vitro and in vivo) due to the inclusion of the furin linker. These results constituted a step forward in the optimization of immunotoxins with low immunogenicity and enhanced antitumor activity, which can lead to potential better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Jaime Tomé-Amat
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Abstract
The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1–8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Han
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Undergraduate Program in Public Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Corresponding author
| |
Collapse
|
8
|
Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int J Mol Sci 2022; 23:ijms231911192. [PMID: 36232496 PMCID: PMC9569824 DOI: 10.3390/ijms231911192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natively monomeric RNase A can oligomerize upon lyophilization from 40% acetic acid solutions or when it is heated at high concentrations in various solvents. In this way, it produces many dimeric or oligomeric conformers through the three-dimensional domain swapping (3D-DS) mechanism involving both RNase A N- or/and C-termini. Here, we found many of these oligomers evolving toward not negligible amounts of large derivatives after being stored for up to 15 months at 4 °C in phosphate buffer. We call these species super-aggregates (SAs). Notably, SAs do not originate from native RNase A monomer or from oligomers characterized by the exclusive presence of the C-terminus swapping of the enzyme subunits as well. Instead, the swapping of at least two subunits’ N-termini is mandatory to produce them. Through immunoblotting, SAs are confirmed to derive from RNase A even if they retain only low ribonucleolytic activity. Then, their interaction registered with Thioflavin-T (ThT), in addition to TEM analyses, indicate SAs are large and circular but not “amyloid-like” derivatives. This confirms that RNase A acts as an “auto-chaperone”, although it displays many amyloid-prone short segments, including the 16–22 loop included in its N-terminus. Therefore, we hypothesize the opening of RNase A N-terminus, and hence its oligomerization through 3D-DS, may represent a preliminary step favoring massive RNase A aggregation. Interestingly, this process is slow and requires low temperatures to limit the concomitant oligomers’ dissociation to the native monomer. These data and the hypothesis proposed are discussed in the light of protein aggregation in general, and of possible future applications to contrast amyloidosis.
Collapse
|
9
|
Fernández-Millán P, Vázquez-Monteagudo S, Boix E, Prats-Ejarque G. Exploring the RNase A scaffold to combine catalytic and antimicrobial activities. Structural characterization of RNase 3/1 chimeras. Front Mol Biosci 2022; 9:964717. [PMID: 36188223 PMCID: PMC9515509 DOI: 10.3389/fmolb.2022.964717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Design of novel antibiotics to fight antimicrobial resistance is one of the first global health priorities. Novel protein-based strategies come out as alternative therapies. Based on the structure-function knowledge of the RNase A superfamily we have engineered a chimera that combines RNase 1 highest catalytic activity with RNase 3 unique antipathogen properties. A first construct (RNase 3/1-v1) was successfully designed with a catalytic activity 40-fold higher than RNase 3, but alas in detriment of its anti-pathogenic activity. Next, two new versions of the original chimeric protein were created showing improvement in the antimicrobial activity. Both second generation versions (RNases 3/1-v2 and -v3) incorporated a loop characteristic of RNase 3 (L7), associated to antimicrobial activity. Last, removal of an RNase 1 flexible loop (L1) in the third version enhanced its antimicrobial properties and catalytic efficiency. Here we solved the 3D structures of the three chimeras at atomic resolution by X-ray crystallography. Structural analysis outlined the key functional regions. Prediction by molecular docking of the protein chimera in complex with dinucleotides highlighted the contribution of the C-terminal region to shape the substrate binding cavity and determine the base selectivity and catalytic efficiency. Nonetheless, the structures that incorporated the key features related to RNase 3 antimicrobial activity retained the overall RNase 1 active site conformation together with the essential structural elements for binding to the human ribonuclease inhibitor (RNHI), ensuring non-cytotoxicity. Results will guide us in the design of the best RNase pharmacophore for anti-infective therapies.
