1
|
Mohamed MYI, Khalifa HO, Habib I. Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis in North Africa. Foods 2025; 14:253. [PMID: 39856919 PMCID: PMC11765101 DOI: 10.3390/foods14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Infections caused by human pathogenic bacteria in food sources pose significant and widespread concerns, leading to substantial economic losses and adverse impacts on public health. This review seeks to shed light on the recent literature addressing the prevalence of Salmonella in the food supply chains of North African countries. Additionally, it aims to provide an overview of the available information regarding health-related concerns, such as virulence genes, and the presence of antibiotic resistance in Salmonella. This review highlights a gap in our comprehensive understanding of Salmonella prevalence in the food supply chains of North African nations, with limited molecular characterization efforts to identify its sources. Studies at the molecular level across the region have shown the diversity of Salmonella strains and their virulence profiles, thus, these results show the difficulty of controlling Salmonella infections in the region. In addition, the discussion of antibiotic resistance makes it clear that there is a need for the development of comprehensive strategies to fight the potential threat of antimicrobial resistance in Salmonella strains. Despite common reports on animal-derived foods in this region, this review underscores the persistent challenges that Salmonella may pose to food safety and public health in North African countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| |
Collapse
|
2
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Bisola Bello A, Olamilekan Adesola R, Idris I, Yawson Scott G, Alfa S, Akinfemi Ajibade F. Combatting extensively drug-resistant Salmonella: a global perspective on outbreaks, impacts, and control strategies. Pathog Glob Health 2024:1-15. [PMID: 39508610 DOI: 10.1080/20477724.2024.2416864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Antibiotic resistance in typhoid fever poses a critical public health problem due to the emergence of extensively drug-resistant (XDR) Salmonella, resulting in prolonged illness and treatment failure. Salmonella enterica serovar Typhi is the most predominant among all serotypes and can acquire resistance. The emergence of XDR Salmonella in various regions globally, particularly Pakistan, presents a concerning trend. However, limited data availability impedes a comprehensive understanding of the outbreaks and hinders the development of real-time solutions. Here, we have provided an updated overview of the current outbreaks of XDR Salmonella in epidemic and endemic regions. Treatments of XDR Salmonella infections are challenging, as there are records of treatment failure in humans and animals. However, intensive prevention techniques can be implemented pending the advent of novel antibiotics. Emphasis on antimicrobial stewardship and frequent surveillance of the pathogen should be made to keep track of potential outbreaks in both human and animal populations. Although progress is being made to combat XDR Salmonella within some regions, a unified and efficient effort on an international scale is required to curtail the XDR outbreak before it escalates and leads us back to the pre-antibiotic era.
Collapse
Affiliation(s)
- Aisha Bisola Bello
- Department of Biological Science, School of Applied and Natural Sciences, Federal Polytechnic Bida, Bida, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ahmadu Bello University, Zaria, Nigeria
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Suleiman Alfa
- Department of Biological Science, School of Applied and Natural Sciences, Federal Polytechnic Bida, Bida, Nigeria
| | - Favour Akinfemi Ajibade
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Dirkx L, Loyens M, Van Acker SI, Bulté D, Claes M, Radwanska M, Magez S, Caljon G. Effect of Leishmania infantum infection on B cell lymphopoiesis and memory in the bone marrow and spleen. FASEB J 2024; 38:e23893. [PMID: 39177943 DOI: 10.1096/fj.202400715r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlotte Loyens
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara I Van Acker
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
- Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
6
|
Liao X, Wang J, Guo B, Bai M, Zhang Y, Yu G, Wang P, Wei J, Wang J, Yan X, Fan K, Wang Y. Enhancing Nanobody Immunoassays through Ferritin Fusion: Construction of a Salmonella-Specific Fenobody for Improved Avidity and Sensitivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14967-14974. [PMID: 38957086 DOI: 10.1021/acs.jafc.4c03606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.
Collapse
Affiliation(s)
- Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Bing Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengfan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Gege Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Peng Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi 712100, China
| |
Collapse
|
7
|
Xue P, Peng Y, Wang R, Wu Q, Chen Q, Yan C, Chen W, Xu J. Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38659323 DOI: 10.1080/10408398.2024.2343413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.
Collapse
Affiliation(s)
- Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qian Wu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, P. R. China
| |
Collapse
|
8
|
Lu S, Li J. Treatment of cholangiocarcinoma by pGCsiRNA-vascular endothelial growth factor in vivo. ASIAN BIOMED 2024; 18:61-68. [PMID: 38708333 PMCID: PMC11063079 DOI: 10.2478/abm-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background The early diagnosis and treatment of cholangiocarcinoma may benefit from specific tumor markers to be used in clinical practice. Objectives To investigate whether the pGCsiRNA-vascular endothelial growth factor (VEGF) can affect the onset and progression of cholangiocarcinoma and its possible mechanism using the targeted therapy of nude mouse model of cholangiocarcinoma with attenuated Salmonella carrying the plasmid pGCsiRNA-VEGF. Methods The nude mouse model of cholangiocarcinoma was established by tail vein injection of QBC939 cells and given attenuated Salmonella carrying the plasmid pGCsiRNA-VEGF. One month later, the tumor volume of nude mice was observed, and the tumor growth curve was plotted. The harvested tumors were weighed and detected for tissue structural changes and cell death status by hematoxylin-eosin staining. The protein and mRNA expressions of VEGF, matrix metalloproteinase 2 (MMP2), and MMP9 were detected by Western blotting and PCR, respectively. Results The tumor volume and weight of the pGCsiRNA-VEGF group were significantly smaller than those of the mock and the si-scramble groups (P < 0.05). The expressions of VEGF, MMP2, and MMP9 at the transcriptional and translational levels were inhibited by pGCsiRNA-VEGF. PGCsiRNA-VEGF promoted tissue apoptosis and destroyed the tissue structure. Conclusions In vivo silencing of VEGF can affect cell survival and inhibit cell migration, invasion, and development, probably by enhancing apoptosis and inhibiting the expressions of MMP2 and MMP9.
