1
|
Mesnard B, Bruneau S, Le Bas-Bernardet S, Ogbemudia E, Kervella D, Masset C, Neel M, Minault MD, Hervouet MJ, Cantarovich D, Rigaud J, Badet L, Friend P, Ploeg R, Blancho G, Hunter J, Prudhomme T, Branchereau J. Impact of Hypothermic Perfusion on Immune Responses and Sterile Inflammation in a Preclinical Model of Pancreatic Transplantation. Transplant Direct 2025; 11:e1743. [PMID: 39687511 PMCID: PMC11649271 DOI: 10.1097/txd.0000000000001743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024] Open
Abstract
Background In organ transplantation, cold ischemia is associated with sterile inflammation that subsequently conditions adaptive immunity directed against the grafts during revascularization. This inflammation is responsible for venous thrombosis, which is the main postoperative complication affecting graft function. Our aim was to investigate the modulation of immune responses and endothelial function of pancreatic grafts during cold ischemia using different preservation modalities. Methods According to a preclinical porcine model of controlled donation after circulatory death, pancreatic grafts were preserved under hypothermic conditions for 24 h according to 4 modalities: static cold storage, hypothermic machine perfusion, hypothermic oxygenated perfusion at 21%, and 100%. Biopsies of the head and tail of the pancreas were performed during preservation. The first step involved a broad screening of the gene expression profile (84 genes) during preservation on a limited number of grafts. In the second step, a confirmation test was performed in all 4 groups. Results Vascular endothelial growth factor gene expression showed a decrease during preservation in the hypothermic oxygenated perfusion 21% and 100% groups compared with the static cold storage group. In contrast, thrombomodulin gene expression showed an increase during preservation in the hypothermic oxygenated perfusion 21% and 100% groups compared with the static cold storage and hypothermic machine perfusion groups. Conclusions We demonstrated that compared with static cold storage, hypothermic oxygenated perfusion is an effective modality for modulating endothelial function by increasing thrombomodulin expression and decreasing ischemia and vascular endothelial growth factor expression.
Collapse
Affiliation(s)
- Benoit Mesnard
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Etohan Ogbemudia
- Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| | - Delphine Kervella
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Christophe Masset
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Mélanie Neel
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - M. David Minault
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - M. Jeremy Hervouet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Jérôme Rigaud
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
| | - Lionel Badet
- Department of Urology Surgery and Transplantation, Edouard Herriot Hospital, Lyon, France
| | - Peter Friend
- Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| | - Rutger Ploeg
- Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| | - Gilles Blancho
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - James Hunter
- Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| | - Thomas Prudhomme
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Julien Branchereau
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- Nuffield Department of Surgical Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Aspord C, Macek Jílková Z, Bonadona A, Gerster T, Lesurtel M, Girard E, Saas P, Decaens T. Hypothermic Oxygenated Machine Perfusion and Static Cold Storage Drive Distinct Immunomodulation During Liver Transplantation: A Pilot Study. Transplantation 2024:00007890-990000000-00953. [PMID: 39661430 DOI: 10.1097/tp.0000000000005274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Organ injury is a major problem in liver transplant. Prolonged liver ischemia may result in ischemia/reperfusion injury (IRI), leading to inadequate activation of innate immunity. Hypothermic oxygenated machine perfusion (HOPE) of the graft emerges as a more physiologic method for liver preservation compared with static cold storage (SCS) by reducing IRI, which improves the quality of the graft. Despite being crucial, the immunological aspects of IRI in liver transplantation remained poorly explored. METHODS We designed a pilot study to assess intrahepatic immune responses to HOPE compared with SCS (6 patients in each group). We explored immunologic and inflammatory pathways using both bulk RNA-sequencing and single-cell multiparametric flow cytometry analyses from liver biopsies performed on the graft before and after transplantation. RESULTS Despite a limited number of patients and heterogeneous effects on IRI, we observed immune changes in liver biopsies before and after organ storage and distinct functional modulations of intrahepatic immune cells from the transplanted liver that underwent SCS versus HOPE. A significant increase of infiltrated monocytes, conventional type 2 dendritic cells (cDC2s), and neutrophils (P < 0.05) and a trend toward reduced immune cell viability were observed after SCS but not after HOPE. CONCLUSIONS This pilot study did not allow us to conclude on IRI but showed that HOPE perfusion dampens liver infiltration of some innate immune cells. It reveals that the inclusion of additional transplanted patients and analysis of later time points after transplantation are needed to draw a definitive conclusion. However, it can guide future studies evaluating the development of new strategies to prevent IRI.