Collapse
Affiliation(s)
| | | | - Ester Boix
- *Correspondence: Ester Boix, ; Guillem Prats-Ejarque,
| | | |
Collapse
|
10
|
Liang Y, Furukawa H, Sakamoto K, Inaba H, Matsuura K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. Chembiochem 2022; 23:e202200220. [PMID: 35676201 PMCID: PMC9400862 DOI: 10.1002/cbic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the β-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroto Furukawa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kentarou Sakamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroshi Inaba
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kazunori Matsuura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| |
Collapse
|
11
|
Mitkevich VA, Petrushanko IY, Engelhardt MG, Kechko OI, Makarov AA. Combination of RNase Binase and AKT1/2 Kinase Inhibitor Blocks Two Alternative Survival Pathways in Kasumi-1 Cells. Mol Biol 2022. [DOI: 10.1134/s0026893322050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|
13
|
Das A, Dasgupta S, Pathak T. Crescent-shaped meta-Substituted Benzene Derivatives as a New Class of Non-Nucleoside Ribonuclease A Inhibitors. Bioorg Med Chem 2022; 71:116888. [DOI: 10.1016/j.bmc.2022.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
14
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine-Containing Polymers for Non-Covalent Functional Protein Delivery in Serum-Containing Media. Angew Chem Int Ed Engl 2022; 61:e202116722. [PMID: 34995405 DOI: 10.1002/anie.202116722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Despite the high potential of controlling cellular processes and treating various diseases by intracellularly delivered proteins, current delivery systems exhibit poor efficiency due to poor serum stability, cellular entry, and cytosolic availability of proteins. Here, we report a novel functional group, phenyl carbamoylated guanidine (Ph-CG), that greatly enhances the delivery efficiency to various types of cells. Owing to the substantially lowered pKa , the hydrophobic Ph-CG offers optimized inter-macromolecular interactions via enhanced hydrogen-bonding and hydrophobic interactions. The coplanarity of Ph-CG also leads to the better intracellular entry of protein complexes. Intracellularly delivered apoptosis-inducing enzymes and antibodies significantly induce cell viability inhibitions in a serum-containing medium. The newly developed Ph-CG can be introduced to various existing carriers, leading to the realization of future therapeutic protein delivery.
Collapse
Affiliation(s)
- Alfonso Barrios
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Marilen Estrada
- Department of Natural and Applied Sciences, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Joong Ho Moon
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| |
Collapse
|
15
|
Nassiri M, Gopalan V, Vakili-Azghandi M. Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy. Curr Cancer Drug Targets 2022; 22:373-387. [PMID: 35240973 DOI: 10.2174/1568009622666220303101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe structures, functions and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis and causes death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare with other scientific information.
Collapse
Affiliation(s)
- Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
16
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
17
|
Discovery of antitumor effects of leczymes. Glycoconj J 2022; 39:157-165. [DOI: 10.1007/s10719-021-10033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
|
18
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine‐Containing Polymers for Non‐Covalent Functional Protein Delivery in Serum‐Containing Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfonso Barrios
- Florida International University chemistry and biochemistry UNITED STATES
| | - Marilen Estrada
- Florida International University Natural and Applied Sciences UNITED STATES
| | - Joong Ho Moon
- Florida International University Chemistry and Biochemistry 11200 SW 8th St.MMC CP311 33199 Miami UNITED STATES
| |
Collapse
|
19
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
20
|
Shilova O, Kotelnikova P, Proshkina G, Shramova E, Deyev S. Barnase-Barstar Pair: Contemporary Application in Cancer Research and Nanotechnology. Molecules 2021; 26:molecules26226785. [PMID: 34833876 PMCID: PMC8625414 DOI: 10.3390/molecules26226785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Correspondence: (O.S.); (S.D.)