Collapse
Affiliation(s)
- Shenglin Lu
- Jiangbei Branch of Zhongda Hospital of Southeast University, Nanjing, Jiangsu210048, China
| | - Jun Li
- Jiangbei Branch of Zhongda Hospital of Southeast University, Nanjing, Jiangsu210048, China
| |
Collapse
|
9
|
Liao C, Pan L, Tan M, Zhou Z, Long S, Yi X, Li X, Wei G, Liang L. A dual RPA-LFD assay for the simultaneous detection of Salmonella typhimurium and Salmonella enteritidis. Front Bioeng Biotechnol 2024; 12:1379939. [PMID: 38524195 PMCID: PMC10958489 DOI: 10.3389/fbioe.2024.1379939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: Salmonella was one of the most common bacteria that caused foodborne illness, with S. typhimurium (Salmonella typhimurium) and S. enteritidis (Salmonella enteritidis) infections accounting for more than 75% of human salmonella infections. Methods: In this study, we developed a method of dual recombinase polymerase amplification (RPA) combined with a lateral flow dipstick for the rapid detection of S. typhimurium and S. enteritidis in clinical specimens (stool). Results: The entire reaction process, including amplification and result reading, could be completed within 65 min. The detection limits of S. typhimurium and S. enteritidis in pure culture samples were 5.23 × 101 CFU/mL and 3.59 × 101 CFU/mL, respectively. The detection limits of S. typhimurium and S. enteritidis in artificially contaminated samples were 8.30 × 101 CFU/mL and 2.70 × 102 CFU/mL, respectively. In addition, the method had no cross-reaction with other pathogenic microorganisms. The results in clinical samples were fully consistent with those obtained using Bacterial Analysis Manual, with sensitivity and specificity were 100% (8/8) and 100% (17/17) for S. typhimurium and 100% (4/4) and 100% (21/21) for S. enteritidis, respectively. Discussion: The detection limits of S. typhimurium and S. enteritidis in artificially contaminated samples were higher than those in pure culture samples, which might be attributed to the inherent complex composition of artificially contaminated samples. In addition, the detection limits of S. typhimurium and S. enteritidis in the same sample were also different, which might be attributed to different amplification efficiency of two target genes in the same reaction system. Conclusion: This assay had potential application outdoors, as it could be performed within 1 h at 38°C without a complex instrument, and the results could be observed with the naked eye. In conclusion, the dual RPA-LFD assay established in this study had practical significance for the rapid detection of S. typhimurium and S. enteritidis in the future.
Collapse
Affiliation(s)
- Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Lele Pan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Shaoping Long
- Department of Clinical Laboratory, Baise People’s Hospital, Baise, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| |
Collapse
|
10
|
Vij S, Thakur R, Singh RP, Kumar R, Pathania P, Gupta V, Suri CR, Rishi P. Dual immunization with CdtB protein and flagellin epitope offers augmented protection against enteric fever in mice. Life Sci 2023; 334:122216. [PMID: 37918629 DOI: 10.1016/j.lfs.2023.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
AIMS Present study has explored the protective response of dual immunization using two different antigenic entities (i.e. flagellin epitope and cytolethal distending toxin subunit B (CdtB) protein) against lethal challenge of typhoidal serovars in a murine model. MAIN METHODS In-vitro immunogenicity of flagellin epitope-BSA conjugate and CdtB protein was confirmed using Indirect ELISA of typhoid positive patients' sera. Further, both entities were administered intraperitoneally in mice individually or in combination, followed by lethal challenge of typhoidal Salmonellae. Various parameters were analysed such as bacterial burden, mice survival, histopathological analysis, cytokine analysis and immunophenotyping. Serum samples obtained from the immunized mice were used for passive immunization studies, wherein mice survival and mechanism of action of the generated antibodies was studied. KEY FINDINGS Active immunization studies using the combination of both entities demonstrated improved mice survival after lethal challenge with typhoidal Salmonellae, reduced bacterial burden in organs, expression of immunophenotypic markers in splenocytes and restored tissue histoarchitecture. When used in combination, the effective doses of both the candidates reduced which may be attributed to multiprong approach used by the immune system to recognize Salmonella. Passive immunization studies further determined the protective efficacy of generated antibodies by different mechanisms such as complement mediated bactericidal action, swarming inhibition and increased phagocytic uptake. SIGNIFICANCE Present study is the first phase of the proof-of-concept which may prove to be beneficial in developing an effective bi-functional vaccine candidate to render protection against both Vi-positive as well as Vi-negative Salmonella strains.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | | | - Rashmi Kumar
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Preeti Pathania
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital (GMCH), Sector 32, Chandigarh 160030, India
| | - Chander Raman Suri
- CSIR-Institute of Microbial Technology (IMTech), Chandigarh 160036, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Kudo K, Ohara J, Sano C, Ohta R. Salmonella Bacteremia in an Older Patient With No Specific Entry: A Case Report. Cureus 2023; 15:e49194. [PMID: 38130520 PMCID: PMC10733605 DOI: 10.7759/cureus.49194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In this case report, we describe a rare case of non-typhoidal Salmonella bacteremia in an 87-year-old woman with no apparent history of daily Salmonella exposure. The patient presented with fever, body discomfort, and diarrhea. Medical examinations ruled out usual sources of Salmonella, including raw food consumption and pet contact. Her medical history included postoperative sigmoid colon cancer, left breast cancer, and other ailments. Although Salmonella infection typically stems from oral intake, this case suggests that bacterial translocation from the gastrointestinal tract could be the primary cause, potentially exacerbated by the patient's age and medical history. Another hypothesis is an ascending infection from diarrhea to the urinary tract, which might have led to pyelonephritis and subsequent bacteremia. This case highlights the importance of recognizing the potential for severe infections such as sepsis in older individuals presenting with diverse symptoms. Therefore, this case further underscores the need for heightened clinical vigilance, especially in community hospitals, to ensure timely and appropriate management of such severe conditions in the older population.
