1
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Mopuri R, Welbourn S, Charles T, Ralli-Jain P, Rosales D, Burton S, Aftab A, Karunakaran K, Pellegrini K, Kilembe W, Karita E, Gnanakaran S, Upadhyay AA, Bosinger SE, Derdeyn CA. High throughput analysis of B cell dynamics and neutralizing antibody development during immunization with a novel clade C HIV-1 envelope. PLoS Pathog 2023; 19:e1011717. [PMID: 37878666 PMCID: PMC10627474 DOI: 10.1371/journal.ppat.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
A protective HIV-1 vaccine has been hampered by a limited understanding of how B cells acquire neutralizing activity. Our previous vaccines expressing two different HIV-1 envelopes elicited robust antigen specific serum IgG titers in 20 rhesus macaques; yet serum from only two animals neutralized the autologous virus. Here, we used high throughput immunoglobulin receptor and single cell RNA sequencing to characterize the overall expansion, recall, and maturation of antigen specific B cells longitudinally over 90 weeks. Diversification and expansion of many B cell clonotypes occurred broadly in the absence of serum neutralization. However, in one animal that developed neutralization, two neutralizing B cell clonotypes arose from the same immunoglobulin germline and were tracked longitudinally. Early antibody variants with high identity to germline neutralized the autologous virus while later variants acquired somatic hypermutation and increased neutralization potency. The early engagement of precursors capable of neutralization with little to no SHM followed by prolonged affinity maturation allowed the two neutralizing lineages to successfully persist despite many other antigen specific B cells. The findings provide new insight into B cells responding to HIV-1 envelope during heterologous prime and boost immunization in rhesus macaques and the development of selected autologous neutralizing antibody lineages.
Collapse
Affiliation(s)
- Rohini Mopuri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Pooja Ralli-Jain
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David Rosales
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Burton
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Areeb Aftab
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kirti Karunakaran
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn Pellegrini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Sandrasegaram Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amit A. Upadhyay
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine Unit, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Henderson R, Zhou Y, Stalls V, Wiehe K, Saunders KO, Wagh K, Anasti K, Barr M, Parks R, Alam SM, Korber B, Haynes BF, Bartesaghi A, Acharya P. Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage. Nat Commun 2023; 14:2782. [PMID: 37188681 PMCID: PMC10184639 DOI: 10.1038/s41467-023-38108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza has therefore focused on recapitulating the natural affinity maturation process. Here, we determine structures of antibodies in complex with HIV-1 Envelope for all observed members and ancestral states of the broadly neutralizing HIV-1 V3-glycan targeting DH270 antibody clonal B cell lineage. These structures track the development of neutralization breadth from the unmutated common ancestor and define affinity maturation at high spatial resolution. By elucidating contacts mediated by key mutations at different stages of antibody development we identified sites on the epitope-paratope interface that are the focus of affinity optimization. Thus, our results identify bottlenecks on the path to natural affinity maturation and reveal solutions for these that will inform immunogen design aimed at eliciting a broadly neutralizing immune response by vaccination.
Collapse
Affiliation(s)
- Rory Henderson
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Barton F Haynes
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
He J, Zhou L, Huang G, Shen J, Chen W, Wang C, Kim A, Zhang Z, Cheng W, Dai S, Ding F, Chen P. Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48464-48475. [PMID: 36281943 PMCID: PMC9627400 DOI: 10.1021/acsami.2c14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.