Collapse
Affiliation(s)
- Caroline Aspord
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Zuzana Macek Jílková
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Agnes Bonadona
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Theophile Gerster
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Mickael Lesurtel
- Department of HPB Surgery and Liver Transplantation, Beaujon Hospital, APHP, University of Paris Cité, Paris, France
| | - Edouard Girard
- Service de Chirurgie Digestive et Générale, Hôpital Michallon, Centre Hospitalier Universitaire Grenoble-Alpes, Boulevard de la Chantourne, La Tronche, France
| | - Philippe Saas
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Zhang IW, Lurje I, Lurje G, Knosalla C, Schoenrath F, Tacke F, Engelmann C. Combined Organ Transplantation in Patients with Advanced Liver Disease. Semin Liver Dis 2024; 44:369-382. [PMID: 39053507 PMCID: PMC11449526 DOI: 10.1055/s-0044-1788674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Transplantation of the liver in combination with other organs is an increasingly performed procedure. Over the years, continuous improvement in survival could be realized through careful patient selection and refined organ preservation techniques, in spite of the challenges posed by aging recipients and donors, as well as the increased use of steatotic liver grafts. Herein, we revisit the epidemiology, allocation policies in different transplant zones, indications, and outcomes with regard to simultaneous organ transplants involving the liver, that is combined heart-liver, liver-lung, liver-kidney, and multivisceral transplantation. We address challenges surrounding combined organ transplantation such as equity, utility, and logistics of dual organ implantation, but also advantages that come along with combined transplantation, thereby focusing on molecular mechanisms underlying immunoprotection provided by the liver to the other allografts. In addition, the current standing and knowledge of machine perfusion in combined organ transplantation, mostly based on center experience, will be reviewed. Notwithstanding all the technical advances, shortage of organs, and the lack of universal eligibility criteria for certain multi-organ combinations are hurdles that need to be tackled in the future.
Collapse
Affiliation(s)
- Ingrid Wei Zhang
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin, Berlin, Germany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Sun R, Wang N, Zheng S, Wang H, Xie H. Nanotechnology-based Strategies for Molecular Imaging, Diagnosis, and Therapy of Organ Transplantation. Transplantation 2024; 108:1730-1748. [PMID: 39042368 DOI: 10.1097/tp.0000000000004913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Organ transplantation is the preferred paradigm for patients with end-stage organ failures. Despite unprecedented successes, complications such as immune rejection, ischemia-reperfusion injury, and graft dysfunction remain significant barriers to long-term recipient survival after transplantation. Conventional immunosuppressive drugs have limited efficacy because of significant drug toxicities, high systemic immune burden, and emergence of transplant infectious disease, leading to poor quality of life for patients. Nanoparticle-based drug delivery has emerged as a promising medical technology and offers several advantages by enhancing the delivery of drug payloads to their target sites, reducing systemic toxicity, and facilitating patient compliance over free drug administration. In addition, nanotechnology-based imaging approaches provide exciting diagnostic methods for monitoring molecular and cellular changes in transplanted organs, visualizing immune responses, and assessing the severity of rejection. These noninvasive technologies are expected to help enhance the posttransplantation patient survival through real time and early diagnosis of disease progression. Here, we present a comprehensive review of nanotechnology-assisted strategies in various aspects of organ transplantation, including organ protection before transplantation, mitigation of ischemia-reperfusion injury, counteraction of immune rejection, early detection of organ dysfunction posttransplantation, and molecular imaging and diagnosis of immune rejection.
Collapse
Affiliation(s)
- Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Gheorghe G, Diaconu CC, Bungau S, Bacalbasa N, Motas N, Ionescu VA. Biliary and Vascular Complications after Liver Transplantation-From Diagnosis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:850. [PMID: 37241082 PMCID: PMC10221850 DOI: 10.3390/medicina59050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
The last decades have brought impressive advances in liver transplantation. As a result, there was a notable rise in the number of liver transplants globally. Advances in surgical techniques, immunosuppressive therapies and radiologically guided treatments have led to an improvement in the prognosis of these patients. However, the risk of complications remains significant, and the management of liver transplant patients requires multidisciplinary teams. The most frequent and severe complications are biliary and vascular complications. Compared to vascular complications, biliary complications have higher incidence rates but a better prognosis. The early diagnosis and selection of the optimal treatment are crucial to avoid the loss of the graft and even the death of the patient. The development of minimally invasive techniques prevents surgical reinterventions with their associated risks. Liver retransplantation remains the last therapeutic solution for graft dysfunction, one of the main problems, in this case, being the low number of donors.