Collapse
Affiliation(s)
- Koki Kudo
- Family Medicine, International University of Health and Welfare Graduate School of Health Sciences, Tokyo, JPN
| | - Junya Ohara
- Family Medicine, Matsue Seikyo Hospital, Matsue, JPN
| | - Chiaki Sano
- Community Medicine Management, Shimane University Faculty of Medicine, Izumo, JPN
| | | |
Collapse
|
12
|
Zhou G, Tian J, Tian Y, Ma Q, Li Q, Wang S, Shi H. Recombinant-attenuated Salmonella enterica serovar Choleraesuis vector expressing the PlpE protein of Pasteurella multocida protects mice from lethal challenge. BMC Vet Res 2023; 19:128. [PMID: 37598169 PMCID: PMC10439597 DOI: 10.1186/s12917-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
13
|
Ripon RK, Motahara U, Ahmed A, Devnath N, Mahua FA, Hashem RB, Ishadi KS, Alam A, Sujan MSH, Sarker MS. Exploring the prevalence of antibiotic resistance patterns and drivers of antibiotics resistance of Salmonella in livestock and poultry-derived foods: a systematic review and meta-analysis in Bangladesh from 2000 to 2022. JAC Antimicrob Resist 2023; 5:dlad059. [PMID: 37265988 PMCID: PMC10230569 DOI: 10.1093/jacamr/dlad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a severe public health problem that Bangladeshis are dealing with nowadays. However, we wanted to investigate the pooled prevalence of Salmonella and AMR in Salmonella strains isolated from livestock- and poultry-derived foods between 1 January 2000 and 31 August 2022. Methods The metafor and metareg packages in the R programming language were used to conduct all analyses. We used a random-effect or fixed-effect model for pooled prevalence of Salmonella and AMR to Salmonella, depending on the heterogeneity test for each antibiotic. The heterogeneity was examined using stratified analyses, the meta-regression approach and sensitivity analysis. Results The combined prevalence of Salmonella in livestock and poultry-derived food in Bangladesh is 37%, according to the 12-research considered (95% CI: 23%-52%). According to subgroup analysis, neomycin had the lowest prevalence of resistance (4%, 95% CI: 1%-13%), whereas tetracycline had the highest prevalence of resistance (81%, 95% CI: 53%-98%). According to univariate meta-analysis and correlation analysis, the prevalence of Salmonella increased with the study period (β = 0.0179; 95% CI: 0.0059-0.0298, P = 0.0034; R2 = 46.11%) and without this, none of aforementioned variables was significantly associated with the detected heterogeneity and there was a positive relationship (r = 0.692, P = 0.001) between the Salmonella prevalence and study period. Conclusions AMR is rising alarmingly in Bangladesh by livestock-derived food consumption. However, monitoring and evaluating antibiotic sensitivity trends and developing effective antibiotic regimens may improve Salmonella infection inhibition and control in Bangladesh. Policymakers should be concerned about food handling practices. Doctors should be concerned when using prescribing antibiotics.
Collapse
Affiliation(s)
| | - Umma Motahara
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Ahmed
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nishrita Devnath
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Fatema Akter Mahua
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rubaiya Binthe Hashem
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kifayat Sadmam Ishadi
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Adiba Alam
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Safaet Hossain Sujan
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka, Bangladesh
| |
Collapse
|
14
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
15
|
Gong J, Cheng X, Zuo J, Zhang Y, Lin J, Liu M, Jiang Y, Long Y, Si H, Gao X, Guo D, Gu N. Silver nanoparticles combat Salmonella Typhimurium: Suppressing intracellular infection and activating dendritic cells. Colloids Surf B Biointerfaces 2023; 226:113307. [PMID: 37068446 DOI: 10.1016/j.colsurfb.2023.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Salmonella Typhimurium (ST) can hide inside cells, avoid antibiotic therapy and being killed by host's immune system to cause persistent infection in humans and animals. Metal nanoparticles are regarded as an alternative to overcome the above limitations, silver nanoparticles especially have been applied in combating drug-resistant bacteria. However, the therapeutic effects of silver nanoparticles against intracellular infection and their impacts on host immunity remain an area of further investigation. In this work, we synthesized Ganoderma extract-capped silver nanoparticles (Ag@Ge) and explored the therapeutic potential and immune adjuvant effects of Ag@Ge against intracellular ST. Firstly, Ag@Ge had a small particle size of 35.52±7.46 nm, good stability, and biocompatibility. Then, Ag@Ge effectively entered RAW 264.7 cells, suppressed intracellular ST infection. Furthermore, Ag@Ge activated mouse dendritic cells (DCs) in vitro, evidenced by increased phenotypic markers (CD80/CD86/CD40/major compatibility complex II (MHCII)) expression and cytokine and chemokine (interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), and chemokine (C-C motif) receptor-7 (CCR-7)) transcription. More notably, the combination of Ag@Ge with inactivated ST recruited intestinal DCs to mitigate ST infection in mice, evidenced by decreased body weight loss and bacterial loads in the tissues (liver, jejunum, and colon), and improved platelets count. The above findings indicate that Ag@Ge has the potential as an alternative nano-antibiotic against intracellular ST infection.
Collapse
Affiliation(s)
- Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xingxing Cheng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jinjiao Zuo
- College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jian Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Moxin Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Ning Gu
- Medical School, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
16
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
17
|
Shen X, Yin L, Zhang A, Zhao R, Yin D, Wang J, Dai Y, Hou H, Pan X, Hu X, Zhang D, Liu Y. Prevalence and Characterization of Salmonella Isolated from Chickens in Anhui, China. Pathogens 2023; 12:pathogens12030465. [PMID: 36986387 PMCID: PMC10054756 DOI: 10.3390/pathogens12030465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Salmonella is one of the most important zoonotic pathogens that can cause both acute and chronic illnesses in poultry flocks, and can also be transmitted to humans from infected poultry. The purpose of this study was to investigate the prevalence, antimicrobial resistance, and molecular characteristics of Salmonella isolated from diseased and clinically healthy chickens in Anhui, China. In total, 108 Salmonella isolates (5.66%) were successfully recovered from chicken samples (n = 1908), including pathological tissue (57/408, 13.97%) and cloacal swabs (51/1500, 3.40%), and S. Enteritidis (43.52%), S. Typhimurium (23.15%), and S. Pullorum (10.19%) were the three most prevalent isolates. Salmonella isolates showed high rates of resistance to penicillin (61.11%), tetracyclines (47.22% to tetracycline and 45.37% to doxycycline), and sulfonamides (48.89%), and all isolates were susceptible to imipenem and polymyxin B. In total, 43.52% isolates were multidrug-resistant and had complex antimicrobial resistance patterns. The majority of isolates harbored cat1 (77.78%), blaTEM (61.11%), and blaCMY-2 (63.89%) genes, and the antimicrobial resistance genes in the isolates were significantly positively correlated with their corresponding resistance phenotype. Salmonella isolates carry high rates of virulence genes, with some of these reaching 100% (invA, mgtC, and stn). Fifty-seven isolates (52.78%) were biofilm-producing. The 108 isolates were classified into 12 sequence types (STs), whereby ST11 (43.51%) was the most prevalent, followed by ST19 (20.37%) and ST92 (13.89%). In conclusion, Salmonella infection in chicken flocks is still serious in Anhui Province, and not only causes disease in chickens but might also pose a threat to public health security.
Collapse
Affiliation(s)
- Xuehuai Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
- Correspondence: (X.P.); (Y.L.)
