1
|
Korgan AC, Prendergast K, Rosenhauer AM, Morrison KE, Jovanovic T, Bale TL. Trauma and sensory systems: Biological mechanisms involving the skin and the 17q21 gene cluster. Biol Psychiatry 2024:S0006-3223(24)01737-2. [PMID: 39521032 DOI: 10.1016/j.biopsych.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Childhood trauma experience increases risk for neuropsychiatric and neurodevelopmental disorders, including posttraumatic stress disorder (PTSD), autism spectrum disorders (ASDs), and attention deficit/hyperactivity disorder (ADHD). While the biological mechanisms connecting adverse experiences with later disease presentation are not clear, the concept of Gene x Environment x Development (GxExD) interactions has significant implications for improving our understanding of these diseases. We recently utilized this approach in a study where we found that women exposed to interpersonal violence trauma (the E) uniquely during adolescence (the D), but not childhood or adulthood, had novel protein biomarkers (the G) associated with a sensory cell system in the skin, Merkel cells. Merkel cell mechanosensory signaling is important in gentle and social touch, inflammation-induced pain, and the skin's neuroendocrine stress response. Further, keratinocyte-derived Merkel cell final maturation occurs during the identified vulnerable period of adolescence. Interestingly, many of the genes identified in our study belong to a known 17q21 gene cluster, suggesting an identifiable location in the genome permanently altered by adolescent trauma. These results form a potential functional link between mechanosensory Merkel cells and the pathology and sensory symptomatology in PTSD. Future research directions could identify specific mechanisms involved in tactile alterations following trauma in hopes of revealing additional biomarkers and potentially leading to novel tactile-involved therapies (e.g., massage, electroacupuncture, or focused ultrasound).
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathryn Prendergast
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna M Rosenhauer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | | | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|
2
|
Shi Y, Yao F, Yin Y, Wu C, Xia D, Zhang K, Jin Z, Liu X, He J, Zhang Z. Extracellular vesicles derived from immune cells: Role in tumor therapy. Int Immunopharmacol 2024; 133:112150. [PMID: 38669949 DOI: 10.1016/j.intimp.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Extracellular vesicles (EVs), which have a lipid nano-sized structure, are known to contain the active components of parental cells and play a crucial role in intercellular communication. The progression and metastasis of tumors are influenced by EVs derived from immune cells, which can simultaneously stimulate and suppress immune responses. In the past few decades, there has been a considerable focus on EVs due to their potential in various areas such as the development of vaccines, delivering drugs, making engineered modifications, and serving as biomarkers for diagnosis and prognosis. This review focuses on the substance information present in EVs derived from innate and adaptive immune cells, their effects on the immune system, and their applications in cancer treatment. While there are still challenges to overcome, it is important to explore the composition of immune cells released vesicles and their potential therapeutic role in tumor therapy. The review also highlights the current limitations and future prospects in utilizing EVs for treatment purposes.
Collapse
Affiliation(s)
- Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Fei Yao
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Yao Yin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Chen Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Desong Xia
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; The Second Affiliated Hospital of Guangxi Medical University, Nanning 530023, China.
| |
Collapse
|
3
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Chen J, Zhang G, Wan Y, Xia B, Ni Q, Shan S, Hu Z, Liang XJ. Immune cell-derived exosomes as promising tools for cancer therapy. J Control Release 2023; 364:508-528. [PMID: 37939852 DOI: 10.1016/j.jconrel.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Exosomes are nanoscale vesicles with a size of 30-150 nm secreted by living cells. They are vital players in cellular communication as they can transport proteins, nucleic acids, lipids, and etc. Immune cell-derived exosomes (imEXOs) have great potential for tumor therapy because they have many of the same functions as their parent cells. Especially, imEXOs display unique constitutive characteristics that are directly involved in tumor therapy. Herein, we begin by the biogenesis, preparation, characterization and cargo loading strategies of imEXOs. Next, we focus on therapeutic potentials of imEXOs from different kinds of immune cells against cancer from preclinical and clinical studies. Finally, we discuss advantages of engineered imEXOs and potential risks of imEXOs in cancer treatment. The advantages of engineered imEXOs are highlighted, including selective killing effect, effective tumor targeting, effective lymph node targeting, immune activation and regulation, and good biosafety.