Collapse
Affiliation(s)
- Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Department of Visceral Surgery, Center of Excellence in Translational Medicine “Fundeni” Clinical Institute, 022328 Bucharest, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicolae Bacalbasa
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Department of Visceral Surgery, Center of Excellence in Translational Medicine “Fundeni” Clinical Institute, 022328 Bucharest, Romania
| | - Natalia Motas
- Institute of Oncology “Profesor Doctor Alexandru Trestioreanu” Bucharest, 022328 Bucharest, Romania;
- Department of Thoracic Surgery, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Vlad-Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (G.G.); (N.B.); (V.-A.I.)
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
6
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
7
|
Hofmann J, Pühringer M, Steinkellner S, Holl AS, Meszaros AT, Schneeberger S, Troppmair J, Hautz T. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants (Basel) 2022; 12:antiox12010031. [PMID: 36670893 PMCID: PMC9855021 DOI: 10.3390/antiox12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The implementation of ex vivo organ machine perfusion (MP) into clinical routine undoubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its underlying mechanisms in a near to physiological setting. However, research using whole organs is limited and associated with high costs. Here, in vitro models well suited for early stage research or for studying particular disease mechanisms come into play. While cell lines convince with simplicity, they do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide an even closer modelling of physiologic organ function and spatial orientation. In this review, we discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro models to further study the underlying mechanisms and to pretest potential treatment strategies.
Collapse
|
8
|
Jager NM, Venema LH, Arykbaeva AS, Meter-Arkema AH, Ottens PJ, van Kooten C, Mollnes TE, Alwayn IPJ, Leuvenink HGD, Pischke SE. Complement Is Activated During Normothermic Machine Perfusion of Porcine and Human Discarded Kidneys. Front Immunol 2022; 13:831371. [PMID: 35911712 PMCID: PMC9327788 DOI: 10.3389/fimmu.2022.831371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The gap between demand and supply of kidneys for transplantation necessitates the use of kidneys from extended criteria donors. Transplantation of these donor kidneys is associated with inferior results, reflected by an increased risk of delayed graft function. Inferior results might be explained by the higher immunogenicity of extended criteria donor kidneys. Normothermic machine perfusion (NMP) could be used as a platform to assess the quality and function of donor kidneys. In addition, it could be useful to evaluate and possibly alter the immunological response of donor kidneys. In this study, we first evaluated whether complement was activated during NMP of porcine and human discarded kidneys. Second, we examined the relationship between complement activation and pro-inflammatory cytokines during NMP. Third, we assessed the effect of complement activation on renal function and injury during NMP of porcine kidneys. Lastly, we examined local complement C3d deposition in human renal biopsies after NMP. Methods NMP with a blood-based perfusion was performed with both porcine and discarded human kidneys for 4 and 6 h, respectively. Perfusate samples were taken every hour to assess complement activation, pro-inflammatory cytokines and renal function. Biopsies were taken to assess histological injury and complement deposition. Results Complement activation products C3a, C3d, and soluble C5b-9 (sC5b-9) were found in perfusate samples taken during NMP of both porcine and human kidneys. In addition, complement perfusate levels positively correlated with the cytokine perfusate levels of IL-6, IL-8, and TNF during NMP of porcine kidneys. Porcine kidneys with high sC5b-9 perfusate levels had significantly lower creatinine clearance after 4 h of NMP. In line with these findings, high complement perfusate levels were seen during NMP of human discarded kidneys. In addition, kidneys retrieved from brain-dead donors had significantly higher complement perfusate levels during NMP than kidneys retrieved from donors after circulatory death. Conclusion Normothermic kidney machine perfusion induces complement activation in porcine and human kidneys, which is associated with the release of pro-inflammatory cytokines and in porcine kidneys with lower creatinine clearance. Complement inhibition during NMP might be a promising strategy to reduce renal graft injury and improve graft function prior to transplantation.