| | - Polina Kotelnikova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Galina Proshkina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Elena Shramova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Sergey Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
21
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
22
|
Calina D, Hernández AF, Hartung T, Egorov AM, Izotov BN, Nikolouzakis TK, Tsatsakis A, Vlachoyiannopoulos PG, Docea AO. Challenges and Scientific Prospects of the Newest Generation of mRNA-Based Vaccines against SARS-CoV-2. Life (Basel) 2021; 11:life11090907. [PMID: 34575056 PMCID: PMC8467884 DOI: 10.3390/life11090907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
In the context of the current COVID-19 pandemic, traditional, complex and lengthy methods of vaccine development and production would not have been able to ensure proper management of this global public health crisis. Hence, a number of technologies have been developed for obtaining a vaccine quickly and ensuring a large scale production, such as mRNA-based vaccine platforms. The use of mRNA is not a new concept in vaccine development but has leveraged on previous knowledge and technology. The great number of human resources and capital investements for mRNA vaccine development, along with the experience gained from previous studies on infectious diseases, allowed COVID-19 mRNA vaccines to be developed, conditionally approved and commercialy available in less than one year, thanks to decades of basic research. This review critically presents and discusses the COVID-19 mRNA vaccine-induced immunity, and it summarizes the most common anaphylactic and autoimmune adverse effects that have been identified until now after massive vaccination campaigns.
Collapse
Affiliation(s)
- Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (D.C.); (A.O.D.)
| | - Antonio F. Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biomedical Research Institute of Granada ibs.GRANADA, Avda. de las Fuerzas Armadas, 2, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública), CIBERESP, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Thomas Hartung
- CAAT-Europe, University of Konstanz, 78464 Konstanz, Germany;
- CAAT, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexey M. Egorov
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia;
- Division of Medical Sciences, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Boris Nikolaevich Izotov
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia; (B.N.I.); (A.T.)
| | | | - Aristidis Tsatsakis
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia; (B.N.I.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (D.C.); (A.O.D.)
| |
Collapse
|
23
|
El-Gendy MMAA, Yahya SMM, Hamed AR, El-Bondkly AMA. Assessment of the phylogenetic analysis and antimicrobial, antiviral, and anticancer activities of marine endophytic Streptomyces species of the soft coral Sarcophyton convolutum. Int Microbiol 2021; 25:133-152. [PMID: 34427819 DOI: 10.1007/s10123-021-00204-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, β-lactamase, α-glucosidase, and β-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC-MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.
Collapse
Affiliation(s)
| | - Shaymaa M M Yahya
- Hormones Department, Medical Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Bohouth St, Dokki, 12622, Giza, Egypt
| | | |
Collapse
|
24
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
25
|
Wong XY, Quesada-González D, Manickam S, Muthoosamy K. Fluorescence "turn-off/turn-on" biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal Chim Acta 2021; 1175:338745. [PMID: 34330444 DOI: 10.1016/j.aca.2021.338745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Metal ions homeostasis plays an important role in biological processes. The ability to detect the concentration of metal ions in biological fluids is often challenged by the obvious interference or competitive binding nature of other alkaline metals ions. Common analytical techniques employed for metal ions detection are electrochemical, fluorescence and colorimetric methods. However, most reported metal ions sensors are complicated, time-consuming and involve costly procedures with limited effectiveness. Herein, a nanobiosensor for detecting sodium and potassium ions using folic acid-functionalised reduced graphene oxide-modified RNase A gold nanoclusters (FA-rGO-RNase A/AuNCs) based on fluorescence "turn-off/turn-on" is presented. Firstly, a facile and optimised protocol for the fabrication of RNase A/AuNCs is developed. The activity of RNase A protein after the formation of RNase A/AuNCs is studied. RNase A/AuNCs is then loaded onto FA-rGO, in which FA-rGO is used as a potential carrier and fluorescence quencher for RNase A/AuNCs. Finally, a fluorescence "turn-on" sensing strategy is developed using the as-synthesised FA-rGO-RNase A/AuNCs to detect sodium and potassium ions. The developed nanobiosensor revealed an excellent sensing performance and meets the sensitivity required to detect both sodium and potassium ions. To the best of our knowledge, this is the first work done on determining the RNase A protein activity in RNase A/AuNCs and exploring the potential application of RNase A/AuNCs as a metal ion sensor. This work serves as a proof-of-concept for combining the potential of drug delivery, active targeting and therapy on cancer cells, as well as biosensing of metal ions into a single platform.