Collapse
Affiliation(s)
- Junge Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yichen Wan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
5
|
Casu A, Nunez Lopez YO, Yu G, Clifford C, Bilal A, Petrilli AM, Cornnell H, Carnero EA, Bhatheja A, Corbin KD, Iliuk A, Maahs DM, Pratley RE. The proteome and phosphoproteome of circulating extracellular vesicle-enriched preparations are associated with characteristic clinical features in type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1219293. [PMID: 37576973 PMCID: PMC10417723 DOI: 10.3389/fendo.2023.1219293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction There are no validated clinical or laboratory biomarkers to identify and differentiate endotypes of type 1 diabetes (T1D) or the risk of progression to chronic complications. Extracellular vesicles (EVs) have been studied as biomarkers in several different disease states but have not been well studied in T1D. Methods As the initial step towards circulating biomarker identification in T1D, this pilot study aimed to provide an initial characterization of the proteomic and phosphoproteomic landscape of circulating EV-enriched preparations in participants with established T1D (N=10) and healthy normal volunteers (Controls) (N=7) (NCT03379792) carefully matched by age, race/ethnicity, sex, and BMI. EV-enriched preparations were obtained using EVtrap® technology. Proteins were identified and quantified by LC-MS analysis. Differential abundance and coexpression network (WGCNA), and pathway enrichment analyses were implemented. Results The detected proteins and phosphoproteins were enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 181 proteins and 8 phosphoproteins were differentially abundant in participants with T1D compared to controls, including some well-known EVproteins (i.e., CD63, RAB14, BSG, LAMP2, and EZR). Enrichment analyses of differentially abundant proteins and phosphoproteins of EV-enriched preparations identified associations with neutrophil, platelet, and immune response functions, as well as prion protein aggregation. Downregulated proteins were involved in MHC class II signaling and the regulation of monocyte differentiation. Potential key roles in T1D for C1q, plasminogen, IL6ST, CD40, HLA-DQB1, HLA-DRB1, CD74, NUCB1, and SAP, are highlighted. Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed significant enrichment for membrane compartments, processes associated with inflammation and the immune response, and regulation of viral processes, among others. Discussion This study demonstrates the potential of proteomic and phosphoproteomic signatures of EV-enriched preparations to provide insight into the pathobiology of T1D. The WGCNA analysis could be a powerful tool to discriminate signatures associated with different pathobiological components of the disease.
Collapse
Affiliation(s)
- Anna Casu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Yury O. Nunez Lopez
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Gongxin Yu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Christopher Clifford
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anika Bilal
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Heather Cornnell
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Ananya Bhatheja
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Karen D. Corbin
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anton Iliuk
- Biomarker Discovery Department, Tymora Analytical Operations, West Lafayette, IN, United States
| | - David M. Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Richard E. Pratley
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| |
Collapse
|
6
|
You Y, Du Z, Xu G, Tian Z, Xiao M, Wang Y. Identification of Exosome-Related Genes Associated with Prognosis and Immune Infiltration Features in Head-Neck Squamous Cell Carcinoma. Biomolecules 2023; 13:958. [PMID: 37371537 DOI: 10.3390/biom13060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The highly immunosuppressive nature of head-neck squamous cell cancer (HNSCC) is not fully understood. Exosomes play crucial roles in the communication between cancer and non-cancer cells, but the clinical significance of the expression of exosome-related genes (ERGs) remains unclear in HNSCC. This study aimed to establish an HNSCC-ERGs model by using mass spectrometry (MS)-based label-free quantitative proteomics in combination with the TCGA primary HNSCC dataset. The study managed to classify the HNSCC patients into two subtypes based on the expression level of prognostic ERGs, which showed significant differences in prognosis and immune infiltration. LASSO regression algorithm was used to establish a risk prediction model based on seven risky genes (PYGL, ACTN2, TSPAN15, EXT2, PLAU, ITGA5), and the high-risk group was associated with poor survival