1
|
Zhou Y, Wei S, Xu M, Wu X, Dou W, Li H, Zhang Z, Zhang S. CAR-T cell therapy for hepatocellular carcinoma: current trends and challenges. Front Immunol 2024; 15:1489649. [PMID: 39569202 PMCID: PMC11576447 DOI: 10.3389/fimmu.2024.1489649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers worldwide, highlighting the urgent need for improved diagnostic and therapeutic methodologies. The standard treatment regimen generally involves surgical intervention followed by systemic therapies; however, the median survival rates for patients remain unsatisfactory. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a pivotal advancement in cancer treatment. Both clinical and preclinical studies emphasize the notable efficacy of CAR T cells in targeting HCC. Various molecules, such as GPC3, c-Met, and NKG2D, show significant promise as potential immunotherapeutic targets in liver cancer. Despite this, employing CAR T cells to treat solid tumors like HCC poses considerable challenges within the discipline. Numerous innovations have significant potential to enhance the efficacy of CAR T-cell therapy for HCC, including improvements in T cell trafficking, strategies to counteract the immunosuppressive tumor microenvironment, and enhanced safety protocols. Ongoing efforts to discover therapeutic targets for CAR T cells highlight the need for the development of more practical manufacturing strategies for CAR-modified cells. This review synthesizes recent findings and clinical advancements in the use of CAR T-cell therapies for HCC treatment. We elucidate the therapeutic benefits of CAR T cells in HCC and identify the primary barriers to their broader application. Our analysis aims to provide a comprehensive overview of the current status and future prospects of CAR T-cell immunotherapy for HCC.
Collapse
Affiliation(s)
- Yexin Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- The General Hospital of Western Theater Command, Chengdu, China
| | - Shanshan Wei
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghui Xu
- The General Hospital of Western Theater Command, Chengdu, China
| | - Xinhui Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenbo Dou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huakang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhonglin Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
3
|
van Weijsten MJ, Venrooij KR, Lelieveldt L, Kissel T, van Buijtenen E, van Dalen FJ, Verdoes M, Toes R, Bonger KM. Effect of Antigen Valency on Autoreactive B-Cell Targeting. Mol Pharm 2024; 21:481-490. [PMID: 37862070 PMCID: PMC10848265 DOI: 10.1021/acs.molpharmaceut.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Many autoimmune diseases are characterized by B cells that mistakenly recognize autoantigens and produce antibodies toward self-proteins. Current therapies aim to suppress the immune system, which is associated with adverse effects. An attractive and more specific approach is to target the autoreactive B cells selectively through their unique B-cell receptor (BCR) using an autoantigen coupled to an effector molecule able to modulate the B-cell activity. The cellular response upon antigen binding, such as receptor internalization, impacts the choice of effector molecule. In this study, we systematically investigated how a panel of well-defined mono-, di-, tetra-, and octavalent peptide antigens affects the binding, activation, and internalization of the BCR. To test our constructs, we used a B-cell line expressing a BCR against citrullinated antigens, the main autoimmune epitope in rheumatoid arthritis. We found that the dimeric antigen construct has superior targeting properties compared to those of its monomeric and multimeric counterparts, indicating that it can serve as a basis for future antigen-specific targeting studies for the treatment of RA.
Collapse
Affiliation(s)
- M. J. van Weijsten
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - K. R. Venrooij
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - L.P.W.M. Lelieveldt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - T. Kissel
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - E. van Buijtenen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - F. J. van Dalen
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - M. Verdoes
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - R.E.M. Toes
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - K. M. Bonger
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Kusumoputro S, Au C, Lam KH, Park N, Hyun A, Kusumoputro E, Wang X, Xia T. Liver-Targeting Nanoplatforms for the Induction of Immune Tolerance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:67. [PMID: 38202522 PMCID: PMC10780512 DOI: 10.3390/nano14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Liver-targeting nanoparticles have emerged as a promising platform for the induction of immune tolerance by taking advantage of the liver's unique tolerogenic properties and nanoparticles' physicochemical flexibility. Such an approach provides a versatile solution to the treatment of a diversity of immunologic diseases. In this review, we begin by assessing the design parameters integral to cell-specific targeting and the tolerogenic induction of nanoplatforms engineered to target the four critical immunogenic hepatic cells, including liver sinusoidal epithelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), and hepatocytes. We also include an overview of multiple therapeutic strategies in which nanoparticles are being studied to treat many allergies and autoimmune disorders. Finally, we explore the challenges of using nanoparticles in this field while highlighting future avenues to expand the therapeutic utility of liver-targeting nanoparticles in autoimmune processes.
