1
|
Liu F, Schrack JA, Walston J, Mathias RA, Windham BG, Grams ME, Coresh J, Walker KA. Mid-life plasma proteins associated with late-life prefrailty and frailty: a proteomic analysis. GeroScience 2024; 46:5247-5265. [PMID: 38856871 PMCID: PMC11336072 DOI: 10.1007/s11357-024-01219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Physical frailty is a syndrome that typically manifests in later life, although the pathogenic process causing physical frailty likely begins decades earlier. To date, few studies have examined the biological signatures in mid-life associated with physical frailty later in life. Among 4,189 middle-aged participants (57.8 ± 5.0 years, 55.8% women) from the Atherosclerosis Risk in Community (ARIC) study, we evaluated the associations of 4,955 plasma proteins (log 2-transformed and standardized) measured using the SomaScan platform with their frailty status approximately 20 years later. Using multinomial logistic regression models adjusting for demographics, health behaviors, kidney function, total cholesterol, and comorbidities, 12 and 221 proteins were associated with prefrailty and frailty in later life, respectively (FDR p < 0.05). Top frailty-associated proteins included neurocan core protein (NCAN, OR = 0.66), fatty acid-binding protein heart (FABP3, OR = 1.62) and adipocyte (FABP4, OR = 1.65), as well proteins involved in the contactin-1 (CNTN1), toll-like receptor 5 (TLR5), and neurogenic locus notch homolog protein 1 (NOTCH1) signaling pathway relevant to skeletal muscle regeneration, myelination, and inflammation. Pathway analyses suggest midlife dysregulation of inflammation, metabolism, extracellular matrix, angiogenesis, and lysosomal autophagy among those at risk for late-life frailty. After further adjusting for midlife body mass index (BMI) - an established frailty risk factor - only CNTN1 (OR = 0.75) remained significantly associated with frailty. Post-hoc analyses demonstrated that the top 41 midlife frailty-associated proteins mediate 32% of the association between mid-life BMI and late-life frailty. Our findings provide new insights into frailty etiology earlier in the life course, enhancing the potential for prevention.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center On Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Genomics and Precision Health Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infection Disease, Bethesda, MD, USA
| | - B Gwen Windham
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Population Health and Medicine, Optimal Aging Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhang QY, Lai MQ, Chen YK, Zhong MT, Gi M, Wang Q, Xie XL. Inulin alleviates GenX-induced intestinal injury in mice by modulating the MAPK pathway, cell cycle, and cell adhesion proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124974. [PMID: 39332800 DOI: 10.1016/j.envpol.2024.124974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
GenX, a substitute for perfluorooctanoic acid, has demonstrated potential enterotoxicity. The enterotoxic effects of GenX and effective interventions need further investigation. In the present study, the mice were administered GenX (2 mg/kg/day) with or without inulin supplementation (5 g/kg/day) for 12 weeks. Histopathological assessments revealed that GenX induced colonic gland atrophy, inflammatory cell infiltration, a reduction in goblet cell numbers, and decreased mucus secretion. Furthermore, a significant decrease in the protein levels of ZO-1, occludin, and claudin-5 indicated compromised barrier integrity. Transcriptomic analysis identified 2645 DEGs, which were mapped to 39 significant pathways. The TGF-β, BMP6, and β-catenin proteins were upregulated in the intestinal mucosa following GenX exposure, indicating activation of the TGF-β pathway. Conversely, the protein expression of PAK3, CyclinD2, contactin1, and Jam2 decreased, indicating disruptions in cell cycle progression and cell adhesion. Inulin cotreatment ameliorated these GenX-induced alterations, partially through modulating the MAPK pathway, as evidenced by the upregulation of the cell cycle and cell adhesion proteins. Collectively, these findings suggested that GenX exposure triggered intestinal injury in mice by activating the TGF-β pathway and disrupting proteins crucial for the cell cycle and cell adhesion, whereas inulin supplementation mitigated this injury by modulating the MAPK pathway.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