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230001, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.P.); (Y.L.)
| |
Collapse
|
18
|
Zhang Y, Zou G, Islam MS, Liu K, Xue S, Song Z, Ye Y, Zhou Y, Shi Y, Wei S, Zhou R, Chen H, Li J. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Food Res Int 2023; 165:112454. [PMID: 36869473 DOI: 10.1016/j.foodres.2022.112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Thermal processing is the most frequently used method to destruct bacteria in food processing. However, insufficient thermal processing may lead to the outbreak of foodborne illness. This study combined thermal processing with thermostable phage to prevent food contamination. The thermostable phages were screened which can retain activity at 70 °C for 1 h. Among them, the polyvalent phage LPEK22 was obtained to lyse Escherichia coli and Salmonella enterica, especially several multi-drug resistant bacteria. In milk (liquid food matrix), LPEK22 significantly reduced the E. coli by 5.00 ± 0.18 log10 CFU/mL and S. enterica by 4.20 ± 0.23 log10 CFU/mL after thermal processing at 63 °C for 30 min. For beef sausage (solid food matrix), LPEK22 significantly reduced the E. coli by 2.34 ± 0.17 log10 CFU/cm2 and S. enterica by 1.54 ± 0.13 log10 CFU/cm2 after thermal processing at 66 °C for 90 s. Genome analysis revealed that LPEK22 was a novel phage with a unique tail spike protein belonging to the family of Ackermannviridae. LPEK22 did not contain lysogenic, drug-resistant, and virulent genes that may compromise the safety of food application. These results determined that LPEK22, a novel polyvalent Ackermannviridae phage, could combine with thermal processing to prevent drug-resistant E. coli and S. enterica both in vitro and in foods.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Md Sharifull Islam
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suqiang Xue
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Shaozhong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
19
|
Beikzadeh B. Immunoinformatics design of multi-epitope vaccine using OmpA, OmpD and enterotoxin against non-typhoidal salmonellosis. BMC Bioinformatics 2023; 24:63. [PMID: 36823524 PMCID: PMC9950014 DOI: 10.1186/s12859-023-05183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is one of the important bacteria that cause foodborne diseases and invasive infections in children and elderly people. Since NTS infection is difficult to control due to the emergence of antibiotic-resistant species and its adverse effect on immune response, the development of a vaccine against NTS would be necessary. This study aimed to develop a multi-epitope vaccine against the most prevalent serovars of NTS (Salmonella Typhimurium, Salmonella Enteritidis) using an immunoinformatics approach and targeting OmpA, OmpD, and enterotoxin (Stn). RESULTS Initially, the B cell and T cell epitopes were predicted. Then, epitopes and suitable adjuvant were assembled by molecular linkers to construct a multi-epitope vaccine. The computational tools predicted the tertiary structure, refined the tertiary structure and validated the final vaccine construct. The effectiveness of the vaccine was evaluated via molecular docking, molecular dynamics simulation, and in silico immune simulation. The vaccine model had good binding affinity and stability with MHC-I, MHC-II, and toll-like receptors (TLR-1, 2, 4) as well as activation of T cells, IgM, IgG, IFN-γ and IL-2 responses. Furthermore, after codon optimization of the vaccine sequence, this sequence was cloned in E. coli plasmid vector pET-30a (+) within restriction sites of HindIII and BamHI. CONCLUSIONS This study, for the first time, introduced a multi-epitope vaccine based on OmpA, OmpD and enterotoxin (Stn) of NTS that could stimulate T and B cell immune responses and produced in the prokaryotic system. This vaccine was validated in-silico phase which is an essential study to reduce challenges before in vitro and in vivo studies.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
20
|
Whole Exome Sequence Analysis for Inborn Errors of IL-12/IFN- γ Axis in Patient with Recurrent Typhoid Fever. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1761283. [PMID: 36845636 PMCID: PMC9957627 DOI: 10.1155/2023/1761283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/19/2023]
Abstract
Background The IL-12/IFN-γ axis pathways play a vital role in the control of intracellular pathogens such as Salmonella typhi. Objective The study is aimed at using whole exome sequencing (WES) to screen out genetic defects in IL-12/IFN-γ axis in patients with recurrent typhoid fever. Methods WES using next-generation sequencing was performed on a single patient diagnosed with recurrent typhoid fever. Following alignment and variant calling, exomes were screened for mutations in 25 genes that are involved in the IL-12/IFN-γ axis pathway. Each variant was assessed by using various bioinformatics mutational analysis tools such as SIFT, Polyphen2, LRT, MutationTaster, and MutationAssessor. Results Out of 25 possible variations in the IL-12/IFN-γ axis genes, only 2 probable disease-causing mutations were identified. These variations were rare and include mutations in IL23R and ZNFX I. Other pathogenic mutations were found, but they were not considered likely to cause disease based on various mutation predictors. Conclusion Applying WES to the patient with recurrent typhoid fever detects variants that are not much important as other genes in the IL-12/IFN-γ axis. Results of the current study suggest that a large population sizes would be needed to examine the functional relevance of IL-12/IFN-γ axis genes with recurrent typhoid fever.
Collapse
|
21
|
Gebremichael Y, Crandall J, Mukhopadhyay R, Xu F. Salmonella Subpopulations Identified from Human Specimens Express Heterogenous Phenotypes That Are Relevant to Clinical Diagnosis. Microbiol Spectr 2023; 11:e0167922. [PMID: 36507668 PMCID: PMC9927314 DOI: 10.1128/spectrum.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clonal bacterial cells can give rise to functionally heterogeneous subpopulations. This diversification is considered an adaptation strategy that has been demonstrated for several bacterial species, including Salmonella enterica serovar Typhimurium. In previous studies on mouse models infected orally with pure Salmonella cultures, derived bacterial cells collected from animal tissues were found to express heterogenous phenotypes. Here, we show mixed Salmonella populations, apparently derived from the same progenitor, present in human specimens collected at a single disease time point, and in a long-term-infected patient, these Salmonella were no longer expressing surface-exposed antigen epitopes by isolates collected at earlier days of the disease. The subpopulations express different phenotypes related to cell surface antigen expression, motility, biofilm formation, biochemical metabolism, and antibiotic resistance, which can all contribute to pathogenicity. Some of the phenotypes correlate with single nucleotide polymorphisms or other sequence changes in bacterial genomes. These genetic variations can alter synthesis of cell membrane-associated molecules such as lipopolysaccharides and lipoproteins, leading to changes in bacterial surface structure and function. This study demonstrates the limitation of Salmonella diagnostic methods that are based on a single-cell population which may not represent the heterogenous bacterial community in infected humans. IMPORTANCE In animal model systems, heterogenous Salmonella phenotypes were found previously to regulate bacterial infections. We describe in this communication that different Salmonella phenotypes also exist in infected humans at a single disease time point and that their phenotypic and molecular traits are associated with different aspects of pathogenicity. Notably, variation in genes encoding antibiotic resistance and two-component systems were observed from the subpopulations of a patient suffering from persistent salmonellosis. Therefore, clinical and public health interventions of the disease that are based on diagnosis of a single-cell population may miss other subpopulations that can cause residual human infections.