Collapse
Affiliation(s)
- Sydney Kusumoputro
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
| | - Katie H. Lam
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nathaniel Park
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
| | - Austin Hyun
- Department of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Emily Kusumoputro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Bai X, Chen T, Li Y, Ge X, Qiu C, Gou H, Wei S, Liu T, Yang W, Yang L, Liang Y, Jia Z, Lv L, Li T. PD-L1 expression levels in mesenchymal stromal cells predict their therapeutic values for autoimmune hepatitis. Stem Cell Res Ther 2023; 14:370. [PMID: 38111045 PMCID: PMC10729378 DOI: 10.1186/s13287-023-03594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis is a chronic inflammatory hepatic disorder with no effective treatment. Mesenchymal stromal cells (MSCs) have emerged as a promising treatment owing to their unique advantages. However, their heterogeneity is hampering use in clinical applications. METHODS Wharton's jelly derived MSCs (WJ-MSCs) were isolated from 58 human donors using current good manufacturing practice conditions. Gene expression profiles of the WJ-MSCs were analyzed by transcriptome and single-cell RNA-sequencing (scRNA-seq), and subsequent functional differences were assessed. Expression levels of programmed death-ligand 1 (PD-L1) were used as an indicator to screen WJ-MSCs with varied immunomodulation activities and assessed their corresponding therapeutic effects in a mouse model of concanavalin A-induced autoimmune hepatitis. RESULTS The 58 different donor-derived WJ-MSCs were grouped into six gene expression profile clusters. The gene in different clusters displayed obvious variations in cell proliferation, differentiation bias, trophic factor secretion, and immunoregulation. Data of scRNA-seq revealed four distinct WJ-MSCs subpopulations. Notably, the different immunosuppression capacities of WJ-MSCs were positively correlated with PD-L1 expression. WJ-MSCs with high expression of PD-L1 were therapeutically superior to WJ-MSCs with low PD-L1 expression in treating autoimmune hepatitis. CONCLUSION PD-L1 expression levels of WJ-MSCs could be regarded as an indicator to choose optimal MSCs for treating autoimmune disease. These findings provided novel insights into the quality control of MSCs and will inform improvements in the therapeutic benefits of MSCs.
