1
|
Huang Y, Qin Y, He Y, Qiu D, Zheng Y, Wei J, Zhang L, Yang DH, Li Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist Updat 2024; 74:101082. [PMID: 38569225 DOI: 10.1016/j.drup.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
Collapse
Affiliation(s)
- Yuxian Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| | - Yinjie Qin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yingzhi He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dezhi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yeqin Zheng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jiayue Wei
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
2
|
Zhang P, Ying P, Li H, Zhao N, Liu R, Li S, Xu W, Tang Y, Tang Y. A novel safer CD19CAR with shRNA interference of IFN-γ can reduce multiple cytokine levels without significantly compromising its killing efficacy. Apoptosis 2024; 29:556-567. [PMID: 38114800 DOI: 10.1007/s10495-023-01925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Cytokine release syndrome (CRS) is a great challenge for the application of anti-CD19 CAR-T cell therapy. The aim of this study was to investigate the effect of knocking down interferon gamma (IFN-γ) by shRNA as a potential strategy to reduce the cytokine storms. A newly designed short hairpin interference RNA of IFN-γ (shIFN-γ) in CD19CAR gene was constructed. Several cellular model systems of approach using Nalm-6 cell lines including Nalm-6CD19pos and Nalm-6CD19neg with or without monocytes and endothelial cells were used to analyze the different levels of cytokines after shIFN-γ-anti-CD19CAR-T cell targeted therapy. The activity of this novel CD19CAR-T was evaluated both in vitro and in NSG mouse model. The killing efficacy of shIFN-γ-anti-CD19CAR-T at the E:T ratio of 2:1 was similar to that of regular anti-CD19CAR-T at the E:T ratio of 1:1. The IFN-γ level in the shIFN-γ-anti-CD19CAR-T cell group was (2673.1 ± 307.4) pg/ml at the E:T ratio of 2:1 which was significantly lower than that ((8261.5 ± 345.5) pg/ml) in the regular anti-CD19CAR-T group at the E:T ratio of 1:1. Cytotoxicity experiments in vitro showed significantly reduced concentrations of IFN-γ, IL-6 and TNFα in the shIFN-γ-anti-CD19CAR-T cell group compared to regular anti-CD19CAR-T cell group. Both regular anti-CD19CAR and shIFN-γ-CD19CAR-T exerted bystander killing effect in vitro. We conclude that shIFN-γ-anti-CD19CAR-T cells can reduce the generation of cytokine storms without significantly compromising their therapeutic efficacy in the preclinical setting. In mouse model, 3 × 106 shIFN-γ-anti-CD19CAR-T cells/mouse generated the similar killing efficacy to that with 2 × 106 regular anti-CD19CAR-T cells/mouse.
Collapse
Affiliation(s)
- Ping Zhang
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Peiting Ying
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ning Zhao
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Sisi Li
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, No. 50, Huzhou Street, Gongshu District, Hangzhou, Zhejiang Province, 310015, PR China
| | - Weiqun Xu
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevetion and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, PR China.
- Zhejiang Provincial Clinical Research Center for CANCER, No. 88 Jiefang Road, Hangzhou, 310009, China.
- Cancer Center of Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, China.
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.
- Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
3
|
Bonelli M, Kerschbaumer A, Kastrati K, Ghoreschi K, Gadina M, Heinz LX, Smolen JS, Aletaha D, O'Shea J, Laurence A. Selectivity, efficacy and safety of JAKinibs: new evidence for a still evolving story. Ann Rheum Dis 2024; 83:139-160. [PMID: 37923366 PMCID: PMC10850682 DOI: 10.1136/ard-2023-223850] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 11/07/2023]
Abstract
Fundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines. Therefore, blockade of one single cytokine does not necessarily lead to a persistent remission in all patients with inflammatory disorders and fostered new therapeutic strategies targeting intracellular pathways shared by multiple cytokines. By inhibiting JAK-STAT signalling pathways common to families of cytokines, JAK-inhibitors (JAKinibs) have created a new paradigm for the treatment of inflammatory diseases. Multiple agents have been approved for various disorders and more are being investigated for several new indications. Second-generation selective JAKinibs have been devised with the aim to achieve an increased selectivity and a possible reduced risk of side effects. In the current review, we will summarise the current body of evidence of pan versus selective JAKinibs and the most recent insights on new side effects and indications, including COVID-19.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Massimo Gadina
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Sun Y, Hu B, Stanley G, Harris ZM, Gautam S, Homer R, Koff JL, Rajagopalan G. IFN- γ Is Protective in Cytokine Release Syndrome-associated Extrapulmonary Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 68:75-89. [PMID: 36125351 PMCID: PMC9817908 DOI: 10.1165/rcmb.2022-0117oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023] Open
Abstract
The mechanisms by which excessive systemic activation of adaptive T lymphocytes, as in cytokine release syndrome (CRS), leads to innate immune cell-mediated acute lung injury (ALI) or acute respiratory distress syndrome, often in the absence of any infection, remains unknown. Here, we investigated the roles of IFN-γ and IL-17A, key T-cell cytokines significantly elevated in patients with CRS, in the immunopathogenesis of CRS-induced extrapulmonary ALI. CRS was induced in wild-type (WT), IL-17A- and IFN-γ knockout (KO) human leukocyte antigen-DR3 transgenic mice with 10 μg of the superantigen, staphylococcal enterotoxin B, given intraperitoneally. Several ALI parameters, including gene expression profiling in the lungs, were studied 4, 24, or 48 hours later. Systemic T-cell activation with staphylococcal enterotoxin B resulted in robust upregulation of several chemokines, S100A8/A9, matrix metalloproteases, and other molecules implicated in tissue damage, granulocyte as well as agranulocyte adhesion, and diapedesis in the lungs as early as 4 hours, which was accompanied by subsequent neutrophil/eosinophil lung infiltration and severe ALI in IFN-γ KO mice. These pathways were significantly underexpressed in IL-17A KO mice, which manifested mildest ALI and intermediate in WT mice. Neutralization of IFN-γ worsened ALI in WT and IL-17A KO mice, whereas neutralizing IL-17A did not mitigate lung injury in IFN-γ KO mice, suggesting a dominant protective role for IFN-γ in ALI and that IL-17A is dispensable. Ruxolitinib, a Janus kinase inhibitor, increased ALI severity in WT mice. Thus, our study identified novel mechanisms of ALI in CRS and its differential modulation by IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Ying Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Buqu Hu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Gail Stanley
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Zachary M. Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Samir Gautam
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Robert Homer
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
- Pathology and Laboratory Medicine Service, Veterans Affairs Connecticut HealthCare System, West Haven, Connecticut
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | | |
Collapse
|
5
|
Denstaedt SJ, Zemans RL. Interferon with Dogma in Cytokine Release Syndrome and Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 68:7-8. [PMID: 36260489 PMCID: PMC9817913 DOI: 10.1165/rcmb.2022-0396ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Scott J Denstaedt
- Department of Internal Medicine University of Michigan Medical School Ann Arbor, Michigan
| | - Rachel L Zemans
- Department of Internal Medicine University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
6
|
Poletti M, Treveil A, Csabai L, Gul L, Modos D, Madgwick M, Olbei M, Bohar B, Valdeolivas A, Turei D, Verstockt B, Triana S, Alexandrov T, Saez-Rodriguez J, Stanifer ML, Boulant S, Korcsmaros T. Mapping the epithelial-immune cell interactome upon infection in the gut and the upper airways. NPJ Syst Biol Appl 2022; 8:15. [PMID: 35501398 PMCID: PMC9061772 DOI: 10.1038/s41540-022-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial-immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the modified epithelial-immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated methodology has proven useful to point out specific epithelial-immune interactions driving inflammation during disease response, and propose relevant molecular targets to guide focused experimental analysis.
Collapse
Grants
- BB/CSP17270/1 Biotechnology and Biological Sciences Research Council
- BB/P016774/1 Biotechnology and Biological Sciences Research Council
- BB/R012490/1 Biotechnology and Biological Sciences Research Council
- BBS/E/T/000PR9817 Biotechnology and Biological Sciences Research Council
- BBS/E/F/000PR10355 Biotechnology and Biological Sciences Research Council
- BB/S50743X/1 Biotechnology and Biological Sciences Research Council
- BB/M011216/1 Biotechnology and Biological Sciences Research Council
- BBS/E/F/000PR10353 Biotechnology and Biological Sciences Research Council
- BB/J004529/1 Biotechnology and Biological Sciences Research Council
- The work of T.K. was supported by the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK) and strategically supported by the UKRI BBSRC UK grants (BB/J004529/1, BB/P016774/1, and BB/CSP17270/1). T.K. was also funded by a BBSRC ISP grant for Gut Microbes and Health BB/R012490/1 and its constituent projects, BBS/E/F/000PR10353 and BBS/E/F/000PR10355.