Collapse
Affiliation(s)
- Neeltina M. Jager
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Leonie H. Venema
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Asel S. Arykbaeva
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Anita H. Meter-Arkema
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Petra J. Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Cees van Kooten
- LUMC Transplant Center, Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E. Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ian P. J. Alwayn
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Soeren E. Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
9
|
Leber B, Schlechter S, Weber J, Rohrhofer L, Niedrist T, Aigelsreiter A, Stiegler P, Schemmer P. Experimental long-term sub-normothermic machine perfusion for non-allocable human liver grafts: first data towards feasibility. Eur Surg 2022. [DOI: 10.1007/s10353-022-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Summary
Background
Patients with end-stage liver disease can only be cured by liver transplantation. Due to the gap between demand and supply, surgeons are forced to use expanded criteria donor (ECD) organs, which are more susceptible to ischemia–reperfusion injury (IRI). Therefore, enhanced storing techniques are required. Machine perfusion (MP) has moved into the spotlight of research because of its feasibility for investigating liver function prior to implantation. However, as the perfect MP protocol has not yet been found, we aimed to investigate the potential of sub-normothermic (SN)MP in this field.
Methods
Non-allocable human livers were subjected to 24 h of SNMP at 21 °C after delivery to the study team. Perfusion was performed with Custodiol® (Dr. Franz Köhler Chemie, Bensheim, Germany) or Belzer MPS® (Bridge to Life Europe, London, UK) and perfusate liver parameters were determined. For determination of biliary conditions, pH, glucose, and HCO3- levels were measured.
Results
Liver parameters were slightly increased irrespective of perfusate or reason for liver rejection during 24 h of perfusion. Six livers failed to produce bile completely, whereas the remaining 10 livers produced between 2.4 ml and 179 ml of bile. Biliary carbonate was increased in all but one liver. The bile-glucose-to-perfusate-glucose ratio was near 1 for most of the organs and bile pH was above 7 in all but one case.
Conclusion
This study provides promising data on the feasibility of long-term SNMP as a tool to gain time during MP to optimize ECD organs to decrease the gap between organ demand and supply.
Long-term (24 h) sub-normothermic liver machine perfusion seems to be possible, although some adjustments to the protocol might be necessary to improve the general outcome. This has so far been shown for normothermic machine perfusion, bearing some drawbacks compared to the sub-normothermic variant.
Collapse
|
10
|
Jägers J, Kirsch M, Cantore M, Karaman O, Ferenz KB. Artificial oxygen carriers in organ preservation: Dose dependency in a rat model of ex-vivo normothermic kidney perfusion. Artif Organs 2022; 46:1783-1793. [PMID: 35435266 DOI: 10.1111/aor.14264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Organ preservation through ex-vivo normothermic perfusion (EVNP) with albumin-derived perfluorocarbon-based artificial oxygen carriers (A-AOCs) consisting of albumin-derived perfluorodecalin-filled nanocapsules prior to transplantation would be a promising approach to avoid hypoxic tissue injury during organ storage. METHODS The kidneys of 16 rats underwent EVNP for 2 h with plasma-like solution (5% bovine serum albumin, Ringer-Saline, inulin) with or without A-AOCs in different volume fractions (0%, 2%, 4%, or 8%). Cell death was determined using TdT-mediated dUTP-biotin nick end labeling (TUNEL). Aspartate transaminase (AST) activity in both perfusate and urine as well as the glomerular filtration rate (GFR) were determined. The hypoxia inducible factors 1α and 2α (HIF-1α und -2α) were quantified in tissue homogenates. RESULTS GFR was substantially decreased in the presence of 0%, 2%, and 8% A-AOC but not of 4%. In accordance, hypoxia-mediated cell death, as indicated by both AST activity and TUNEL-positive cells, was significantly decreased in the 4% group compared to the control group. The stabilization of HIF-1α and 2α decreased with 4% and 8% but not with 2% A-AOCs. CONCLUSION The dosage of 4% A-AOCs in EVNP was most effective in maintaining the physiological renal function.