prognosis and suppressive immune status. HPRT1 and PYGL were found to be independent prognostic factors through univariate and multivariate Cox regression analyses. Immune and ssGSEA analysis revealed that HPRT1 and PYGL were significantly related to immunosuppression, immune response, and critical signaling transduction pathways in HNSCC. Immunohistochemistry results further validated the expression level, clinical value, and immunosuppressive function of HPRT1 and PYGL in HNSCC patients. In conclusion, this study established molecular subtypes and a prediction risk model based on the ERGs. Furthermore, the findings suggested that HPRT1 and PYGL might play critical roles in reshaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuanhe You
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhong Du
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guisong Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhuowei Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yanan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
7
|
Hou C, Wu Q, Xu L, Cui R, Ou R, Li D, Xu Y. Exploiting the potential of extracellular vesicles as delivery vehicles for the treatment of melanoma. Front Bioeng Biotechnol 2022; 10:1054324. [DOI: 10.3389/fbioe.2022.1054324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Melanoma, the most aggressive skin cancer that originated from genetic mutations in the melanocytes, is still a troublesome medical problem under the current therapeutic approaches, which include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy and targeted therapy. Nanotechnology has significantly contributed to the development of cancer treatment in the past few years, among which extracellular vesicles (EVs) are nanosized lipid bilayer vesicles secreted from almost all cells that play essential roles in many physiological and pathological processes. In terms of melanoma therapy, the unique physicochemical properties of EVs make them promising nanocarriers for drug transportation compared to other synthetic nanocarriers. Moreover, EVs can be further engineered to maximize their drug delivery potential. Herein, in this minireview, we gave a brief overview of EV-based drug delivery strategies for melanoma therapy, in which different therapeutics delivered via EVs were summarized. We also highlighted the current progress of the EV-based delivery platform for melanoma therapy in clinical trials. The obstacles to applying exosomes in clinical practice toward further translation of EVs melanoma therapy were also discussed at the end. In summary, EVs offer promising prospects for melanoma therapy, whilst the ways for unlocking EVs’ full potential in melanoma therapies should be further investigated by solving relevant issues which hamper EVs-based melanoma therapy translation in the future.
Collapse
|
8
|
Brocco D, De Bellis D, Di Marino P, Simeone P, Grassadonia A, De Tursi M, Grottola T, Di Mola FF, Di Gregorio P, Zappacosta B, Angelone A, Lellis LD, Veschi S, Florio R, De Fabritiis S, Verginelli F, Marchisio M, Caporale M, Luisi D, Di Sebastiano P, Tinari N, Cama A, Lanuti P. High Blood Concentration of Leukocyte-Derived Extracellular Vesicles Is Predictive of Favorable Clinical Outcomes in Patients with Pancreatic Cancer: Results from a Multicenter Prospective Study. Cancers (Basel) 2022; 14:4748. [PMID: 36230671 PMCID: PMC9562679 DOI: 10.3390/cancers14194748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide. Identification of novel tumor biomarkers is highly advocated in PC to optimize personalized treatment algorithms. Blood-circulating extracellular vesicles hold promise for liquid biopsy application in cancer. We used an optimized flow cytometry protocol to study leukocyte-derived EVs (CD45+) and PD-L1+ EVs in blood from 56 pancreatic cancer patients and 48 healthy controls (HCs). Our results show that PC patients presented higher blood levels of total EVs (p = 0.0003), leukocyte-derived EVs (LEVs) (p = 0.001) and PD-L1+ EVs (p = 0.01), as compared with HCs. Interestingly, a blood concentration of LEVs at baseline was independently associated with improved overall survival in patients with borderline resectable or primary unresectable PC (HR = 0.17; 95% CI 0.04-0.79; p = 0.02). Additionally, increased blood-based LEVs were independently correlated with prolonged progression-free survival (HR = 0.10; 95% CI 0.01-0.82; p = 0.03) and significantly associated with higher disease control rate (p = 0.02) in patients with advanced PC receiving standard chemotherapy. Notably, a strong correlation between a decrease in blood LEVs concentration during chemotherapy and disease control was observed (p = 0.005). These intriguing findings point to the potential of LEVs as novel blood-based EV biomarkers for improved personalized medicine in patients affected by PC.
