1
|
Anurogo D, Chen CY, Lin CC, Pawitan JA, Qiu DW, Qiu JT. Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model. J Immunotoxicol 2024; 21:2400624. [PMID: 39319829 DOI: 10.1080/1547691x.2024.2400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued. This limitation may be addressed by augmenting the immunogenicity of DNA-based vaccines. In the investigation here, protein expression was enhanced via codon optimization and then mouse cytotoxic T-lymphocyte antigen 4 (CTLA-4) was harnessed as a modulatory adjunct to bind directly to antigen-presenting cells. Further, the study evaluated the immunogenicity of two variants of the hemagglutinin (HA) antigen, i.e. the full-length and the C-terminal deletion versions. The study findings revealed that the codon-optimized HA gene (pcHA) led to increased protein synthesis, as evidenced by elevated mRNA levels. Codon optimization also significantly bolstered both cellular and humoral immune responses. In cytokine assays, all plasmid constructs, particularly pCTLA4-cHA, induced robust interferon (IFN)-γ production, while interleukin (IL)-4 levels remained uniformly non-significant. Mice immunized with pcHA displayed an augmented presence of IFNγ+ T-cells, underscoring the enhanced potency of the codon-optimized HA vaccine. Contrarily, CTLA-4-fused DNA vaccines did not significantly amplify the immune response.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Mice
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Codon/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Humans
- Female
- Mice, Inbred BALB C
- Disease Models, Animal
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza A Virus, H1N1 Subtype/immunology
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City, Indonesia
| | - Chia-Yuan Chen
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Chu-Chi Lin
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Daniel W Qiu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - J Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Raman SNT, Zetner A, Hashem AM, Patel D, Wu J, Gravel C, Gao J, Zhang W, Pfeifle A, Tamming L, Parikh K, Cao J, Tam R, Safronetz D, Chen W, Johnston MJ, Wang L, Sauve S, Rosu-Myles M, Domselaar GV, Li X. Bivalent vaccines effectively protect mice against influenza A and respiratory syncytial viruses. Emerg Microbes Infect 2023; 12:2192821. [PMID: 36927227 PMCID: PMC10171128 DOI: 10.1080/22221751.2023.2192821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.
Collapse
Affiliation(s)
- Sathya N. Thulasi Raman
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devina Patel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jianguo Wu
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Caroline Gravel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jun Gao
- Centre for Vaccines Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Wanyue Zhang
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Levi Tamming
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Karan Parikh
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Roger Tam
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Michael J.W. Johnston
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Reusch L, Angeletti D. Memory B-cell diversity: From early generation to tissue residency and reactivation. Eur J Immunol 2023; 53:e2250085. [PMID: 36811174 DOI: 10.1002/eji.202250085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.
Collapse
Affiliation(s)
- Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Prada LSD, Sanz-Muñoz I, de Lejarazu RO, Eiros JM, García-Sastre A, Aydillo T. Immunodominance hierarchy after seasonal influenza vaccination. Emerg Microbes Infect 2022; 11:2670-2679. [PMID: 36219456 DOI: 10.1080/22221751.2022.2135460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Current influenza vaccines elicit humoral immune responses against the hemagglutinin (HA) protein of influenza viruses. Different antigenic sites have been identified in the HA head as the main target of hemagglutination inhibition (HAI) antibodies (Sb, Sa, Cb, Ca1 and Ca2). To determine immunodominance (ID) of each site, we performed HAI assays against a panel of mutant viruses, each one lacking one of the classically defined antigenic sites and compared it to wild type (Wt). Agglutinating antibodies were measured before and after vaccination in two different regimens: Quadrivalent Influenza Vaccine (QIV) in young adults; or Adjuvanted Trivalent influenza Vaccine (ATIV) in elderly. Our results showed abs before vaccination were significantly reduced against all antigenic sites in the elderly and only against Sb and Ca2 in young adults compared to the Wt. Humoral response to vaccination was significantly reduced against all viruses compared to the Wt for the ATIV and only against Sb and Ca2 for the QIV. The strongest reduction was observed in all cases against Sb followed by Ca2. We concluded that ID profile was clearly dominated by Sb followed by Ca2. Additionally, the antibody response evolved with age, increasing the response towards less immunodominant epitopes of HA head. Adjuvants can positively influence ID hierarchy broadening responses towards multiple antigenic sites of HA head.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- National Influenza Centre of Valladolid, 47010, Spain.,Hospital Clínico Universitario de Valladolid, 47003, Spain
| | | | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Influenza A (N1-N9) and Influenza B (B/Victoria and B/Yamagata) Neuraminidase Pseudotypes as Tools for Pandemic Preparedness and Improved Influenza Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10091520. [PMID: 36146598 PMCID: PMC9571397 DOI: 10.3390/vaccines10091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1–N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.