Collapse
Affiliation(s)
- Johannes Jägers
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Michael Kirsch
- Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Miriam Cantore
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ozan Karaman
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,CeNIDE (Center for Nanointegration Duisburg-Essen) University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
11
|
Baroni S, Marudi A, Rinaldi S, Ghedini S, Magistri P, Piero Guerrini G, Olivieri T, Dallai C, Talamonti M, Maccieri J, Benedetto FD, Bertellini E. Cytokine mass balance levels in donation after circulatory death donors using hemoadsorption: Case series report. Int J Artif Organs 2022; 45:642-646. [PMID: 35426347 DOI: 10.1177/03913988221091288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of hemadsorption has been purposed to reduce cytokine levels during the reperfusion phase during donation after circulatory death (DCD) programs. This paper aims to describe a cases series of the inflammatory cytokine levels before and after hemadsorption during normothermic reperfusion in DCD donors of liver and kidneys. In this observational pilot paper, we describe 8 DCD donors of liver or kidneys in our center from the year 2018 to 2019. All DCD donor subjects had similar age, were younger than 60 years, without evident critical conditions, no liver or kidney dysfunction known, and they presented with poor neurological outcomes instrumentally and clinically documented. We observed in our patients an interesting reduction of IL-10 and TNF-α levels during the normothermic reperfusion with hemadsorption. We transplanted all livers and kidneys from DCD donors without significant compliances.
Collapse
Affiliation(s)
- Stefano Baroni
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Andrea Marudi
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Simone Rinaldi
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Silvia Ghedini
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Bologna, Italy
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Piero Guerrini
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Olivieri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Dallai
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Marta Talamonti
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Jessica Maccieri
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Bologna, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Bertellini
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| |
Collapse
|
12
|
Steiner R, Weijler AM, Wekerle T, Sprent J, Pilat N. Impact of Graft-Resident Leucocytes on Treg Mediated Skin Graft Survival. Front Immunol 2021; 12:801595. [PMID: 34912349 PMCID: PMC8666425 DOI: 10.3389/fimmu.2021.801595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023] Open
Abstract
The importance and exact role of graft-resident leucocytes (also referred to as passenger leucocytes) in transplantation is controversial as these cells have been reported to either initiate or retard graft rejection. T cell activation to allografts is mediated via recognition of intact or processed donor MHC molecules on antigen-presenting cells (APC) as well as through interaction with donor-derived extracellular vesicles. Reduction of graft-resident leucocytes before transplantation is a well-known approach for prolonging organ survival without interfering with the recipient's immune system. As previously shown by our group, injecting mice with IL-2/anti-IL-2 complexes (IL-2cplx) to augment expansion of CD4 T regulatory cells (Tregs) induces tolerance towards islet allografts, and also to skin allografts when IL-2cplx treatment is supplemented with rapamycin and a short-term treatment of anti-IL-6. In this study, we investigated the mechanisms by which graft-resident leucocytes impact graft survival by studying the combined effects of IL-2cplx-mediated Treg expansion and passenger leucocyte depletion. For the latter, effective depletion of APC and T cells within the graft was induced by prior total body irradiation (TBI) of the graft donor. Surprisingly, substantial depletion of donor-derived leucocytes by TBI did not prolong graft survival in naïve mice, although it did result in augmented recipient leucocyte graft infiltration, presumably through irradiation-induced nonspecific inflammation. Notably, treatment with the IL-2cplx protocol prevented early inflammation of irradiated grafts, which correlated with an influx of Tregs into the grafts. This finding suggested there might be a synergistic effect of Treg expansion and graft-resident leucocyte depletion. In support of this idea, significant prolongation of skin graft survival was achieved if we combined graft-resident leucocyte depletion with the IL-2cplx protocol; this finding correlated along with a progressive shift in the composition of T cells subsets in the grafts towards a more tolerogenic environment. Donor-specific humoral responses remained unchanged, indicating minor importance of graft-resident leucocytes in anti-donor antibody development. These results demonstrate the importance of donor-derived leucocytes as well as Tregs in allograft survival, which might give rise to new clinical approaches.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna M. Weijler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria,Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,*Correspondence: Nina Pilat,
| |
Collapse
|
13
|
Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS NANO 2021; 15:17124-17136. [PMID: 34714050 PMCID: PMC9050969 DOI: 10.1021/acsnano.1c04707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted delivery of therapeutics through the use of nanoparticles (NPs) has emerged as a promising method that increases their efficacy and reduces their side effects. NPs can be tailored to localize to selective tissues through conjugation to ligands that bind cell-specific receptors. Although the vast majority of nanodelivery platforms have focused on cancer therapy, efforts have begun to introduce nanotherapeutics to the fields of immunology as well as transplantation. In this review, we provide an overview from a clinician's perspective of current nanotherapeutic strategies to treat solid organ transplants with NPs during the time interval between organ harvest from the donor and placement into the recipient, an innovative technology that can provide major benefits to transplant patients. The use of ex vivo normothermic machine perfusion (NMP), which is associated with preserving the function of the organ following transplantation, also provides an ideal opportunity for a localized, sustained, and controlled delivery of nanotherapeutics to the organ during this critical time period. Here, we summarize previous endeavors to improve transplantation outcomes by treating the organ with NPs prior to placement in the recipient. Investigations in this burgeoning field of research are promising, but more extensive studies are needed to overcome the physiological challenges to achieving effective nanotherapeutic delivery to transplanted organs discussed in this review.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joren C. Madsen
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
14
|
Nakagiri T, Wrenger S, Sivaraman K, Ius F, Goecke T, Zardo P, Grau V, Welte T, Haverich A, Knöfel AK, Janciauskiene S. α1-Antitrypsin attenuates acute rejection of orthotopic murine lung allografts. Respir Res 2021; 22:295. [PMID: 34789247 PMCID: PMC8597316 DOI: 10.1186/s12931-021-01890-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background α1-Antitrypsin (AAT) is an acute phase glycoprotein, a multifunctional protein with proteinase inhibitory, anti-inflammatory and cytoprotective properties. Both preclinical and clinical experiences show that the therapy with plasma purified AAT is beneficial for a broad spectrum of inflammatory conditions. The potential effects of AAT therapy have recently been highlighted in lung transplantation (LuTx) as well. Methods We used a murine fully mismatched orthotopic single LuTx model (BALB/CJ as donors and C57BL/6 as recipients). Human AAT preparations (5 mg, n = 10) or vehicle (n = 5) were injected to the recipients subcutaneously prior to and intraperitoneally immediately after the LuTx. No immune suppressive drugs were administered. Three days after the transplantation, the mice were sacrificed, and biological samples were assessed. Results Histological analysis revealed significantly more severe acute rejection in the transplanted lungs of controls than in AAT treated mice (p < 0.05). The proportion of neutrophil granulocytes, B cells and the total T helper cell populations did not differ between two groups. There was no significant difference in serum CXCL1 (KC) levels. However, when compared to controls, human AAT was detectable in the serum of mice treated with AAT and these mice had a higher serum anti-elastase activity, and significantly lower proportion of Th1 and Th17 among all Th cells. Cleaved caspase-3-positive cells were scarce but significantly less abundant in allografts from recipients treated with AAT as compared to those treated with vehicle. Conclusion Therapy with AAT suppresses the acute rejection after LuTx in a mouse model. The beneficial effects seem to involve anti-protease and immunomodulatory activities of AAT.
Collapse
Affiliation(s)
- Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Fabio Ius
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
15
|
Jakubauskas M, Jakubauskiene L, Leber B, Strupas K, Stiegler P, Schemmer P. Machine Perfusion in Liver Transplantation: A Systematic Review and Meta-Analysis. Visc Med 2021; 38:243-254. [PMID: 36160822 PMCID: PMC9421699 DOI: 10.1159/000519788] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022] Open
Abstract
Background Liver transplantation (LTx) is the only treatment option for patients with end-stage liver disease. Novel organ preservation techniques such as hypothermic machine perfusion (HMP) or normothermic machine perfusion (NMP) are under investigation in order to improve organ quality from extended criteria donors and donors after circulatory death. The aim of this study was to systematically review the literature reporting LTx outcomes using NMP or HMP compared to static cold storage (SCS). Methods The following data were retrieved: graft primary nonfunction rate, early allograft dysfunction (EAD) rate, biliary complication rate, and 12-month graft and patient survival. A total of 15 studies were included (6 NMP and 9 HMP studies), and meta-analysis was performed only for HMP studies because NMP had considerable differences. Results The systematic review showed the potential of NMP to reduce graft injury and lower the liver graft discard rate. The performed quantitative analyses showed that the use of HMP reduces the rate of EAD (odds ratio [OR] 0.51; 95% confidence interval [CI] 0.34–0.76; p = 0.001; I2 = 0%) and non-anastomotic biliary strictures (OR 0.34; 95% CI 0.17–0.67; p = 0.002; I2 = 0%) compared to SCS. Conclusion Our systematic review and meta-analysis revealed that the use of HMP reduces the rate of EAD and non-anastomotic biliary strictures compared to SCS.
