1
|
Li Y, Wang K. Clinical analysis of 163 pediatric patients with infectious mononucleosis: a single-center retrospective analysis. Immun Inflamm Dis 2024; 12:e70020. [PMID: 39279442 PMCID: PMC11403186 DOI: 10.1002/iid3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE This study aims to enhance the management of Epstein-Barr Virus (EBV) infections by analyzing the correlation between laboratory indicators and clinical manifestations in children, thereby proposing more precise diagnostic and treatment strategies. METHODS In this retrospective study included 163 pediatric patients with EBV infections treated at the Children's Hospital of Soochow University from December 2017 to December 2019. Data collected through retrospective analysis included gender, age, clinical symptoms, signs, liver function tests, T-cell subset distribution, EBV-DNA copy numbers in plasma, and treatment outcomes. Patients were grouped based on EBV-DNA copy numbers in plasma and hospital stay duration to compare clinical indicators across different groups. RESULTS The dichotomous results of EBV-DNA copy numbers in plasma showed that the two groups of children were significantly different in the number of days of fever (p = .0022), platelet count (p = .0212), ALT (p = .001), immunoglobulin IgM (p = .0039), IgG (p = .0195), TBiL (p = .025), LDH (p = 0.0001), and length of hospital stay (p < .001) were significantly different, indicating that EBV-DNA copy numbers in plasma may be correlated with these characteristic variables. The dichotomous results of the length of hospital stay showed that the two groups were significantly increased in tonsil enlargement (p = .0024), platelet count (p = .0059), LDH (p = .0394), and ferritin (p = .0106) and EBV-DNA copy numbers in plasma (p = 0.0361) were significantly different, This suggests a potential correlation between EBV-DNA copy numbers in plasma and these clinical indicators. CONCLUSION Variations in platelet counts and lactate dehydrogenase (LDH) levels in children with EBV infections may serve as indicators of clinical outcomes.
Collapse
Affiliation(s)
- Yan Li
- Department of Infectious Diseases, Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child Health.3333 Binsheng Road, Binjiang DistrictHangzhouChina
| | - Kun Wang
- Department of Infectious DiseaseChildren's Hospital of Soochow UniversityNo.92 Zhongnan StreetSuzhouChina
| |
Collapse
|
2
|
Suzuki Y. B cell targeting in IgA nephropathy. Nephrology (Carlton) 2024; 29 Suppl 2:39-43. [PMID: 39327767 DOI: 10.1111/nep.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/28/2024]
Abstract
The "multi-hit theory/4-hit theory" pathogenesis hypothesis is widely accepted and IgA nephropathy (IgAN) is understood to be a disease originating from Hit 1, galactose deficient IgA1 (GdIgA1). The chronic repetitive activation of the complement pathway (alternative and lectin pathways) and the subsequent inflammation results in progressive glomerular damage that spills over into increased intraglomerular pressure and other hemodynamic changes, increased urinary protein, glomerulosclerosis, and tubulointerstitial fibrosis. The basic pathophysiology of this disease is the progression of a mixture of such acute and chronic pathologies. Currently, a number of new drugs has emerged as promising agents, such as complement regulators, endothelin receptor antagonists, and SGLT2 inhibitors, which are associated with each pathological step after glomerular deposition of GdIgA1/immune complexes. On the other hand, the molecular mechanisms of GdIgA1 production are gradually being elucidated, and the development of several novel therapeutic agents targeting the responsible B cells and their international clinical trials are progressing. These agents that inhibit or control the production of the Hit1, GdIgA1, are highly expected as essential therapies for this disease. The large body of clinical and basic research findings to date strongly suggest that nephritogenic GdIgA1 is a polymeric IgA1 of mucosal origin. In addition, the B cells involved in its nephritogenic GdIgA1 production are mainly differentiated mature B cells such as plasma cells, which may migrate to the bone marrow as well as the mucosa. The innate