Collapse
Affiliation(s)
- Yismashoa Gebremichael
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - John Crandall
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Rituparna Mukhopadhyay
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Fengfeng Xu
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
22
|
Lv P, Zhang X, Song M, Hao G, Wang F, Sun S. Oral administration of recombinant Bacillus subtilis expressing a multi-epitope protein induces strong immune responses against Salmonella Enteritidis. Vet Microbiol 2023; 276:109632. [PMID: 36521295 DOI: 10.1016/j.vetmic.2022.109632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The S. Enteritidis causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against an S. Enteritidis infection because mucosa plays an important role in preventing S. Enteritidis from entering the body. In order to develop novel and potent oral vaccines based on Bacillus subtilis (B. subtilis) to control the spread of S. Enteritidis in the poultry industry, we constructed a B. subtilis that can secrete a multi-epitope protein (OmpC-FliC-SopF-SseB-IL-18). Oral immunization of chickens was performed, and serum antibodies, mucosal antibodies, specific cellular immunity and serum cytokines were detected. Immunizing chicks with S. Enteritidis was evaluated. The results showed high levels of specific IgG in addition to high levels of specific secretory immunoglobulin A (sIgA) in chickens who received oral administrations of recombinant B. subtilis. Additionally, recombinant B. subtilis may significantly increase the levels of IL-2 and T cell-mediated immunity. Recombinant B. subtilis effectively protected chickens against S. Enteritidis and reduced pathological damage to the spleen and jejunum. Our study's outcomes indicate that the expression of the multi-epitope protein OmpC-FliC-SopF-SseB-IL-18 by B. subtilis could generate a mucosal vaccine candidate for animals to defend against S. Enteritidis in the future.
Collapse
Affiliation(s)
- Penghao Lv
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xuesong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guijuan Hao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
23
|
Evaluation of the Protective Immune Response Induced by an rfbG-Deficient Salmonella enterica Serovar Enteritidis Strain as a Live Attenuated DIVA (Differentiation of Infected and Vaccinated Animals) Vaccine in Chickens. Microbiol Spectr 2022; 10:e0157422. [PMID: 36377942 PMCID: PMC9769753 DOI: 10.1128/spectrum.01574-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis), one of the zoonotic pathogens, not only results in significant financial losses for the global poultry industry but also has the potential to spread to humans through poultry and poultry products. Vaccination is an effective method to prevent Salmonella infections. In this study, we constructed a live attenuated DIVA (differentiation of infected and vaccinated animals) vaccine candidate, Z11ΔrfbG, and evaluated its protective effectiveness and DIVA potential in chickens. Compared to that of the virulent wild-type strain, the 50% lethal dose (LD50) of the rfbG mutant strain increased 56-fold, confirming its attenuation. High serum levels of S. Enteritidis-specific IgG titers indicated that a significant humoral immune response was induced in the vaccinated group. After challenge, the nonvaccinated group showed serious clinical symptoms (diarrhea, depression, decreased appetite, ruffled feathers, and weight loss), pathological changes (white nodules in the liver and fatty lesions in liver cells), and death. In contrast, there were no clinical symptoms, pathological changes, or death in the 5 × 106- and 5 × 107-CFU-vaccinated groups. Z11ΔrfbG vaccination significantly reduced S. Enteritidis colonization in the spleen, liver, and cecum. In addition, the Z11ΔrfbG-vaccinated group exhibited a negative response to the serological test, whereas the virulent wild-type Z11 infection group was strongly positive for the serological test, showing a DIVA capability of Z11ΔrfbG vaccination. Overall, our findings demonstrate the viability of the rfbG mutant as a live attenuated chicken vaccine that can discriminate between animals that have been immunized and those that have been infected. IMPORTANCE S. Enteritidis is a highly adapted pathogen that causes significant economic losses in the poultry industry around the world. Vaccination is an effective method of controlling S. Enteritidis infections. Here, we demonstrated that S. Enteritidis Z11ΔrfbG has the potential to be a safe, immunogenic, and DIVA vaccine candidate for the control of Salmonella infections in chickens. Z11ΔrfbG not only provided effective protection in chickens but also distinguished between infected and vaccinated chickens by serological tests.
Collapse
|
24
|
Singh Y, Saxena A, Singh SP, Verma MK, Kumar A, Kumar A, Mrigesh M, Saxena MK. Calcium phosphate adjuvanted nanoparticles of outer membrane proteins of Salmonella Typhi as a candidate for vaccine development against Typhoid fever. J Med Microbiol 2022; 71. [PMID: 35476604 DOI: 10.1099/jmm.0.001529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, Pantnagar, Uttarakhand, India
| | - Anjani Saxena
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - S P Singh
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Arun Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Avadhesh Kumar
- Department of Veterinary & Animal Husbandry Extension Education, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Meena Mrigesh
- Department of Veterinary Anatomy, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics & Breeding, College of Veterinary & Animal Sciences G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
25
|
Hiepe F, Alexander T, Dörner T, Hauser AE, Hoyer BF, Kubagawa H, Skriner K, Tokoyoda K. [B lymphocytes and plasma cells as drivers of rheumatic diseases]. Z Rheumatol 2022; 81:660-666. [PMID: 35380249 PMCID: PMC8980791 DOI: 10.1007/s00393-022-01189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/21/2022]
Abstract
Verschiedene Arbeitsgruppen am Deutschen Rheuma-Forschungszentrum Berlin haben in enger Zusammenarbeit mit der Medizinischen Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie an der Charité wichtige Beiträge zur Bedeutung der B‑Zellen und Plasmazellen bei rheumatischen Erkrankungen geleistet, die nicht nur für die Rheumatologie, sondern für alle klinischen Fachgebiete, in denen antikörpervermittelte Erkrankungen eine Rolle spielen, relevant sind. Insbesondere wird auf die gestörte B‑Zell-Homöostase, die Bedeutung des Immunglobulin M(IgM)-Fc-Rezeptors für die Regulation der Autoimmunität, die Rolle der langlebigen Gedächtnis-Plasmazelle bei der Aufrechterhaltung der Autoimmunität sowie die Sicherung ihres Überlebens in speziellen, von Stromazellen organisierten Nischen im Knochenmark und in entzündeten Geweben eingegangen. Die Forschungsergebnisse haben zu einem besseren Verständnis der immunologischen und molekularen Mechanismen bei rheumatischen Erkrankungen und ihrer Therapie beigetragen. Die Identifizierung der langlebigen Gedächtnis-Plasmazelle hat zu vielversprechenden therapeutischen Ansätzen mit kurativem Potenzial bei Autoimmunerkrankungen geführt.