3
|
Li B, Zheng S, Yin S, Chen J, He Y, Yao J, Liu S. Integrated Transcriptome and Proteome Analyses of β-Conglycinin-Induced Intestinal Damage in Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6601-6612. [PMID: 38480492 DOI: 10.1021/acs.jafc.3c06329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
β-conglycinin (β-CG) induces intestinal damage in piglets; however, its regulatory mechanisms are not fully understood. This study aimed to investigate the molecular mechanisms by which β-CG regulates intestinal injury in piglets through downstream genes and proteins. Our findings revealed that β-CG significantly reduced villus height while increasing the crypt depth. In addition, we analyzed the transcriptome and proteome of jejunum tissues after the β-CG treatment. In total, 382 differentially expressed genes (DEGs) and 292 differentially expressed proteins (DEPs) were identified between the treatment and the control groups. The expression levels of DEGs and DEPs were validated by using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The findings revealed a consistent correlation between their expression levels and transcriptomic and proteomic data. In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs and DEPs revealed their enrichment in oxidation-related GOs, as well as in lysosome-related pathways. A protein-protein interaction (PPI) regulatory network was constructed based on the DEPs. The integration of transcriptomic and proteomic analyses identified six genes that were significantly different at both the transcript and the protein levels. This study provides valuable insights into the molecular mechanisms underlying β-CG-induced intestinal injury in piglets.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Shuangyang Yin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jiaqi Yao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Simiao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| |
Collapse
|
4
|
Hart DA. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules 2023; 13:1136. [PMID: 37509172 PMCID: PMC10377148 DOI: 10.3390/biom13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical nature of bone for both function and reproductive needs during evolution in the context of the boundary conditions of Earth has led to complex regulatory mechanisms that require integration for optimization of this tissue across the lifespan. Three important regulatory variables include mechanical loading, sex hormones, and innervation/neuroregulation. The importance of mechanical loading has been the target of much research as bone appears to subscribe to the "use it or lose it" paradigm. Furthermore, because of the importance of post-menopausal osteoporosis in the risk for fractures and loss of function, this aspect of bone regulation has also focused research on sex differences in bone regulation. The advent of space flight and exposure to microgravity has also led to renewed interest in this unique environment, which could not have been anticipated by evolution, to expose new insights into bone regulation. Finally, a body of evidence has also emerged indicating that the neuroregulation of bone is also central to maintaining function. However, there is still more that is needed to understand regarding how such variables are integrated across the lifespan to maintain function, particularly in a species that walks upright. This review will attempt to discuss these regulatory elements for bone integrity and propose how further study is needed to delineate the details to better understand how to improve treatments for those at risk for loss of bone integrity, such as in the post-menopausal state or during prolonged space flight.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone & Joint Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Danielli S, Ma Z, Pantazi E, Kumar A, Demarco B, Fischer FA, Paudel U, Weissenrieder J, Lee RJ, Joyce S, Foskett JK, Bezbradica JS. The ion channel CALHM6 controls bacterial infection-induced cellular cross-talk at the immunological synapse. EMBO J 2023; 42:e111450. [PMID: 36861806 PMCID: PMC10068325 DOI: 10.15252/embj.2022111450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.