immune system in the mucosa, especially Toll-like receptors (TLRs), is thought to be involved in their production. Among TLRs, TLT9 and TLR7, which recognize bacterial and viral unmethylated DNA and RNA, have been reported to be involved. The mucosal activation of these TLRs is associated with the production of APRIL (A Proliferation Inducing Ligand) and BAFF (B cell activating factor), which are TNF superfamily cytokines involved in B cell maturation, survival, and IgA class switching, and may also be involved in the production of nephritogenic GdIgA1. It is still inconclusive whether APRIL or BAFF is more closely involved in the production of nephritogenic GdIgA1. Phenotypes in transgenic animal models suggest BAFF involvement, however, a genome wide association study (GWAS) analysis of human IgAN has identified APRIL, not BAFF, as a candidate gene. Based on the above background, several international clinical trials are underway for drugs such as TLR regulators (hydroxychloroquine), anti-APRIL drugs, anti-BAFF drugs, APRIL/BAFF receptor (TACI) binding inhibitors, and cytoreductive drugs (proteasome inhibitors, anti-CD38 antibodies) to inhibit nephritogenic GdIgA1 production in responsible B cells. This session will provide an overview of the responsible B cells, their GdIgA1 production mechanism, and ongoing drugs.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Groza Y, Lacina L, Kuchař M, Rašková Kafková L, Zachová K, Janoušková O, Osička R, Černý J, Petroková H, Mierzwicka JM, Panova N, Kosztyu P, Sloupenská K, Malý J, Škarda J, Raška M, Smetana K, Malý P. Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells. Cell Commun Signal 2024; 22:261. [PMID: 38715108 PMCID: PMC11075285 DOI: 10.1186/s12964-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.
Collapse
Affiliation(s)
- Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic.
- Department of Dermatovenerology, 1st Faculty of Medicine, Charles University, U Nemocnice 2, Prague 2, 12000, Czech Republic.
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kateřina Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Olga Janoušková
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna Maria Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Natalya Panova
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Jan Malý
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Jozef Škarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
4
|
Tota M, Baron V, Musial K, Derrough B, Konieczny A, Krajewska M, Turkmen K, Kusztal M. Secondary IgA Nephropathy and IgA-Associated Nephropathy: A Systematic Review of Case Reports. J Clin Med 2023; 12:jcm12072726. [PMID: 37048809 PMCID: PMC10094848 DOI: 10.3390/jcm12072726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Primary (pIgAN), secondary IgA nephropathy (sIgAN), and IgA-associated nephropathy can be distinguished. While pIgAN has been thoroughly studied, information about the etiology of sIgAN remains scarce. As concerns sIgAN, several studies suggest that different etiologic factors play a role and ultimately lead to a pathophysiologic process similar to that of pIgAN. In this article, we review a vast number of cases in order to determine the novel putative underlying diseases of sIgAN. Moreover, updates on the common pathophysiology of primary disorders and sIgAN are presented. We identified liver, gastrointestinal, oncological, dermatological, autoimmune, and respiratory diseases, as well as infectious, iatrogenic, and environmental factors, as triggers of sIgAN. As novel biological therapies for listed underlying diseases emerge, we suggest implementing drug-induced sIgAN as a new significant category. Clinicians should acknowledge the possibility of sIgAN progression in patients treated with TNF-α inhibitors, IL-12/IL-23-inhibitors, immune checkpoint inhibitors, CTLA-4, oral anticoagulants, thioureylene derivatives, and anti-vascular endothelial growth factor drugs.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Vanessa Baron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
- Faculty of Dentistry, Wroclaw Medical University, 50-435 Wrocław, Poland
| | - Katie Musial
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Bouchra Derrough