Collapse
Affiliation(s)
- Falk Hiepe
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland. .,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Tobias Alexander
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Bimba F Hoyer
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| | - Karl Skriner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie u. Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| |
Collapse
|
26
|
Aryl Hydrocarbon Receptor Activation by Benzo[ a]pyrene Prevents Development of Septic Shock and Fatal Outcome in a Mouse Model of Systemic Salmonella enterica Infection. Cells 2022; 11:cells11040737. [PMID: 35203386 PMCID: PMC8870598 DOI: 10.3390/cells11040737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on immunomodulatory effects of aryl hydrocarbon receptor (AhR) activation through benzo[a]pyrene (BaP) during systemic bacterial infection. Using a well-established mouse model of systemic Salmonella enterica (S.E.) infection, we studied the influence of BaP on the cellular and humoral immune response and the outcome of disease. BaP exposure significantly reduced mortality, which is mainly caused by septic shock. Surprisingly, the bacterial burden in BaP-exposed surviving mice was significantly higher compared to non-exposed mice. During the early phase of infection (days 1-3 post-infection (p.i.)), the transcription of proinflammatory factors (i.e., IL-12, IFN-γ, TNF-α, IL-1β, IL-6, IL-18) was induced faster under BaP exposure. Moreover, BaP supported the activity of antigen-presenting cells (i.e., CD64 (FcγRI), MHC II, NO radicals, phagocytosis) at the site of infection. However, early in infection, the anti-inflammatory cytokines IL-10 and IL-22 were also locally and systemically upregulated in BaP-exposed S.E.-infected mice. BaP-exposure resulted in long-term persistence of salmonellae up to day 90 p.i., which was accompanied by significantly elevated S.E.-specific antibody responses (i.e., IgG1, IgG2c). In summary, these data suggest that BaP-induced AhR activation is capable of preventing a fatal outcome of systemic S.E. infection, but may result in long-term bacterial persistence, which, in turn, may support the development of chronic inflammation.
Collapse
|
27
|
Siddiky NA, Sarker S, Khan SR, Rahman T, Kafi A, Samad MA. Virulence and antimicrobial resistance profile of non-typhoidal Salmonella enterica serovars recovered from poultry processing environments at wet markets in Dhaka, Bangladesh. PLoS One 2022; 17:e0254465. [PMID: 35130286 PMCID: PMC8820648 DOI: 10.1371/journal.pone.0254465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
The rapid emergence of virulent and multidrug-resistant (MDR) non-typhoidal Salmonella (NTS) enterica serovars is a growing public health concern globally. The present study focused on the assessment of the pathogenicity and antimicrobial resistance (AMR) profiling of NTS enterica serovars isolated from the chicken processing environments at wet markets in Dhaka, Bangladesh. A total of 870 samples consisting of carcass dressing water (CDW), chopping board swabs (CBS), and knife swabs (KS) were collected from 29 wet markets. The prevalence of Salmonella was found to be 20% in CDW, 19.31% in CBS, and 17.58% in KS, respectively. Meanwhile, the MDR Salmonella was found to be 72.41%, 73.21%, and 68.62% in CDW, CBS, and KS, respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. The S. Enteritidis and untyped Salmonella isolates harbored all virulence genes while S. Typhimurium isolates carried six virulence genes, except sefA and spvC. Phenotypic resistance revealed decreased susceptibility to ciprofloxacin, streptomycin, ampicillin, tetracycline, gentamicin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanic acid, and azithromycin. Genotypic resistance showed a higher prevalence of plasmid-mediated blaTEM followed by tetA, sul1, sul2, sul3, and strA/B genes. The phenotypic and genotypic resistance profiles of the isolates showed a harmonic and symmetrical trend. According to the findings, MDR and virulent NTS enterica serovars predominate in wet market conditions and can easily enter the human food chain. The chi-square analysis showed significantly higher associations among the phenotypic resistance, genotypic resistance and virulence genes in CDW, CBS, and KS respectively (p < 0.05).
Collapse
Affiliation(s)
- Nure Alam Siddiky
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Samun Sarker
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed A. Samad
- Antimicrobial Resistance Action Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| |
Collapse
|
28
|
Wong H, Crowet JM, Dauchez M, Ricard-Blum S, Baud S, Belloy N. Multiscale modelling of the extracellular matrix. Matrix Biol Plus 2022; 13:100096. [PMID: 35072037 PMCID: PMC8763633 DOI: 10.1016/j.mbplus.2021.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
The extracellular matrix is a complex three-dimensional network of molecules that provides cells with a complex microenvironment. The major constituents of the extracellular matrix such as collagen, elastin and associated proteins form supramolecular assemblies contributing to its physicochemical properties and organization. The structure of proteins and their supramolecular assemblies such as fibrils have been studied at the atomic level (e.g., by X-ray crystallography, Nuclear Magnetic Resonance and cryo-Electron Microscopy) or at the microscopic scale. However, many protein complexes are too large to be studied at the atomic level and too small to be studied by microscopy. Most extracellular matrix components fall into this intermediate scale, so-called the mesoscopic scale, preventing their detailed characterization. Simulation and modelling are some of the few powerful and promising approaches that can deepen our understanding of mesoscale systems. We have developed a set of modelling tools to study the self-organization of the extracellular matrix and large motion of macromolecules at the mesoscale level by taking advantage of the dynamics of articulated rigid bodies as a mean to study a larger range of motions at the cost of atomic resolution.