Collapse
Affiliation(s)
- Sara Danielli
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Zhongming Ma
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eirini Pantazi
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Amrendra Kumar
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Benjamin Demarco
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Fabian A Fischer
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Usha Paudel
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jillian Weissenrieder
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Robert J Lee
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Otorhinolaryngology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | |
Collapse
|
6
|
Singh A, Singh J, Rattan S. Evidence for the presence and release of BDNF in the neuronal and non-neuronal structures of the internal anal sphincter. Neurogastroenterol Motil 2022; 34:e14099. [PMID: 33624396 PMCID: PMC9558559 DOI: 10.1111/nmo.14099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Data on the neuromodulatory effects of brain-derived neurotrophic factor (BDNF) in the gastrointestinal tract were recently reported, but there are still no data on the presence, distribution, and release of BDNF in the gastrointestinal tract, including the internal anal sphincter (IAS). METHODS We examined the presence and distribution of BDNF and its receptor TrkB in the different IAS structures (neuronal and non-neuronal) via immunohistochemical and immunocytochemical analyses. We also monitored the release of BDNF in an IAS muscle bath (consisting of smooth muscle cells [SMCs], myenteric plexus, and submucosal plexus) before and after different agonists, and electrical field stimulation in the absence and presence of neurotoxin tetrodotoxin. KEY RESULTS BDNF/TrkB was found to be present in all layers of the IAS, especially the smooth muscle, mucosa, myenteric plexus, and submucosal plexus. Detailed analyses revealed a significant colocalization between BDNF and TrkB in different structures, especially in the smooth muscle, the SMCs, and both plexuses. Data further showed higher levels of BDNF in the cytosol and that of TrkB toward the periphery of the SMCs. CONCLUSIONS & INFERENCES These studies showed that BDNF/TrkB was present not only in the enteric nervous system (ENS), but also in the SMCs. For the neuromodulatory effects, BDNF is released locally from the ENS ((myenteric (10.01 ± 0.23 pg/ml) and submucosal plexus (9.05 ± 0.51 pg/ml)) and the SMCs (18.63 ± 1.63 pg/ml). Collectively, these findings have pathophysiological and therapeutic implications regarding the role of BDNF/TrkB in the IAS-associated rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology and Experimental Therapeutics, Jefferson Alumni Hall, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
7
|
Kingsbury C, Shear A, Heyck M, Sadanandan N, Zhang H, Gonzales-Portillo B, Cozene B, Sheyner M, Navarro-Torres L, García-Sánchez J, Lee JY, Borlongan CV. Inflammation-relevant microbiome signature of the stroke brain, gut, spleen, and thymus and the impact of exercise. J Cereb Blood Flow Metab 2021; 41:3200-3212. [PMID: 34427146 PMCID: PMC8669279 DOI: 10.1177/0271678x211039598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke remains a significant unmet need in the clinic with few therapeutic options. We, and others, have implicated the role of inflammatory microbiota in stroke secondary cell death. Elucidating this inflammation microbiome as a biomarker may improve stroke diagnosis and treatment. Here, adult Sprague-Dawley rats performed 30 minutes of exercise on a motorized treadmill for 3 consecutive days prior to transient middle cerebral artery occlusion (MCAO). Stroke animals that underwent exercise showed 1) robust behavioral improvements, 2) significantly smaller infarct sizes and increased peri-infarct cell survival and 3) decreasing trends of inflammatory microbiota BAC303, EREC482, and LAB158 coupled with significantly reduced levels of inflammatory markers ionized calcium binding adaptor molecule 1, tumor necrosis factor alpha, and mouse monoclonal MHC Class II RT1B in the brain, gut, spleen, and thymus compared to non-exercised stroke rats. These results suggest that a specific set of inflammatory microbiota exists in central and peripheral organs and can serve as a disease biomarker and a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro-Torres
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
8
|
Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M. Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 2021; 10:cells10061471. [PMID: 34208308 PMCID: PMC8231180 DOI: 10.3390/cells10061471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires lifelong immunosuppression. Frequent recurrences after the discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current treatments. Studies of other autoimmune diseases suggest that temporary depletion of B cells can improve disease progression in the long term. Methods: We tested a single administration of anti-CD20 antibodies to reduce B cells and the amount of IgG to induce intrahepatic immune tolerance. We used our experimental murine AIH (emAIH) model and treated the mice with anti-CD20 during the late stage of the disease. Results: After treatment, the mice showed the expected reductions in B cells and serum IgGs, but no improvements in pathology. However, all treated animals showed a highly altered serum protein expression pattern, which was a balance between inflammation and regeneration. Conclusions: In conclusion, anti-CD20 therapy did not produce clinically measurable results because it triggered inflammation, as well as regeneration, at the proteomic level. This finding suggests that anti-CD20 is ineffective as a sole treatment for AIH or emAIH.
Collapse
Affiliation(s)
- Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Lena Schepergerdes
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Julia Pietrek
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Maren Lieber
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Jerome Schlue
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: ; Tel.: +49-201-723-6081; Fax: +49-201-723-6915
| |
Collapse
|