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Andrzej Konieczny
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Kultigin Turkmen
- Division of Nephrology, Department of Internal Medicine, Meram Medical Faculty, Necmettin Erbakan University, Konya 42090, Turkey
| | - Mariusz Kusztal
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
5
|
Sallustio F, Picerno A, Montenegro F, Cimmarusti MT, Di Leo V, Gesualdo L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. Int J Mol Sci 2023; 24:3897. [PMID: 36835304 PMCID: PMC9964221 DOI: 10.3390/ijms24043897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The prokaryotic, viral, fungal, and parasitic microbiome exists in a highly intricate connection with the human host. In addition to eukaryotic viruses, due to the existence of various host bacteria, phages are widely spread throughout the human body. However, it is now evident that some viral community states, as opposed to others, are indicative of health and might be linked to undesirable outcomes for the human host. Members of the virome may collaborate with the human host to retain mutualistic functions in preserving human health. Evolutionary theories contend that a particular microbe's ubiquitous existence may signify a successful partnership with the host. In this Review, we present a survey of the field's work on the human virome and highlight the role of viruses in health and disease and the relationship of the virobiota with immune system control. Moreover, we will analyze virus involvement in glomerulonephritis and in IgA nephropathy, theorizing the molecular mechanisms that may be responsible for the crosslink with these renal diseases.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Teresa Cimmarusti
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Mestecky J, Julian BA, Raska M. IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease. Front Immunol 2023; 14:1085922. [PMID: 36865536 PMCID: PMC9973316 DOI: 10.3389/fimmu.2023.1085922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies, leading to formation of nephritogenic circulating immune complexes. Incidence of IgAN displays geographical and racial disparity: common in Europe, North America, Australia, and east Asia, uncommon in African Americans, many Asian and South American countries, Australian Aborigines, and rare in central Africa. In analyses of sera and cells from White IgAN patients, healthy controls, and African Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B cells infected with Epstein-Barr virus (EBV), leading to enhanced production of poorly galactosylated IgA1. Disparities in incidence of IgAN may reflect a previously disregarded difference in the maturation of the IgA system as related to the timing of EBV infection. Compared with populations with higher incidences of IgAN, African Americans, African Blacks, and Australian Aborigines are more frequently infected with EBV during the first 1-2 years of life at the time of naturally occurring IgA deficiency when IgA cells are less numerous than in late childhood or adolescence. Therefore, in very young children EBV enters "non-IgA" cells. Ensuing immune responses prevent infection of IgA B cells during later exposure to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly galactosylated IgA1 in circulating immune complexes and glomerular deposits in patients with IgAN. Thus, temporal differences in EBV primo-infection as related to naturally delayed maturation of the IgA system may contribute to geographic and racial variations in incidence of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
7
|
The Role of NLRP3 Inflammasome in IgA Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010082. [PMID: 36676706 PMCID: PMC9866943 DOI: 10.3390/medicina59010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease worldwide today. The NLRP3 inflammasome is a polyprotein complex and an important participant in inflammation. Accumulating studies have shown that the NLRP3 inflammasome participates in a variety of kidney diseases, including IgAN. This review focuses on the role of the NLRP3 inflammasome in IgAN and summarizes multiple involved pathways, which may provide novel treatments for IgAN treatment.