- M.P. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- A.T. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- L.G. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- The work of D.M. was supported by the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK) and strategically supported by the UKRI BBSRC UK grants (BB/J004529/1, BB/P016774/1, and BB/CSP17270/1). D.M. was also funded by a BBSRC ISP grant for Gut Microbes and Health BB/R012490/1 and its constituent projects, BBS/E/F/000PR10353 and BBS/E/F/000PR10355.
- M.O. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- B.V. is supported by the Clinical Research Fund (KOOR) University Hospitals Leuven.
- S.T. acknowledges the funding from the Darwin Trust of Edinburgh and from the ERC Consolidator grant METACELL from European Union’s Horizon 2020 program. S.T. acknowledges support from the EMBL Genomics Core Facility and particularly help from Vladimir Benes.
- T.A. acknowledges the funding from the Darwin Trust of Edinburgh and from the ERC Consolidator grant METACELL from European Union’s Horizon 2020 program. T.A. acknowledges support from the EMBL Genomics Core Facility and particularly help from Vladimir Benes.
- M.L.S. was supported by the DFG (416072091) and the BMBF (01KI20239B). D.T. was supported by the Federal Ministry of Education and Research (BMBF, Computational Life Sciences grant no. 031L0181B) to J.S.R.
- S.B. was supported by research grants from the Deutsche Forschungsgemeinschaft (DFG): project numbers 415089553 (Heisenberg program), 240245660 (SFB1129), 278001972 (TRR186), and 272983813 (TRR179), the state of Baden Wuerttemberg (AZ: 33.7533.-6-21/5/1) and the Bundesministerium Bildung und Forschung (BMBF) (01KI20198A).
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Agatha Treveil
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Marton Olbei
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Alberto Valdeolivas
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Denes Turei
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Translational Research in GI disorders, KU Leuven, Leuven, Belgium
| | - Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Theodore Alexandrov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Megan L Stanifer
- Department of Infectious Diseases, Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
7
|
Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, Dupont S, Bosteels C, Browaeys R, Vandamme N, Verstaen K, Roels J, Van Damme KF, Maes B, De Leeuw E, Declercq J, Aegerter H, Seys L, Smole U, De Prijck S, Vanheerswynghels M, Claes K, Debacker V, Van Isterdael G, Backers L, Claes KB, Bastard P, Jouanguy E, Zhang SY, Mets G, Dehoorne J, Vandekerckhove K, Schelstraete P, Willems J, Stordeur P, Janssens S, Beyaert R, Saeys Y, Casanova JL, Lambrecht BN, Haerynck F, Tavernier SJ. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J Exp Med 2022; 219:e20211381. [PMID: 34914824 PMCID: PMC8685281 DOI: 10.1084/jem.20211381] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRβ repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Victor Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sam Dupont
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Cedric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kevin Verstaen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jana Roels
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Karel F.A. Van Damme
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Helena Aegerter
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Leen Seys
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie De Prijck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Manon Vanheerswynghels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | | | - Lynn Backers
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Gilles Mets
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Internal Medicine and Pediatrics, Division of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Kristof Vandekerckhove
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Jef Willems
- Department of Critical Care, Division of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | | | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Zhang H, Lv X, Kong Q, Tan Y. IL-6/IFN-γ double knockdown CAR-T cells reduce the release of multiple cytokines from PBMCs in vitro. Hum Vaccin Immunother 2022; 18:1-14. [PMID: 35049413 PMCID: PMC8973323 DOI: 10.1080/21645515.2021.2016005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD19-targeted chimeric antigen receptor T (anti-CD19 CAR-T) cells have shown good therapeutic results in the treatment of CD19 + B cell acute lymphocytic leukemia and lymphoma. However, severe side reactions and cytotoxicity are great challenges in the application of anti-CD19 CAR-T cell therapy. Cytokine release syndrome (CRS) is the main side effect of CAR-T cell treatment, and interleukin-6 (IL-6) and interferon γ (IFN-γ) are cytokines that play major roles in CRS. Therefore, we investigated double knockdown (KD) of IL-6 and IFN-γ as a potential strategy to manage anti-CD19 CAR-T cell-associated CRS. These improved anti-CD19 CAR-T cells therapy retained the advantages of the original anti-CD19 CAR-T cells and additionally reduced the release of cytokines from CAR-T cells and other immune cells. Moreover, this study presented a novel approach to abrogate CRS through IL-6 and IFN-γ KD, which may potentially inhibit the release of multiple cytokines from CAR-T cells and peripheral blood mononuclear cells (PBMCs), a model of CRS correlate with in vivo features of the CAR-T therapy, thereby reducing the impact of CRS, improving the safety of CAR-T cell treatment, reducing toxicities, and maintaining the function of CAR-T cells.