Collapse
Affiliation(s)
- Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Pietro Di Marino
- Clinical Oncology Unit, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Michele De Tursi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Tommaso Grottola
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | | | - Patrizia Di Gregorio
- Unit of Transfusion Medicine and Hematology, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Barbara Zappacosta
- Anatomical Pathology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | - Antonio Angelone
- Anatomical Pathology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simone De Fabritiis
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marta Caporale
- Medical Oncology Unit, S. Spirito Hospital, 65124 Pescara, Italy
| | - Dimitri Luisi
- Medical Oncology Unit, S. Spirito Hospital, 65124 Pescara, Italy
| | - Pierluigi Di Sebastiano
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124 Pescara, Italy
- Department of Medical, Oral & Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral & Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Boyd-Gibbins N, Karagiannis P, Hwang DW, Kim SI. iPSCs in NK Cell Manufacturing and NKEV Development. Front Immunol 2022; 13:890894. [PMID: 35874677 PMCID: PMC9305199 DOI: 10.3389/fimmu.2022.890894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cell immunotherapies for cancer can complement existing T cell therapies while benefiting from advancements already made in the immunotherapy field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer advantages including eliminating donor variation and providing an ideal platform for genome engineering. At the same time, extracellular vesicles (EVs) have become a major research interest, and purified NK cell extracellular vesicles (NKEVs) have been shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to be developed into a standalone therapeutic with reduced complexity and immunogenicity compared to cell therapies. This review explores the role iPSC technology can play in both NK cell manufacturing and NKEV development.
Collapse
Affiliation(s)
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Shin-Il Kim
- THERABEST Japan, Inc., Kobe, Japan
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
- *Correspondence: Shin-Il Kim,
| |
Collapse
|
10
|
Li T, Li J, Wang H, Zhao J, Yan M, He H, Yu S. Exosomes: Potential Biomarkers and Functions in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2022; 9:881794. [PMID: 35775082 PMCID: PMC9237451 DOI: 10.3389/fmolb.2022.881794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), originating from the mucosal epithelial cells of the oral cavity, pharynx, and larynx, is a lethal malignancy of the head and neck. Patients with advanced and recurrent HNSCC have poor outcomes due to limited therapeutic options. Exosomes have active roles in the pathophysiology of tumors and are suggested as a potential therapeutic target of HNSCC. Exosomes in HNSCC have been intensively studied for disease activity, tumor staging, immunosuppression, and therapeutic monitoring. In this review, the biological mechanisms and the recent clinical application of exosomes are highlighted to reveal the potential of exosomes as biomarkers and therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haitao Wang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jiayu Zhao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Hongjiang He, ; Shan Yu,
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hongjiang He, ; Shan Yu,
| |
Collapse
|
11
|
Karami Fath M, Azargoonjahromi A, Jafari N, Mehdi M, Alavi F, Daraei M, Mohammadkhani N, Mueller AL, Brockmueller A, Shakibaei M, Payandeh Z. Exosome application in tumorigenesis: diagnosis and treatment of melanoma. Med Oncol 2022; 39:19. [PMID: 34982284 DOI: 10.1007/s12032-021-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive of skin cancer derived from genetic mutations in the melanocytes. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. However, the efficiency of these strategies may be decreased due to the development of diverse resistance mechanisms. Here, it has been proven that therapeutic monoclonal antibodies (mAbs) can improve the efficiency of melanoma therapies and also, cancer vaccines are another approach for the treatment of melanoma that has already improved clinical outcomes in these patients. The use of antibodies and gene vaccines provides a new perspective in melanoma treatment. Since the tumor microenvironment is another important factor for cancer progression and metastasis, in recent times, a mechanism has been identified to provide an opportunity for melanoma cells to communicate with remote cells. This mechanism is involved by a novel molecular structure, named extracellular vesicles (EVs). Depending on the functional status of origin cells, exosomes contain various cargos and different compositions. In this review, we presented recent progress of exosome applications in the treatment of melanoma. Different aspects of exosome therapy and ongoing efforts in this field will be discussed too.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mehdi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Daraei
- Pharmacy School, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol 2021; 12:757674. [PMID: 34867996 PMCID: PMC8634671 DOI: 10.3389/fimmu.2021.757674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.