Collapse
Affiliation(s)
- Xilong Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuqi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaofan Ge
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Caie Qiu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Huili Gou
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Sili Wei
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Tingting Liu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Wei Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Liting Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Yingmin Liang
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhansheng Jia
- Department of Infection and Liver Disease, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Liangshan Lv
- Department of Minimally Invasive Interventional Radiology, Xi'an Gaoxin Hospital, Xi'an, , 710075, Shaanxi, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
6
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Salah N, Eissa S, Mansour A, El Magd NMA, Hasanin AH, El Mahdy MM, Hassan MK, Matboli M. Evaluation of the role of kefir in management of non-alcoholic steatohepatitis rat model via modulation of NASH linked mRNA-miRNA panel. Sci Rep 2023; 13:236. [PMID: 36604518 PMCID: PMC9816104 DOI: 10.1038/s41598-022-27353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the clinically aggressive variant of non-alcoholic fatty liver disease. Hippo pathway dysregulation can contribute to NASH development and progression. The use of probiotics is effective in NASH management. Our aim is to investigate the efficacy of kefir Milk in NASH management via modulation of hepatic mRNA-miRNA based panel linked to NAFLD/NASH Hippo signaling and gut microbita regulated genes which was identified using bioinformatics tools. Firstly, we analyzed mRNAs (SOX11, SMAD4 and AMOTL2), and their epigenetic regulator (miR-6807) followed by validation of target effector proteins (TGFB1, IL6 and HepPar1). Molecular, biochemical, and histopathological, analyses were used to evaluate the effects of kefir on high sucrose high fat (HSHF) diet -induced NASH in rats. We found that administration of Kefir proved to prevent steatosis and development of the inflammatory component of NASH. Moreover, Kefir improved liver function and lipid panel. At the molecular level, kefir down-regulated the expression of miR 6807-5p with subsequent increase in the expression of SOX 11, AMOTL2 associated with downregulated SMAD4, resulting in reduction in the expression of the inflammatory and fibrotic markers, IL6 and TGF-β1 in the treated and prophylactic groups compared to the untreated rats. In conclusion, Kefir suppressed NASH progression and improved both fibrosis and hepatic inflammation. The produced effect was correlated with modulation of SOX11, SMAD4 and AMOTL2 mRNAs) - (miR-6807-5p) - (TGFB, IL6 and, HepPar1) expression.
Collapse
Affiliation(s)
- Noha Salah
- grid.7269.a0000 0004 0621 1570Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt. .,MASRI institute of research, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amal Mansour
- grid.7269.a0000 0004 0621 1570Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Nagwa M. Abo El Magd
- grid.7269.a0000 0004 0621 1570Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- grid.7269.a0000 0004 0621 1570Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal M. El Mahdy
- grid.7269.a0000 0004 0621 1570Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- grid.440879.60000 0004 0578 4430Department of Biology, Faculty of Science, Port Said University, Port Said, Egypt ,grid.440881.10000 0004 0576 5483Center for Genomics, Helmy Institute for Medical Science, Zewail City for Science & Technology, Giza, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
| |
Collapse
|
9
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
|
10
|
Clarkson BDS, Johnson RK, Bingel C, Lothaller C, Howe CL. Preservation of antigen-specific responses in cryopreserved CD4 + and CD8 + T cells expanded with IL-2 and IL-7. J Transl Autoimmun 2022; 5:100173. [PMID: 36467614 PMCID: PMC9713293 DOI: 10.1016/j.jtauto.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens. Methods Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4. Results We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing. Significance While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin DS. Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author. Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN, 55905.
| | | | - Corinna Bingel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | | | - Charles L. Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
11
|
Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol 2022; 44:461-474. [PMID: 35641679 PMCID: PMC9256571 DOI: 10.1007/s00281-022-00940-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022]
Abstract
Autoimmune liver diseases (AILD) include autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). These immune-mediated liver diseases involve a break down in peripheral self-tolerance with largely unknown aetiology. Regulatory T cells (Treg) are crucial in maintaining immunological tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in AILD. Currently, AILD do not have a curative treatment option and patients take life-long immunosuppression or bile acids to control hepatic or biliary inflammation. Clinical investigations using good manufacturing practice (GMP) Treg in autoimmune liver disease have thus far demonstrated that Treg therapy is safe and that Treg migrate to inflamed liver tissue. For Treg immunotherapy to achieve efficacy in AILD, Treg must be retained within the liver and maintain their suppressive phenotype to dampen ongoing immune responses to hepatocytes and biliary epithelium. Therefore, therapeutic Treg subsets should be selected for tissue residency markers and maximal functionality. Optimisation of dosing regime and understanding longevity of Treg in vivo are critical to successful Treg therapy. It is also essential to consider combination therapy options to complement infused Treg, for instance low-dose interleukin-2 (IL-2) to support pre-existing and infused Treg survival and suppressive function. Understanding the hepatic microenvironment in both early- and late-stage AILD presents significant opportunity to better tailor Treg therapy in different patient groups. Modification of a hostile microenvironment to a more favourable one either prior to or during Treg therapy could enhance the efficacy and longevity of infused GMP-Treg. Applying recent technology to discovery of autoantigen responses in AILD, T cell receptor (TCR) sequencing and use of chimeric antigen receptor (CAR) technology represents the next frontier for disease-specific CAR-Treg therapies. Consideration of all these aspects in future trials and discovery research would position GMP Treg immunotherapy as a viable personalised-medicine treatment option for effective control of autoimmune liver diseases.