Collapse
Affiliation(s)
- Huihui Zhang
- R&D Department, Qilu Cell Therapy Technology Co., Ltd, Jinan, Shandong, China
| | - Xiaofei Lv
- Institute of Immunotherapy, Yinfeng Life Science Research Institute, Jinan, Shandong, China
| | - Qunfang Kong
- R&D Department, Qilu Cell Therapy Technology Co., Ltd, Jinan, Shandong, China
| | - Yi Tan
- R&D Department, Qilu Cell Therapy Technology Co., Ltd, Jinan, Shandong, China.,Institute of Immunotherapy, Yinfeng Life Science Research Institute, Jinan, Shandong, China
| |
Collapse
|
9
|
Li X, Shao M, Zeng X, Qian P, Huang H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther 2021; 6:367. [PMID: 34667157 PMCID: PMC8526712 DOI: 10.1038/s41392-021-00764-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.
Collapse
Affiliation(s)
- Xia Li
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Mi Shao
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Xiangjun Zeng
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - He Huang
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
10
|
Huarte E, Peel MT, Verbist K, Fay BL, Bassett R, Albeituni S, Nichols KE, Smith PA. Ruxolitinib, a JAK1/2 Inhibitor, Ameliorates Cytokine Storm in Experimental Models of Hyperinflammation Syndrome. Front Pharmacol 2021; 12:650295. [PMID: 33981229 PMCID: PMC8107823 DOI: 10.3389/fphar.2021.650295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hyperinflammatory syndromes comprise a heterogeneous group of disorders characterized by severe inflammation, multiple organ dysfunction, and potentially death. In response to antigenic stimulus (e.g., SARS-CoV-2 infection), overactivated CD8+ T-cells and macrophages produce high levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-6, and IL-12. Multiple inflammatory mediators implicated in hyperinflammatory syndromes utilize the Janus kinase–signal transducers and activators of transcription (JAK-STAT) cascade to propagate their biological function. Our findings demonstrate that oral ruxolitinib dosing designed to mimic clinically relevant JAK-STAT pathway inhibition significantly reduces the harmful consequences of immune overactivation in multiple hyperinflammatory models. In contrast to monoclonal antibody therapies targeting a single cytokine, ruxolitinib effectively downregulates the functional effect of multiple cytokines implicated in hyperinflammatory states, without broad immunosuppression.
Collapse
Affiliation(s)
- Eduardo Huarte
- Incyte Research Institute, Wilmington, DE, United States
| | - Michael T Peel
- Incyte Research Institute, Wilmington, DE, United States
| | | | - Brittany L Fay
- Incyte Research Institute, Wilmington, DE, United States
| | - Rachel Bassett
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sabrin Albeituni
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Kim E Nichols
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul A Smith
- Incyte Research Institute, Wilmington, DE, United States
| |
Collapse
|
11
|
Li N, Zhu L, Sun L, Shao G. The effects of novel coronavirus (SARS-CoV-2) infection on cardiovascular diseases and cardiopulmonary injuries. Stem Cell Res 2021; 51:102168. [PMID: 33485182 PMCID: PMC7801189 DOI: 10.1016/j.scr.2021.102168] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 caused by a novel coronavirus named SARS-CoV-2, can elites severe acute respiratory syndrome, severe lung injury, cardiac injury, and even death and became a worldwide pandemic. SARS-CoV-2 infection may result in cardiac injury via several mechanisms, including the expression of angiotensin-converting enzyme 2 (ACE2) receptor and leading to a cytokine storm, can elicit an exaggerated host immune response. This response contributes to multi-organ dysfunction. As an emerging infectious disease, there are limited data on the effects of this infection on patients with underlying cardiovascular comorbidities. In this review, we summarize the early-stage clinical experiences with COVID-19, with particular focus on patients with cardiovascular diseases and cardiopulmonary injuries, and explores potential available evidence regarding the association between COVID-19, and cardiovascular complications.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang 315041, China.
| |
Collapse
|