Collapse
Key Words
- Basement membrane
- CG, coarse-grained
- Cryo-EM, cryogenic electron microscopy
- DOF, degrees of freedom
- ECM, extracellular matrix
- EGF, epidermal growth factor
- Extracellular matrix
- FEM, finite element method
- MD, molecular dynamics
- Mesoscopic scale
- Modelling
- NC, non-collagenous
- NMR, nuclear magnetic resonance
- Rigid bodies
- SAXS, small-angle X-ray scattering
- Simulation
Collapse
Affiliation(s)
- Hua Wong
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Jean-Marc Crowet
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Manuel Dauchez
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Sylvie Ricard-Blum
- Univ. Lyon, University Claude Bernard Lyon 1, ICBMS, UMR 5246 CNRS, 69622 Villeurbanne Cedex, France
| | - Stéphanie Baud
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
- Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne-Ardenne (MaSCA), 51097 Reims, France
| | - Nicolas Belloy
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
- Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne-Ardenne (MaSCA), 51097 Reims, France
| |
Collapse
|
29
|
Isolation and characterization of Salmonella phages and phage cocktail mediated biocontrol of Salmonella enterica serovar Typhimurium in chicken meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Revajová V, Benková T, Karaffová V, Levkut M, Selecká E, Dvorožňáková E, Ševčíková Z, Herich R, Levkut M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life (Basel) 2022; 12:life12020201. [PMID: 35207488 PMCID: PMC8878764 DOI: 10.3390/life12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Immune response of day-old chicks infected with Salmonella Enteritidis PT4 and preventive administration of Enterococcus faecium AL41 were studied using hematology and flow cytometry of immunocompetent cells in blood, cecum, bursa and spleen for 11 days, and included 220 animals divided into four groups (n = 55). E. faecium AL41 was administered for 7 days to EF and EFSE groups and on day 4 SE and EFSE groups were infected with Salmonella Enteritidis. Values of monocytes at 4 dpi significantly increased in EFSE and lymphocytes at 7 dpi in EF groups. Blood CD3, CD4, CD8 and IgM lymphocytes improved in EF and EFSE groups and IgA in EF group at 4 dpi. Phagocytic activity of probiotic groups was improved in both samples. Cecal IEL and LPL lymphocytes showed at 7 dpi stimulation of CD3, CD4 and CD8 subpopulations in probiotic groups, especially in EFSE group, IgA IEL and IgA with IgM LPL in EF groups. Bursa Fabricii at 7 dpi presented overstimulation of IgG subpopulation in SE group, spleen CD3 and CD8 in EF and EFSE groups. E. faecium AL41 revealed the protective effect and positive influence on the local and systemic immune response in Salmonella Enteritidis PT4 infected chickens.
Collapse
Affiliation(s)
- Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Terézia Benková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Correspondence: ; Tel.: +421-905871840
| | - Martin Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Selecká
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia;
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Mikuláš Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Institute of Neuroimmunology, Slovak Academy of Science, 845 10 Bratislava, Slovakia
| |
Collapse
|
31
|
Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10010067. [PMID: 35062728 PMCID: PMC8777945 DOI: 10.3390/vaccines10010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Effective vaccine development for global outbreaks, such as the coronavirus disease 2019 (COVID-19), has been successful in the short run. However, the currently available vaccines have been associated with a higher frequency of adverse effects compared with other general vaccines. In this study, the possibility of an oral bacteria-based vaccine that can be safely used as a platform for large-scale, long-term immunization was evaluated. A well-known Salmonella strain that was previously considered as a vaccine delivery candidate was used. Recombinant Salmonella cells expressing engineered viral proteins related with COVID-19 pathogenesis were engineered, and the formulation of the oral vaccine candidate strain was evaluated by in vitro and in vivo experiments. First, engineered S proteins were synthesized and cloned into expression vectors, which were than transformed into Salmonella cells. In addition, when orally administrated to mice, the vaccine promoted antigen-specific antibody production and cellular immunity was induced with no significant toxicity effects. These results suggest that Salmonella strains may represent a valuable platform for the development of an oral vaccine for COVID-19 as an alternative to tackle the outbreak of various mutated coronavirus strains and new infectious diseases in the future.
Collapse
|
32
|
Huang FC. The Interleukins Orchestrate Mucosal Immune Responses to Salmonella Infection in the Intestine. Cells 2021; 10:cells10123492. [PMID: 34943999 PMCID: PMC8700606 DOI: 10.3390/cells10123492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
33
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
34
|
Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Negl Trop Dis 2021; 15:e0009865. [PMID: 34699522 PMCID: PMC8547688 DOI: 10.1371/journal.pntd.0009865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. Methodology/Principal findings The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA′ plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. Conclusions TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice. In the previous study, a Trichinella spiralis inorganic pyrophosphatase (TsPPase) was expressed and its role in larval molting and development was observed. In this study, a recombinant TsPPase/pSIP409-pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum NC8, the rTsPPase was expressed on the surface of recombinant L. plantarum NC8. Oral immunization of mice with rTsPPase DNA vaccine elicited a high level of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA). The levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination. Immunization of mice with rTsPPase showed a significant reduction of intestinal infective larvae, adult worms and muscle larvae, and intestinal larval molting and development was significantly suppressed. The results indicated that oral vaccination with rTsPPase elicited a significant local mucosal sIgA response and specific systemic Th1/Th2 immune response, and an obvious protective immunity against T. spiralis infection.
Collapse
|
35
|
Mohammadi A, Abtahi Froushani SM, DelireZh N, Ownagh A. Alum and metoclopramide synergistically enhance cellular and humoral immunity after immunization with heat-killed Salmonella typhimurium vaccine. Int Immunopharmacol 2021; 101:108185. [PMID: 34607234 DOI: 10.1016/j.intimp.2021.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Typically, the killed form of microorganisms in combination with alum does not produce strong cellular immune responses. A recent investigation has indicated the role of dopamine D2 receptor antagonists like metoclopramide in reducing the polarization of immune responses toward Th2 immunity. This study was performed to evaluate the effects of a combination of alum and metoclopramide on the induction of cellular and humoral immunity in response to a heat-killed preparation ofSalmonella typhimurium(HKST). Wistar rats were immunized with the HKST vaccine alone or in combination with alum, metoclopramide, or the alum-metoclopramide mixture twice with a two-week interval. Fourteen days after the last vaccination, immune responses against S. typhimurium and the protective potential of the vaccines were assessed. The combination of alum and metoclopramide as an adjuvant augmented the potential of the HKST vaccine to enhance lymphocyte proliferation, delayed-type hypersensitivity reaction, and antibody titer. These results were concurrent with the polarization of immune response towards the Th1 response and improving protective immunity against S. typhimurium. Overall, the combination of alum and metoclopramide as an adjuvant synergistically enhanced cellular and humoral immunity after immunization with the HKST vaccine.