Collapse
Affiliation(s)
- Junli Zou
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
13
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
14
|
Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J, Patzl M, Saalmüller A, de Luca K, Steinberger P, Mair KH, Gerner W. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104080. [PMID: 33781781 DOI: 10.1016/j.dci.2021.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report on two novel monoclonal antibodies, specific for porcine CD9. CD9 is a tetraspanin that is expressed on a wide variety of cells. We phenotyped porcine immune cell subsets and found that CD9 was expressed on all monocytes as well as a subset of B cells. CD9 was variably expressed on T cells, with CD4 T cells containing the highest frequency of CD9+ cells. CD9 expression positively correlated with the frequency of central memory CD4 T cells in ex vivo PBMC. Therefore, we proceeded to explore CD9 as a marker of T cell function. Here we observed that CD9 was expressed on the vast majority of long-lived influenza A virus-specific effector cells that retained the capacity for cytokine production in response to in vitro recall antigen. Therefore, the new antibodies enable the detection of a cell surface molecule with functional relevance to T cells. Considering the importance of CD9 in membrane remodelling across many cell types, they will also benefit the wider field of swine biomedical research.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anna M Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Simona Winkler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Martina Patzl
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
15
|
Spetale FE, Murillo J, Villanova GV, Bulacio P, Tapia E. FGGA-lnc: automatic gene ontology annotation of lncRNA sequences based on secondary structures. Interface Focus 2021; 11:20200064. [PMID: 34123354 PMCID: PMC8193470 DOI: 10.1098/rsfs.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Flavio E. Spetale
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Javier Murillo
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Gabriela V. Villanova
- Laboratorio Mixto de Biotecnología Acuática (FCByF-UNR), Av. Eduardo Carrasco S/N, S2000EZP Rosario, Argentina
| | - Pilar Bulacio
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Elizabeth Tapia
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| |
Collapse
|
16
|
Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092041. [PMID: 33922569 PMCID: PMC8122966 DOI: 10.3390/cancers13092041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and 12 healthy donors (HD). sEV were characterized with regard to protein content, particle size, counts by qNano, morphology by transmission electron microscopy, and molecular profiles by Western blots. PD-1 and PD-L1 expression on circulating immune cells was analysed by flow cytometry. Pre-treatment levels of total sEV protein (TEP) were correlated with overall (OS) and progression-free survival (PFS). The sEV numbers and protein levels were significantly elevated in the plasma of NSCLC patients compared to HD (p = 0.009 and 0.0001, respectively). Baseline TEP levels were higher in patients who developed progressive disease compared to patients with stable disease (p = 0.007 and 0.001, stage III and IV, respectively). Patient-derived sEV were enriched in immunosuppressive proteins as compared to proteins carried by sEV from HD. TEP levels were positively correlated with CD8+PD-1+ and CD8+PD-L1+ circulating T cell percentages and were independently associated with poorer PFS (p < 0.00001) and OS (p < 0.00001). Pre-therapy sEV could be useful as non-invasive biomarkers of response to therapy and clinical outcome in NSCLC.