Collapse
|
8
|
Watanabe H, Fujishima F, Inokura K, Makino R, Daikoku K, Sasaki R, Ichinohasama R, Sato H, Joh K, Sasano H. Rapidly progressive glomerulonephritis in a patient with angioimmunoblastic T-cell lymphoma: a rare autopsy case showing IgA vasculitis and cylinder-like deposits. Med Mol Morphol 2022; 55:267-273. [PMID: 35657412 DOI: 10.1007/s00795-022-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), a hematological malignancy, originates from follicular helper T cells. The primary site of AITL is the lymph nodes, but extranodal presentation is frequent in patients with advanced stages. Here, we report a rare case of a patient with AITL presenting with rapidly progressive glomerulonephritis (RPGN). The patient underwent computed tomography, which showed systemic lymph node swelling. RPGN was noted at the time of admission. Livedo was observed in the lower limbs with purpura on the foot. The patient was diagnosed with AITL based on lymph node biopsy. Skin biopsy revealed vasculitis with immunoglobulin A (IgA) deposits. Renal biopsy revealed endocapillary proliferative glomerulonephritis with massive subendothelial deposits and intraluminal thrombi. Immunofluorescence showed IgA, IgG, and complement component 3c-predominant granular staining pattern in the capillary and mesangial areas. Electron micrographs demonstrated dense cylindrical-like deposits in the subendothelial space. Chemotherapy drugs were administered, but the patient's respiratory distress increased until death. Upon autopsy, membranoproliferative glomerulonephritis and extensive necrotizing cellular crescent formation were observed in the glomeruli. Taken together, this case is a rare combination of AITL and RPGN showing both cylinder-like deposits suggestive of cryoglobulinemic glomerulonephritis (CN) and IgA vasculitis.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kyoko Inokura
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Miyagi, Japan
| | - Rui Makino
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kensuke Daikoku
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Rui Sasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryo Ichinohasama
- Department of Hematopathology, Tohoku University Hospital, Miyagi, Japan
| | - Hiroshi Sato
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
9
|
Lavine N, Ohayon A, Mahroum N. Renal autoimmunity: The role of bacterial and viral infections, an extensive review. Autoimmun Rev 2022; 21:103073. [PMID: 35245692 DOI: 10.1016/j.autrev.2022.103073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
Autoimmunity is a process by which the loss of self-tolerance results in an immune attack against the body own tissues and organs. For autoimmunity to occur, various elements serving as triggers were described by which infections are considered one of the leading factors. In turn, renal involvement in autoimmune diseases, whether by an organ-specific attack, or as part of a systemic disease process, is well known. As bacterial and viral infections are considered to be common triggers for autoimmunity in general, we aimed to study their association with renal autoimmunity in particular. We performed an extensive search of the recent and relevant medical literature regarding renal autoimmunity syndromes such as infection-associated glomerulonephritis and vasculitis, associated with bacterial and viral infections. By utilizing PubMed and Google Scholar search engines, over 200 articles and case reports were reviewed. Among other mechanisms, direct infection of the renal parenchyma, molecular mimicry, induction of B-cells or secretion of superantigens, bacterial and viral pathogens were found to correlate with the development of renal autoimmunity. Nevertheless, this was not true for all pathogens, as some mimic autoimmune diseases and others show a surprisingly protective effect. The exact immunopathogenesis is yet to be determined, however. For conclusion, bacterial and viral infections are linked to renal autoimmunity by both direct damage and as mediators of systemic diseases. Further research particularly on the immunopathogenetic mechanisms of renal autoimmunity associated with infections is required.
Collapse
Affiliation(s)
- Noy Lavine
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel.
| | - Aviran Ohayon
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Naim Mahroum
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Zachova K, Jemelkova J, Kosztyu P, Ohyama Y, Takahashi K, Zadrazil J, Orsag J, Matousovic K, Galuszkova D, Petejova N, Mestecky J, Raska M. Galactose-Deficient IgA1 B cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors. J Am Soc Nephrol 2022; 33:908-917. [PMID: 35115327 PMCID: PMC9063893 DOI: 10.1681/asn.2021081086] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) primary glomerulonephritis is characterized by the deposition of circulating immune complexes (CIC) composed of polymeric (p)IgA1 molecules with altered O-glycans (Gd-IgA1) and anti-glycan antibodies in the kidney mesangium. The mesangial IgA deposits and serum IgA1 contain predominantly lambda (λ) light (L) chain, but the nature and origin of such IgA remains enigmatic Methods: We analyzed λ L chain expression in peripheral blood B cells of 30 IgAN patients, 30 healthy controls (HC), and 18 membranous nephropathy patients selected as disease controls (Non-IgAN). Results: In comparison to HC and Non-IgAN, in peripheral blood surface/membrane bound (mb)-Gd-IgA1+ cells from IgAN patients express predominantly λ L chain. In contrast, total mb-IgA+, mb-IgG+, and mb-IgM+ cells were preferentially positive for kappa (κ) L chain, in all analyzed groups. Although minor in comparison to κ L chain, λ L chain subsets of mb-IgG+, mb-IgM,+ and mb-IgA+ cells were significantly enriched in IgAN in comparison to Non-IgAN and/or HC. In contrast to HC, the peripheral blood of IgAN patients was enriched for λ+ mb-Gd-IgA1,+ CCR10,+ and CCR9+ cells, which preferentially home to the upper respiratory and digestive tract, respectively. Furthermore, we observed that mb-Gd-IgA1+ cell populations comprise more CD138+ cells and plasmablasts (CD38+) in comparison to total mb-IgA+ cells. Conclusions: Peripheral blood of IgAN patients is enriched for migratory λ+ mb-GdIgA1+ B cells, with the potential to home to mucosal sites where Gd-IgA1 could be produced during local respiratory or digestive tract infections.