Collapse
Affiliation(s)
- Jiacheng He
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Jialiang Shen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Albert Kim
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Weiqiang Cheng
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Siyuan Dai
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
5
|
Sheng Z, Bimela JS, Katsamba PS, Patel SD, Guo Y, Zhao H, Guo Y, Kwong PD, Shapiro L. Structural Basis of Antibody Conformation and Stability Modulation by Framework Somatic Hypermutation. Front Immunol 2022; 12:811632. [PMID: 35046963 PMCID: PMC8761896 DOI: 10.3389/fimmu.2021.811632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Accumulation of somatic hypermutation (SHM) is the primary mechanism to enhance the binding affinity of antibodies to antigens in vivo. However, the structural basis of the effects of many SHMs remains elusive. Here, we integrated atomistic molecular dynamics (MD) simulation and data mining to build a high-throughput structural bioinformatics pipeline to study the effects of individual and combination SHMs on antibody conformation, flexibility, stability, and affinity. By applying this pipeline, we characterized a common mechanism of modulation of heavy-light pairing orientation by frequent SHMs at framework positions 39H, 91H, 38L, and 87L through disruption of a conserved hydrogen-bond network. Q39LH alone and in combination with light chain framework 4 (FWR4L) insertions further modulated the elbow angle between variable and constant domains of many antibodies, resulting in improved binding affinity for a subset of anti-HIV-1 antibodies. Q39LH also alleviated aggregation induced by FWR4L insertion, suggesting remote epistasis between these SHMs. Altogether, this study provides tools and insights for understanding antibody affinity maturation and for engineering functionally improved antibodies.
Collapse
Affiliation(s)
- Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Saurabh D Patel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Haiqing Zhao
- Department of Systems Biology, Columbia University, New York, NY, United States
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States.,Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Saini S, Agarwal M, Pradhan A, Pareek S, Singh AK, Dhawan G, Dhawan U, Kumar Y. Exploring the role of framework mutations in enabling breadth of a cross-reactive antibody (CR3022) against the SARS-CoV-2 RBD and its variants of concern. J Biomol Struct Dyn 2022; 41:2341-2354. [PMID: 35098888 DOI: 10.1080/07391102.2022.2030800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cross-reactive and broadly neutralizing antibodies against surface proteins of diverse strains of rapidly evolving viral pathogens like SARS-CoV-2 can prevent infection and therefore are crucial for the development of effective universal vaccines. While antibodies typically incorporate mutations in their complementarity determining regions during affinity maturation, mutations in the framework regions have been reported as players in determining properties of broadly neutralizing antibodies against HIV and the Influenza virus. We propose an increase in the cross-reactive potential of CR3022 against the emerging SARS- CoV-2 variants of concern through enhanced conformational flexibility. In this study, we use molecular dynamics simulations, in silico mutagenesis, structural modeling, and docking to explore the role of light chain FWR mutations in CR3022, a SARS-CoV anti-spike (S)-protein antibody cross-reactive to the S-protein receptor binding domain of SARS-CoV-2. Our study shows that single substitutions in the light chain framework region of CR3022 with conserved epitopes across SARS-CoV strains allow targeting of diverse antibody epitope footprints that align with the epitopes of recently-categorized neutralizing antibody classes while enabling binding to more than one strain of SARS-CoV-2. Our study has implications for rapid and evolution-based engineering of broadly neutralizing antibodies and reaffirms the role of framework mutations in effective change of antibody orientation and conformation via improved flexibility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Manusmriti Agarwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India
| | - Amartya Pradhan
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India.,Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Savitha Pareek
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Ashish K Singh
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
7
|
Lee DCP, Raman R, Ghafar NA, Budigi Y. An antibody engineering platform using amino acid networks: A case study in development of antiviral therapeutics. Antiviral Res 2021; 192:105105. [PMID: 34111505 DOI: 10.1016/j.antiviral.2021.105105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
We present here a case study of an antibody-engineering platform that selects, modifies, and assembles antibody parts to construct novel antibodies. A salient feature of this platform includes the role of amino acid networks in optimizing framework regions (FRs) and complementarity determining regions (CDRs) to engineer new antibodies with desired structure-function relationships. The details of this approach are described in the context of its utility in engineering ZAb_FLEP, a potent anti-Zika virus antibody. ZAb_FLEP comprises of distinct parts, including heavy chain and light chain FRs and CDRs, with engineered features such as loop lengths and optimal epitope-paratope contacts. We demonstrate, with different test antibodies derived from different FR-CDR combinations, that despite these test antibodies sharing high overall sequence similarity, they yield diverse functional readouts. Furthermore, we show that strategies relying on one dimensional sequence similarity-based analyses of antibodies miss important structural nuances of the FR-CDR relationship, which is effectively addressed by the amino acid networks approach of this platform.
Collapse
Affiliation(s)
| | - Rahul Raman
- Department of Biological Engineering, And Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|