Collapse
Affiliation(s)
- Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- *Philipp Stiegler,
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Hosgood SA, Brown RJ, Nicholson ML. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021; 105:e202-e214. [PMID: 33982904 PMCID: PMC8549459 DOI: 10.1097/tp.0000000000003679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
The use of cold preservation solutions to rapidly flush and cool the kidney followed by static cold storage in ice has been the standard kidney preservation technique for the last 50 y. Nonetheless, changing donor demographics that include organs from extended criteria donors and donation after circulatory death donors have led to the adoption of more diverse techniques of preservation. Comparison of hypothermic machine perfusion and static cold storage techniques for deceased donor kidneys has long been debated and is still contested by some. The recent modification of hypothermic machine perfusion techniques with the addition of oxygen or perfusion at subnormothermic or near-normothermic temperatures are promising strategies that are emerging in clinical practice. In addition, the use of normothermic regional perfusion to resuscitate abdominal organs of donation after circulatory death donors in situ before cold flushing is also increasingly being utilized. This review provides a synopsis of the different types of preservation techniques including their mechanistic effects and the outcome of their application in clinical practice for different types of donor kidney.
Collapse
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel J. Brown
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael L. Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
17
|
Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants (Basel) 2021; 10:antiox10081263. [PMID: 34439511 PMCID: PMC8389232 DOI: 10.3390/antiox10081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after renal transplantation is a complex biochemical process. The first component is an ischemic phase during kidney storage. The second is reperfusion, the main source of oxidative stress. This study aimed to analyze the activity of enzymes and concentrations of non-enzymatic compounds involved in the antioxidant defense mechanisms: glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST), thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), measured in preservation fluid before transplantation of human kidneys (KTx) grafted from brain dead donors. The study group (N = 66) was divided according to the method of kidney storage: Group 1—hypothermic machine perfusion (HMP) in LifePort perfusion pump, n1 = 26, and Group 2—static cold storage (SCS), n2 = 40. The measurements of kidney function parameters, blood count, and adverse events were performed at constant time points during 7-day hospitalization and 3-month follow-up. Kidney perfusate in Group 2 was characterized by significantly more acidic pH (p < 0.0001), higher activity of GPX [U/mgHb] (p < 0.05) and higher concentration of MDA [μmol/L] (p < 0.05). There was a statistically significant improvement of kidney function and specific blood count alterations concerning storage method in repeated measures. There were aggregations of significant correlations (p < 0.05) between kidney function parameters after KTx and oxidative stress markers: diuresis & CAT, Na+ & CAT, K+ & GPX, urea & GR. There were aggregations of significant correlations (p < 0.05) between recipient blood count and oxidative stress markers: CAT & MON, SOD & WBC, SOD & MON. Study groups demonstrated differences concerning the method of kidney storage. A significant role of recipient’s gender, gender matching, preservation solution, and perfusate pH was not confirmed, however, basing on analyzed data, the well-established long-term beneficial impact of HMP on the outcome of transplanted kidneys might partially depend on the intensity of IRI ischemic phase and oxidative stress, reflected by the examined biomarkers.
Collapse
|
18
|
Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion Injury in a Rat Model of Warm Ischemia. Int J Mol Sci 2021; 22:ijms22168373. [PMID: 34445081 PMCID: PMC8394613 DOI: 10.3390/ijms22168373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.
Collapse
|
19
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Savoye E, Legeai C, Branchereau J, Gay S, Riou B, Gaudez F, Veber B, Bruyere F, Cheisson G, Kerforne T, Badet L, Bastien O, Antoine C. Optimal donation of kidney transplants after controlled circulatory death. Am J Transplant 2021; 21:2424-2436. [PMID: 36576341 DOI: 10.1111/ajt.16425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 01/25/2023]
Abstract
Controlled donation after circulatory death (cDCD) is used for "extended criteria" donors with poorer kidney transplant outcomes. The French cDCD program started in 2015 and is characterized by normothermic regional perfusion, hypothermic machine perfusion, and short cold ischemia time. We compared the outcomes of kidney transplantation from cDCD and brain-dead (DBD) donors, matching cDCD and DBD kidney transplants by propensity scoring for donor and recipient characteristics. The matching process retained 442 of 499 cDCD and 809 of 6185 DBD transplantations. The DGF rate was 20% in cDCD recipients compared with 28% in DBD recipients (adjusted relative risk [aRR], 1.43; 95% confidence interval [CI] 1.12-1.82). When DBD transplants were ranked by cold ischemia time and machine perfusion use and compared with cDCD transplants, the aRR of DGF was higher for DBD transplants without machine perfusion, regardless of the cold ischemia time (aRR with cold ischemia time <18 h, 1.57; 95% CI 1.20-2.03, vs aRR with cold ischemia time ≥18 h, 1.79; 95% CI 1.31-2.44). The 1-year graft survival rate was similar in both groups. Early outcome was better for kidney transplants from cDCD than from matched DBD transplants with this French protocol.