Collapse
Affiliation(s)
- Katerina Zachova
- K Zachova, Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Jemelkova
- J Jemelkova, Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Kosztyu
- P Kosztyu, Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Yukako Ohyama
- Y Ohyama, Department of Biomedical Molecular Sciences, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kazuo Takahashi
- K Takahashi, Department of Biomedical Molecular Sciences, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Josef Zadrazil
- J Zadrazil, Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jiri Orsag
- J Orsag, Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Karel Matousovic
- K Matousovic, Department of Medicine, Charles University Second Faculty of Medicine, Praha, Czech Republic
| | - Dana Galuszkova
- D Galuszkova, Department of Transfusion Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| | - Nadezda Petejova
- N Petejova, Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jiri Mestecky
- J Mestecky, Departments of Microbiology and Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Milan Raska
- M Raska, Department of Immunology, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
11
|
Cao Y, Shen T, Li Y, Shuai L, Chen Q, Mo S, Li C, Li X, Wang Y, Wu X. A retrospective study on the characteristics of renal pathological grades in HSPN children with mild to moderate proteinuria. Front Pediatr 2022; 10:1029520. [PMID: 36467482 PMCID: PMC9718029 DOI: 10.3389/fped.2022.1029520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the characteristics of renal pathological grades in Henoch-Schönlein purpura nephritis (HSPN) children with mild to moderate proteinuria and the correlation between pathological grade and severity of proteinuria among this population. METHODS HSPN children who were presented with mild (150 mg <24 h urinary protein <25 mg/kg) to moderate (25 mg/kg ≤24 h urinary protein <50 mg/kg) proteinuria and performed renal biopsy without steroid ± immunosuppressant treatment in the Second Xiangya Hospital between January 2010 and March 2021 were involved. We retrospectively analyzed the correlation between age, disease course, degree of proteinuria, type of immunoglobulin deposits, C3 deposits in glomeruli and renal pathological grade. RESULTS (1) 72 HSPN children including 46 boys and 26 girls were included, with a mean age of onset of 9.01 ± 2.65 years old. The majority of these patients (62.5%) had a disease course between 1 week to 1 month. 51 patients presented with mild proteinuria and 21 patients with moderate proteinuria. (2) Renal biopsy results showed that ISKDC Grade IIIa were both predominant in mild proteinuria group (25, 49%) and moderate proteinuria group (11, 52.4%). 32 patients had grade II (44.4%), 2 had grade IIIb (2.8%), 1 had grade IV (1.4%), and 1 had grade VI (1.4%). There was no correlation between age, disease course and renal pathological grade (p > 0.05). (3) In patients with mild proteinuria (n = 51), 27 (52.9%) HSPN children had a pathological grade ≥ grade III. In patients with moderate proteinuria (n = 21), 13 (61.9%) HSPN children had grade ≥ III. There was no significant difference in the proportion of renal pathological grade between the 2 groups (p > 0.05). (4) There was no significant correlation between glomerular C3 deposits or immunoglobulin deposit types and renal pathological grade (p = 0.776 and p = 0.056 respectively). CONCLUSION In HSPN children with mild to moderate proteinuria, longer disease course or heavier urinary protein level is not completely parallel with higher renal pathological grade. ISKDC grade IIIa is the most common pathological grade. Clinicians should pay great attention to the renal injury in patients with mild to moderate proteinuria.