Collapse
Affiliation(s)
- Xin Yi Wong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Daniel Quesada-González
- Paperdrop Diagnostics, Av. de Can Domènech S/n, Eureka Building, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
26
|
Montioli R, Campagnari R, Fasoli S, Fagagnini A, Caloiu A, Smania M, Menegazzi M, Gotte G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life (Basel) 2021; 11:life11020168. [PMID: 33669993 PMCID: PMC7926746 DOI: 10.3390/life11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andrea Fagagnini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andra Caloiu
- Department of Microbiology and Virology, Wexham Park Hospital, Wexham Road, Slough SL24HL, Berkshire, UK;
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| |
Collapse
|
27
|
Castro J, Ribó M, Vilanova M, Benito A. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents. Pharmaceutics 2021; 13:82. [PMID: 33435285 PMCID: PMC7828032 DOI: 10.3390/pharmaceutics13010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Approaches to develop effective drugs to kill cancer cells are mainly focused either on the improvement of the currently used chemotherapeutics or on the development of targeted therapies aimed at the selective destruction of cancer cells by steering specific molecules and/or enhancing the immune response. The former strategy is limited by its genotoxicity and severe side effects, while the second one is not always effective due to tumor cell heterogeneity and variability of targets in cancer cells. Between these two strategies, several approaches target different types of RNA in tumor cells. RNA degradation alters gene expression at different levels inducing cell death. However, unlike DNA targeting, it is a pleotropic but a non-genotoxic process. Among the ways to destroy RNA, we find the use of ribonucleases with antitumor properties. In the last few years, there has been a significant progress in the understanding of the mechanism by which these enzymes kill cancer cells and in the development of more effective variants. All the approaches seek to maintain the requirements of the ribonucleases to be specifically cytotoxic for tumor cells. These requirements start with the competence of the enzymes to interact with the cell membrane, a process that is critical for their internalization and selectivity for tumor cells and continue with the downstream effects mainly relying on changes in the RNA molecular profile, which are not only due to the ribonucleolytic activity of these enzymes. Although the great improvements achieved in the antitumor activity by designing new ribonuclease variants, some drawbacks still need to be addressed. In the present review, we will focus on the known mechanisms used by ribonucleases to kill cancer cells and on recent strategies to solve the shortcomings that they show as antitumor agents, mainly their pharmacokinetics.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| |
Collapse
|
28
|
Fang WY, Kuo YZ, Chang JY, Hsiao JR, Kao HY, Tsai ST, Wu LW. The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12061375. [PMID: 32471132 PMCID: PMC7352722 DOI: 10.3390/cancers12061375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The TGF-β type III receptor (TGFBR3) is an essential constituent of the TGF-β signaling. In this study, we observed a down-regulation of TGFBR3 in oral cancer, a subtype of head and neck cancer (HNC), and patients with low TGFBR3 had poor clinical outcomes. Ectopic expression of TGFBR3 decreased migration and invasion of oral cancer cells and lymph node metastasis of tumors, whereas depletion of TGFBR3 had the opposite effect. In SMAD4-positive OC-2 oral cancer cells, TGFBR3-mediated suppression requires both of its cytoplasmic interacting partners ARRB2 and GIPC1. We demonstrated that TGFBR3 induces the abundance of secreted angiogenin (ANG), a known pro-angiogenic factor, and ANG is essential and sufficient to mediate TGFBR3-dependent inhibition of migration and invasion of oral cancer cells. Notably, in SMAD4-deficient CAL-27 oral cancer cells, only GIPC1 is essential for TGFBR3-induced suppressive activity. Accordingly, HNC patients with low expressions of both TGFBR3 and GIPC1 had the poorest overall survival. In summary, we conclude that TGFBR3 is as a tumor suppressor via SMAD4-dependent and -independent manner in both tumor and stromal cells during oral carcinogenesis. Our study should facilitate the possibility of using TGFBR3-mediated tumor suppression for HNC treatment.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institutes of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 43210, USA;
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| |
Collapse
|