Collapse
|
17
|
Papadaki C, Thomopoulou K, Monastirioti A, Koronakis G, Papadaki MA, Rounis K, Vamvakas L, Nikolaou C, Mavroudis D, Agelaki S. MicroRNAs Regulating Tumor and Immune Cell Interactions in the Prediction of Relapse in Early Stage Breast Cancer. Biomedicines 2021; 9:biomedicines9040421. [PMID: 33924670 PMCID: PMC8069787 DOI: 10.3390/biomedicines9040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the regulation of immune response and hold an important role in tumor immune escape. We investigated the differential expression of the immunomodulatory miR-10b, miR-19a, miR-20a, miR-126, and miR-155 in the plasma of healthy women and patients with early stage breast cancer and interrogated their role in the prediction of patients’ relapse. Blood samples were obtained from healthy women (n = 20) and patients with early stage breast cancer (n = 140) before adjuvant chemotherapy. Plasma miRNA expression levels were assessed by RT-qPCR. Relapse predicting models were developed using binary logistic regression and receiver operating curves (ROC) were constructed to determine miRNA sensitivity and specificity. Only miR-155 expression was lower in patients compared with healthy women (p = 0.023), whereas miR-155 and miR-10b were lower in patients who relapsed compared with healthy women (p = 0.039 and p = 0.002, respectively). MiR-155 expression combined with axillary lymph node infiltration and tumor grade demonstrated increased capability in distinguishing relapsed from non-relapsed patients [(area under the curve, (AUC = 0.861; p < 0.001)]. Combined miR-19a and miR-20a expression had the highest performance in discriminating patients with early relapse (AUC = 0.816; p < 0.001). Finally, miR-10b in combination with lymph node status and grade had the highest accuracy to discriminate patients with late relapse (AUC = 0.971; p < 0.001). The robustness of the relapse predicting models was further confirmed in a 10-fold cross validation. Deregulation of circulating miRNAs involved in tumor-immune interactions may predict relapse in early stage breast cancer. Their successful clinical integration could potentially address the significance challenge of treatment escalation or de-escalation according to the risk of recurrence.
Collapse
Affiliation(s)
- Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Vassilika Vouton, 71003 Crete, Greece; (C.P.); (A.M.); (M.A.P.); (D.M.)
| | - Konstantina Thomopoulou
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
| | - Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Vassilika Vouton, 71003 Crete, Greece; (C.P.); (A.M.); (M.A.P.); (D.M.)
| | - George Koronakis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
| | - Maria A. Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Vassilika Vouton, 71003 Crete, Greece; (C.P.); (A.M.); (M.A.P.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
| | - Lambros Vamvakas
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Vassilika Vouton, 70013 Crete, Greece;
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), Heraklion, Vassilika Vouton, 70013 Crete, Greece
- Biomedical Science Research Center “Alexander Fleming”, Institute of Bioinnovation, 16672 Athens, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Vassilika Vouton, 71003 Crete, Greece; (C.P.); (A.M.); (M.A.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Vassilika Vouton, 71003 Crete, Greece; (C.P.); (A.M.); (M.A.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Crete, Greece; (K.T.); (G.K.); (K.R.); (L.V.)
- Correspondence: ; Tel.: +30-281-039-2438
| |
Collapse
|
18
|
Ratajczak MZ, Ratajczak J. Innate Immunity Communicates Using the Language of Extracellular Microvesicles. Stem Cell Rev Rep 2021; 17:502-510. [PMID: 33634435 PMCID: PMC7906088 DOI: 10.1007/s12015-021-10138-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
The innate immunity system and extracellular microvesicles (ExMVs) both emerged early in the evolution of life, which is why its innate immunity cellular arm and its soluble-component arm learned, understood, and adapted to the “language” of ExMVs. This was most likely the first language of cell–cell communication during evolution, which existed before more specific intercellular crosstalk involving specific ligands and receptors emerged. ExMVs are involved in several processes in the body, including immune and coagulation responses, which are part of inflammation. In this review we will briefly highlight what is known about how ExMVs regulate the function of the cellular arm of innate immunity, including macrophages, monocytes, granulocytes, natural killer cells, and dendritic cells, and affect the soluble components of this system, which consists of the complement cascade (ComC) and soluble, circulating, pattern-recognition receptors (collectins, ficolins, and pentaxrins). These effects are direct, due to the fact that ExMVs affect the biological functions of innate immunity cells and may directly interact with soluble components of this system. Moreover, by activating coagulation proteases, ExMVs may also indirectly activate the ComC. In this review, we will use the term “extracellular microvesicles” (ExMVs) to refer to these small, spheroidal blebs of different sizes, which are surrounded by a membrane lipid layer. We will focus on the role of both ExMVs released during cell-surface membrane budding and smaller ExMVs, known as exosomes, which are derived from the budding of the endosomal membrane compartment. Finally, we will provide a brief update on the potential therapeutic applications of ExMVs, with a special emphasis on innate immunity. ![]()
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warszawa, Poland
| | - Janina Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
19
|
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19:160. [PMID: 33183286 PMCID: PMC7661275 DOI: 10.1186/s12943-020-01278-3] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|