Collapse
Affiliation(s)
- Yan Cao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanjun Shuai
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoping Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuanghong Mo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Canlin Li
- Department of Digestive Nutrition, Hunan Children's Hospital, Changsha, China
| | - Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Epidemiology and Clinical Characteristics of Henoch-Schönlein Purpura Associated with Epstein-Barr Virus Infection. Mediterr J Hematol Infect Dis 2021; 13:e2021064. [PMID: 34804438 PMCID: PMC8577555 DOI: 10.4084/mjhid.2021.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/16/2021] [Indexed: 11/08/2022] Open
Abstract
Background Henoch-Schönlein purpura (HSP) is an immune-mediated vasculitis, and the formation of immune complexes may be triggered by exposure to Epstein-Barr virus (EBV) infection. Methods We performed a five-year case-control study to evaluate the epidemiology and clinical characteristics of HSP associated with EBV infection. Results The incidence of EBV-triggered HSP was 4.2%, while EBV infection in children with HSP was 0.9%; The EBV-triggered HSP cases had a significantly higher frequency of abdominal pain than the Mycoplasma Pneumoniae (MP)-triggered HSP group (χ2 = 8.024, p = 0.005); Significant differences were observed in the duration of abdominal pain (Z = -1.935, p = 0.027) between the two groups; C3 (t = 9.709, p < 0.001), IgA (t = 20.39, p < 0.001) and IgG (t = 6.407, p < 0.001) were significantly increased in the EBV infection group than those in the healthy control group. Notably, significantly higher proportion of CD19 (t = 6.773, p < 0.001) and lower proportion of CD56 (t = 11.13, p < 0.001) was found in EBV infection group compared with healthy control group. The IgA level was higher than that of the non-infectious group (t = 2.162, p = 0.032), but their CD4/CD8 ratio (t = 10.070, p < 0.001) and CD56 proportion (t = 2.096, p = 0.037) were significantly lower. Conclusions Both cellular and humoral immunity were involved in the pathogenesis of EBV-triggered HSP, leading to increased production of inflammatory mediators and immunoglobulins. Those events may cause or promote the development of systemic vessel vasculitis.
Collapse
|
13
|
Abstract
The precise pathogenesis of immunoglobulin A nephropathy (IgAN) is still not clearly established but emerging evidence confirms a pivotal role for mucosal immunity. This review focuses on the key role of mucosa-associated lymphoid tissue (MALT) in promoting the onset of the disease, underlying the relationship among microbiota, genetic factors, food antigen, infections, and mucosal immune response. Finally, we evaluate potential therapies targeting microbes and mucosa hyperresponsiveness in IgAN patients.
Collapse
|
14
|
Liu H, Liu D, Liu Y, Xia M, Li Y, Li M, Liu H. Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in IgA nephropathy. PeerJ 2020; 8:e10395. [PMID: 33344076 PMCID: PMC7719294 DOI: 10.7717/peerj.10395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) is immune-mediated primary glomerulonephritis, which is the most common reason leading to renal failure worldwide. The exact pathogenesis of IgAN is not well defined. Accumulating evidence indicates that circular RNAs (circRNAs) play crucial roles in the immune disease by involving in the competing endogenous RNA (ceRNA) network mechanism. At present, the studies of the circRNA profiles and circRNA-associated ceRNA networks in the IgAN are still scarce. This study aimed to elucidate the potential roles of circRNA-associated ceRNA networks of peripheral blood mononuclear cells (PBMCs) in IgAN patients Method CircRNA sequencing was used to identify the differential expressed circRNAs (DEcircRNAs) of PBMCs in IgAN and healthy controls; limma packages from data sets GSE25590 and GSE73953 in the Gene Expression Omnibus (GEO) database, were used to identify differentially expressed micro RNAs (miRNAs) and message RNAs (mRNAs). A circRNA-miRNA-mRNA ceRNA network was constructed to further investigate the mechanisms of IgAN. Then, GO analysis and KEGG enrichment analyses were used to annotate the genes involved in the circRNA-associated ceRNA network. Further, Protein-protein