Collapse
Affiliation(s)
- Ahmad Mohammadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Nouroz DelireZh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abdolghaffar Ownagh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
36
|
Mustafa GR, Zhao K, He X, Chen S, Liu S, Mustafa A, He L, Yang Y, Yu X, Penttinen P, Ao X, Liu A, Shabbir MZ, Xu X, Zou L. Heavy Metal Resistance in Salmonella Typhimurium and Its Association With Disinfectant and Antibiotic Resistance. Front Microbiol 2021; 12:702725. [PMID: 34421860 PMCID: PMC8371916 DOI: 10.3389/fmicb.2021.702725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Metals are widely used in animal feed for their growth-stimulating and antimicrobial effects, yet their use may potentially promote the proliferation of antibiotic resistance through co-selection. We studied the prevalence and associations of metal, antibiotic, and disinfectant resistances of 300 Salmonella Typhimurium isolates from pig meat, pig manure, chicken meat, poultry manure, and human stool from Sichuan, China. Seventy four percent of the 300 Salmonella Typhimurium isolates were considered resistant to Cu, almost 50% to Zn and Cr, over 25% to Mn and Cd, and almost 10% to Co. Most of the isolates carried at least one heavy metal resistance gene (HMRG). The Cr-Zn-Cd-resistance gene czcD was carried by 254 isolates and the Cu-resistance genes pcoR and pcoC by 196 and 179 isolates, respectively. Most of the isolates were resistant to at least one antibiotic and almost 80% were multidrug-resistant. The prevalence of resistance to six antibiotics was higher among the pig meat and manure isolates than among other isolates, and that of streptomycin and ampicillin were highest among the pig meat isolates and that of ciprofloxacin and ofloxacin among the pig manure isolates. From 55 to 79% of the isolates were considered resistant to disinfectants triclosan, trichloroisocyanuric acid, or benzalkonium chloride. The metal resistances and HMRGs were associated with resistance to antibiotics and disinfectants. Especially, Cu-resistance genes were associated with resistance to several antibiotics and disinfectants. The transfer of the Cr-Zn-Cd-resistance gene czcD, Cu-resistance gene pcoC, and Co-Ni-resistance gene cnrA into Escherichia coli and the increased Cu-resistance of the transconjugants implied that the resistance genes were located on conjugative plasmids. Thus, the excessive use of metals and disinfectants as feed additives and in animal care may have the potential to promote antibiotic resistance through co-selection and maintain and promote antibiotic resistance even in the absence of antibiotics.
Collapse
Affiliation(s)
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xueping He
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Ahsan Mustafa
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | | | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Salmonella Bacterin Vaccination Decreases Shedding and Colonization of Salmonella Typhimurium in Pigs. Microorganisms 2021; 9:microorganisms9061163. [PMID: 34071310 PMCID: PMC8226585 DOI: 10.3390/microorganisms9061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Since the occurrence of swine salmonellosis has increased over time and control strategies other than biosecurity are highly recommended, the present study aimed to evaluate the efficacy of vaccination with Salmonella Choleraesuis and Salmonella Typhimurium bacterins in pigs. Two experimental groups were formed: G1, animals immunized with two doses of a commercial vaccine (n = 20); G2, control group (n = 20). After vaccination, all pigs were orally challenged (D0) with 108 CFU of Salmonella Typhimurium and evaluated for 40 days. Every 10 days after D0, five piglets from each experimental group were euthanized and submitted to the necroscopic examination, when organ samples were collected. Blood samples and rectal swabs were collected before the first dose of the vaccine (D−42), before the second dose (D−21), before the challenge (D0), and thereafter, every three days until D39. Blood count, serum IgG measurement by ELISA, and the excretion of Salmonella Typhimurium in feces were evaluated. While the results from blood count and serum IgG concentration did not differ, the detection and excretion of Salmonella between G1 and G2 differed (p < 0.05). Therefore, it was observed that this vaccine partially protected the animals against experimental infection with Salmonella Typhimurium, reducing the excretion of bacteria in feces.
Collapse
|
38
|
Xiang Y, Li F, Dong N, Tian S, Zhang H, Du X, Zhou X, Xu X, Yang H, Xie J, Yang C, Liu H, Qiu S, Song H, Sun Y. Investigation of a Salmonellosis Outbreak Caused by Multidrug Resistant Salmonella Typhimurium in China. Front Microbiol 2020; 11:801. [PMID: 32411120 PMCID: PMC7200987 DOI: 10.3389/fmicb.2020.00801] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
The rapid emergence of multidrug resistant Salmonella is a global public-health concern as outbreaks in recent years have mostly been caused by multidrug resistant strains. Here, we evaluated an outbreak in China caused by multidrug resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) by employing an epidemiological and laboratory investigation using conventional methods and whole genome sequencing (WGS). Eleven of the 12 people who participated in a banquet showed gastrointestinal symptoms, and 8S. Typhimurium strains were recovered. Isolated outbreak strains showed multidrug resistance (MDR), and decreased susceptibility to ciprofloxacin, a first-line drug recommended by WHO for clinical treatment of intestinal infections. Antimicrobial resistance (AMR) gene analysis indicated that the MDR phenotype of these outbreak strains may be due to the presence of a number of AMR genes, including the blaOXA-1 and blaTEM-1 β-lactamase genes, which are often plasmid-borne and easily transferred. Further virulence gene analysis indicated that these outbreak strains also carried a large number of virulence genes, including 2 types of Salmonella pathogenicity islands (SPI-1 and SPI-2) and many adhesion-related virulence genes. Cluster analysis based on pulse-field gel electrophoresis data and phylogenetic analysis based on WGS revealed that the outbreak clone was closely related to and thus probably derived from local strains. This outbreak caused by multidrug resistant S. Typhimurium highlights the need for government improved strategies for the prevention and control of Salmonella infections.
Collapse
Affiliation(s)
- Ying Xiang
- Academy of Military Medical Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Fuxiang Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Nian Dong
- Xingcheng Special Service Recuperation Center of PLA Strategic Support Force, Huludao, China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Haoran Zhang
- Academy of Military Medical Sciences, Beijing, China
| | - Xinying Du
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xuan Zhou
- Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongxia Yang
- Shanxi Province Center for Disease Control and Prevention, Taiyuan, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yansong Sun
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|