Collapse
|
6
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
7
|
Hernandez-Davies JE, Dollinger EP, Pone EJ, Felgner J, Liang L, Strohmeier S, Jan S, Albin TJ, Jain A, Nakajima R, Jasinskas A, Krammer F, Esser-Kahn A, Felgner PL, Nie Q, Davies DH. Magnitude and breadth of antibody cross-reactivity induced by recombinant influenza hemagglutinin trimer vaccine is enhanced by combination adjuvants. Sci Rep 2022; 12:9198. [PMID: 35654904 PMCID: PMC9163070 DOI: 10.1038/s41598-022-12727-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.
Collapse
Affiliation(s)
- Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Egest J Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA. Resilience of Spike-Specific Immunity Induced by COVID-19 Vaccines against SARS-CoV-2 Variants. Biomedicines 2022; 10:biomedicines10050996. [PMID: 35625733 PMCID: PMC9138591 DOI: 10.3390/biomedicines10050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells. Additionally, these vaccines can also induce spike-specific T cells which could contribute to providing protection against the virus. However, the emergence of new SARS-CoV-2 variants can impair the immunity generated by COVID-19 vaccines if mutations occur in cognate epitopes, precluding immune recognition. Here, we evaluated the chance of five SARS-CoV-2 variants of concern (VOCs), Alpha, Beta, Gamma, Delta and Omicron, to escape spike-specific immunity induced by vaccines. To that end, we examined the impact of the SARS-CoV-2 variant mutations on residues located on experimentally verified spike-specific epitopes, deposited at the Immune Epitope Database, that are targeted by neutralizing antibodies or recognized by T cells. We found about 300 of such B cell epitopes, which were largely overlapping, and could be grouped into 54 B cell epitope clusters sharing ≥ 7 residues. Most of the B cell epitope clusters map in the RBD domain (39 out of 54) and 20%, 50%, 37%, 44% and 57% of the total are mutated in SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants, respectively. We also found 234 experimentally verified CD8 and CD4 T cell epitopes that were distributed evenly throughout the spike protein. Interestingly, in each SARS-CoV-2 VOC, over 87% and 79% of CD8 and CD4 T cell epitopes, respectively, are not mutated. These observations suggest that SARS-CoV-2 VOCs—particularly the Omicron variant—may be prone to escape spike-specific antibody immunity, but not cellular immunity, elicited by COVID-19 vaccines.