Collapse
Affiliation(s)
- Emilie Savoye
- Agence de la biomédecine, Direction Prélèvement Greffe Organes-Tissus, Saint-Denis La Plaine, France
| | - Camille Legeai
- Agence de la biomédecine, Direction Prélèvement Greffe Organes-Tissus, Saint-Denis La Plaine, France
| | - Julien Branchereau
- Department of Urology, Nantes University Hospital, University of Nantes, Nantes, France
| | - Samuel Gay
- Intensive Care Unit, Centre Hospitalier Annecy-genevois, Annecy, France
| | - Bruno Riou
- Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francois Gaudez
- Department of Urology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benoit Veber
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | | | - Gaelle Cheisson
- Department of Surgical Anesthesia and Intensive Care, South Paris University hospital, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomas Kerforne
- Anesthesia and Intensive Care Unit, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Lionel Badet
- Groupement Hospitalier Edouard Herriot, Service d'urologie chirurgie de la Transplantation, Lyon, France
| | - Olivier Bastien
- Agence de la biomédecine, Direction Prélèvement Greffe Organes-Tissus, Saint-Denis La Plaine, France
| | - Corinne Antoine
- Agence de la biomédecine, Direction Prélèvement Greffe Organes-Tissus, Saint-Denis La Plaine, France
| | | |
Collapse
|
21
|
The Role of Endothelins, IL-18, and NGAL in Kidney Hypothermic Machine Perfusion. Biomedicines 2021; 9:biomedicines9040417. [PMID: 33924469 PMCID: PMC8069867 DOI: 10.3390/biomedicines9040417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) occurring after renal transplantation is a complex biochemical process that can be monitored by specific biomarkers. The roles of those are not yet fully elucidated. The aim of this study was to analyze the concentrations of endothelins (ET-1, ET-2, and ET-3), interleukin-18 (IL-18), and neutrophil gelatinase-associated lipocalin (NGAL) during the reperfusion of human kidneys grafted from brain dead donors and later transplanted. The study group (n = 44) was analyzed according to the method of kidney storage: Group 1 underwent hypothermic machine perfusion (HMP) in the LifePort perfusion pump (n = 22), and Group 2 underwent static cold storage (SCS) (n = 22). The analysis of kidney function was performed daily during the first seven days after transplantation. The kidneys in Group 1 were characterized by higher absolute concentrations of ET-1, IL-18, and NGAL, as well as a lower concentration of ET-2 (p = 0.017) and ET-3. The relative increase of ET-1 (p = 0.033), ET-2, and ET-3 during reperfusion was lower in this group, while the relative decrease of NGAL was higher. Group 1 was also characterized by significant decrease of IL-18 (p = 0.026) and a tendency for better kidney function based on the higher total diuresis, higher glomerular filtration rate (GFR), higher potassium level, lower serum creatinine, and lower urea concentration during the seven-day postoperative observation period. The long-term beneficial impact of hypothermic machine perfusion on the outcome of transplanted kidneys may rely on the early modified proceedings and intensity of ischemia-reperfusion injury reflected by the dynamics of the concentrations of examined biomarkers.
Collapse
|
22
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The Role of Metabolomics in Current Concepts of Organ Preservation. Int J Mol Sci 2020; 21:ijms21186607. [PMID: 32927605 PMCID: PMC7555311 DOI: 10.3390/ijms21186607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
In solid organ transplantation (Tx), both survival rates and quality of life have improved dramatically over the last few decades. Each year, the number of people on the wait list continues to increase, widening the gap between organ supply and demand. Therefore, the use of extended criteria donor grafts is growing, despite higher susceptibility to ischemia-reperfusion injury (IRI) and consecutive inferior Tx outcomes. Thus, tools to characterize organ quality prior to Tx are crucial components for Tx success. Innovative techniques of metabolic profiling revealed key pathways and mechanisms involved in IRI occurring during organ preservation. Although large-scale trials are needed, metabolomics appears to be a promising tool to characterize potential biomarkers, for the assessment of graft quality before Tx and evaluate graft-related outcomes. In this comprehensive review, we summarize the currently available literature on the use of metabolomics in solid organ Tx, with a special focus on metabolic profiling during graft preservation to assess organ quality prior to Tx.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|