interaction (PPI) networks were established to screen potential hub genes, by using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Last, a quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the hub genes in the ceRNA network. Result A total of 145 circRNAs, 22 miRNAs, and 1,117 mRNAs were differentially expressed in IgAN compared with controls (P < 0.05). A ceRNA network was constructed which contained 16 DEcircRNAs, 72 differential expressed mRNAs (DEmRNAs) and 11 differential expressed miRNAs (DEmiRNAs). KEGG pathway enrichment analysis illustrated the underlying biological functions of the ceRNA-associated genes, such as Nitrogen compound metabolic process, COPII-coated ER to Golgi transport vesicle, CAMP response element protein binding process (P < 0.01); meanwhile, Hepatitis B, GnRH signaling, and Prion disease were the most significant enrichment GO terms (P < 0.01). PPI network based on STRING analysis identified 4 potentially hub genes. Finally, Ankyrin repeat and SOCS box containing 16 (ASB16), SEC24 homolog C, COPII coat complex component (SEC24C) were confirmed by qRT-PCR (P < 0.05) and were identified as the hub genes of the ceRNA network in our study. Conclusion Our study identified a novel circRNA-mediated ceRNA regulatory network mechanisms in the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yexin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Xia
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Li
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mei Li
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
15
|
Li H, Lu R, Pang Y, Li J, Cao Y, Fu H, Fang G, Chen Q, Liu B, Wu J, Zhou Y, Zhou J. Zhen-Wu-Tang Protects IgA Nephropathy in Rats by Regulating Exosomes to Inhibit NF-κB/NLRP3 Pathway. Front Pharmacol 2020; 11:1080. [PMID: 32765277 PMCID: PMC7381112 DOI: 10.3389/fphar.2020.01080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is one of the most frequent kinds of primary glomerulonephritis characterized by IgA immune complexes deposition and glomerular proliferation. Zhen-wu-tang (ZWT), a well-known traditional Chinese formula has been reported to ameliorate various kidney diseases. However, its pharmacological mechanism remains unclear. Exosomes have been described in diverse renal diseases by mediating cellular communication but rarely in the IgAN. The purpose of the present study is to explore whether the underlying mechanisms of the effect of ZWT on IgAN is correlated to exosomes. Our results demonstrated that in human renal tubular epithelial cells (HK-2) stimulated by lipopolysaccharide, exosomes are obviously released after ZWT-containing serum treatment especially with 10% ZWT. In addition, once released, HK-2-derived exosomes were uptaked by human mesangial cells (HMC), which impeded the activation of NF-κB/NLRP3 signaling pathway to exert anti-inflammatory effects in a lipopolysaccharide induced proliferation model. Moreover, IgAN rat model was established by bovine serum albumin, CCL4 mixed solution and LPS. We found that 10% ZWT could significantly promote the release of exosomes from HK-2 and inhibit HMC proliferation to improve inflammation. Thus HK-2-derived exosomes treated with 10% ZWT (ZWT-EXO) were administered to the rats by tail vein injection. Our results showed that ZWT-EXO decreased the levels of 24 h proteinuria, urinary erythrocyte, IgA deposition in glomerulus and renal pathological injury which ameliorated the kidney damage. In addition, ZWT was able to dramatically promote secretion of exosomes in renal tissues while blocked NF-κB nuclear translocation as well as activation of NLRP3 inflammasome, leading to the inhibition of IL-1β and caspase-1. In conclusion, our study reveal that ZWT has protective effects on IgAN by regulating exosomes secretion to inhibit the activation of NF-κB/NLRP3 pathway, thereby attenuating the renal dysfunction. These findings may provide a new therapeutic target for the treatment of IgAN.
Collapse
Affiliation(s)
- Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Pang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxin Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxing Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhe Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|