Collapse
|
9
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
10
|
Moore KA, Ostrowsky JT, Kraigsley AM, Mehr AJ, Bresee JS, Friede MH, Gellin BG, Golding JP, Hart PJ, Moen A, Weller CL, Osterholm MT. A Research and Development (R&D) roadmap for influenza vaccines: Looking toward the future. Vaccine 2021; 39:6573-6584. [PMID: 34602302 DOI: 10.1016/j.vaccine.2021.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alison M Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Joseph S Bresee
- The Global Funders Consortium for Universal Influenza Vaccine Development, The Task Force for Global Health, and the US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Ann Moen
- World Health Organization, Geneva, Switzerland
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
12
|
Hernandez-Davies JE, Felgner J, Strohmeier S, Pone EJ, Jain A, Jan S, Nakajima R, Jasinskas A, Strahsburger E, Krammer F, Felgner PL, Davies DH. Administration of Multivalent Influenza Virus Recombinant Hemagglutinin Vaccine in Combination-Adjuvant Elicits Broad Reactivity Beyond the Vaccine Components. Front Immunol 2021; 12:692151. [PMID: 34335601 PMCID: PMC8318558 DOI: 10.3389/fimmu.2021.692151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Combining variant antigens into a multivalent vaccine is a traditional approach used to provide broad coverage against antigenically variable pathogens, such as polio, human papilloma and influenza viruses. However, strategies for increasing the breadth of antibody coverage beyond the vaccine are not well understood, but may provide more anticipatory protection. Influenza virus hemagglutinin (HA) is a prototypic variant antigen. Vaccines that induce HA-specific neutralizing antibodies lose efficacy as amino acid substitutions accumulate in neutralizing epitopes during influenza virus evolution. Here we studied the effect of a potent combination adjuvant (CpG/MPLA/squalene-in-water emulsion) on the breadth and maturation of the antibody response to a representative variant of HA subtypes H1, H5 and H7. Using HA protein microarrays and antigen-specific B cell labelling, we show when administered individually, each HA elicits a cross-reactive antibody profile for multiple variants within the same subtype and other closely-related subtypes (homosubtypic and heterosubtypic cross-reactivity, respectively). Despite a capacity for each subtype to induce heterosubtypic cross-reactivity, broader coverage was elicited by simply combining the subtypes into a multivalent vaccine. Importantly, multiplexing did not compromise antibody avidity or affinity maturation to the individual HA constituents. The use of adjuvants to increase the breadth of antibody coverage beyond the vaccine antigens may help future-proof vaccines against newly-emerging variants.
Collapse
Affiliation(s)
- Jenny E. Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Egest James Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Erwin Strahsburger
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Zeigler DF, Gage E, Clegg CH. Epitope-targeting platform for broadly protective influenza vaccines. PLoS One 2021; 16:e0252170. [PMID: 34043704 PMCID: PMC8158873 DOI: 10.1371/journal.pone.0252170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Seasonal influenza vaccines are often ineffective because they elicit strain-specific antibody responses to mutation-prone sites on the hemagglutinin (HA) head. Vaccines that provide long-lasting immunity to conserved epitopes are needed. Recently, we reported a nanoparticle-based vaccine platform produced by solid-phase peptide synthesis (SPPS) for targeting linear and helical protein-based epitopes. Here, we illustrate its potential for building broadly protective influenza vaccines. Targeting known epitopes in the HA stem, neuraminidase (NA) active site, and M2 ectodomain (M2e) conferred 50-75% survival against 5LD50 influenza B and H1N1 challenge; combining stem and M2e antigens increased survival to 90%. Additionally, protein sequence and structural information were employed in tandem to identify alternative epitopes that stimulate greater protection; we report three novel HA and NA sites that are highly conserved in type B viruses. One new target in the HA stem stimulated 100% survival, highlighting the value of this simple epitope discovery strategy. A candidate influenza B vaccine targeting two adjacent HA stem sites led to >104-fold reduction in pulmonary viral load. These studies describe a compelling platform for building vaccines that target conserved influenza epitopes.
Collapse
Affiliation(s)
- David F. Zeigler
- TRIA Bioscience Corp., Seattle, Washington, United States of America
| | - Emily Gage
- TRIA Bioscience Corp., Seattle, Washington, United States of America
| | | |
Collapse
|
14
|
Knight FC, Wilson JT. Engineering Vaccines for Tissue-Resident Memory T Cells. ADVANCED THERAPEUTICS 2021; 4:2000230. [PMID: 33997268 PMCID: PMC8114897 DOI: 10.1002/adtp.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/01/2023]
Abstract
In recent years, tissue-resident memory T cells (TRM) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, TRM cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. TRM have been found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis. It is also increasingly clear that TRM play a pivotal role in cancer immunity. Thus, vaccines that can generate this memory T cell population are highly desirable. The field of immunoengineering-that is, the application of engineering principles to study the immune system and design new and improved therapies that harness or modulate immune responses-is ideally poised to provide solutions to this need for next-generation TRM vaccines. This review covers recent developments in vaccine technologies for generating TRM and protecting against infection and cancer, including viral vectors, virus-like particles, and synthetic and natural biomaterials. In addition, it offers critical insights on the future of engineering vaccines for tissue-resident memory T cells.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
16
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|