Collapse
|
12
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Hann A, Oo YH, Perera MTPR. Regulatory T-Cell Therapy in Liver Transplantation and Chronic Liver Disease. Front Immunol 2021; 12:719954. [PMID: 34721383 PMCID: PMC8552037 DOI: 10.3389/fimmu.2021.719954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
The constant exposure of the liver to gut derived foreign antigens has resulted in this organ attaining unique immunological characteristics, however it remains susceptible to immune mediated injury. Our understanding of this type of injury, in both the native and transplanted liver, has improved significantly in recent decades. This includes a greater awareness of the tolerance inducing CD4+ CD25+ CD127low T-cell lineage with the transcription factor FoxP3, known as regulatory T-Cells (Tregs). These cells comprise 5-10% of CD4+ T cells and are known to function as an immunological "braking" mechanism, thereby preventing immune mediated tissue damage. Therapies that aim to increase Treg frequency and function have proved beneficial in the setting of both autoimmune diseases and solid organ transplantations. The safety and efficacy of Treg therapy in liver disease is an area of intense research at present and has huge potential. Due to these cells possessing significant plasticity, and the potential for conversion towards a T-helper 1 (Th1) and 17 (Th17) subsets in the hepatic microenvironment, it is pre-requisite to modify the microenvironment to a Treg favourable atmosphere to maintain these cells' function. In addition, implementation of therapies that effectively increase Treg functional activity in the liver may result in the suppression of immune responses and will hinder those that destroy tumour cells. Thus, fine adjustment is crucial to achieve this immunological balance. This review will describe the hepatic microenvironment with relevance to Treg function, and the role these cells have in both native diseased and transplanted livers.
Collapse
Affiliation(s)
- Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Disease (ERN-Rare Liver Centre), University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Pham MN, Khoryati L, Jamison BL, Hayes E, Sullivan JM, Campbell DJ, Gavin MA. In Vivo Expansion of Antigen-Specific Regulatory T Cells through Staggered Fc.IL-2 Mutein Dosing and Antigen-Specific Immunotherapy. Immunohorizons 2021; 5:782-791. [PMID: 34583939 PMCID: PMC11034776 DOI: 10.4049/immunohorizons.2100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these "Ag-specific immunotherapy" (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen- or allergen-specific T cells.
Collapse
Affiliation(s)
- Minh N Pham
- Benaroya Research Institute, Seattle, WA; and
| | | | | | - Erika Hayes
- Benaroya Research Institute, Seattle, WA; and
| | | | | | - Marc A Gavin
- Benaroya Research Institute, Seattle, WA; and
- Omeros Corp., Seattle, WA
| |
Collapse
|
15
|
Liu C, Wang YL, Yang YY, Zhang NP, Niu C, Shen XZ, Wu J. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases. FASEB J 2021; 35:e21871. [PMID: 34473374 DOI: 10.1096/fj.202100939r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Recent investigations of gut microbiota have contributed to understanding of the critical role of microbial community in pathophysiology. Dysbiosis not only causes disturbance directly to the gastrointestinal tract but also affects the liver through gut-liver axis. Various types of dysbiosis have been documented in alcoholic liver disease (ALD), nonalcoholic fatty liver disease, autoimmune hepatitis (AIH), primary sclerosing cholangitis, and may be crucial for the initiation, progression, or deterioration to end-stage liver disease. A few microbial species have been identified as the causal factors leading to these chronic illnesses that either do not have clear etiologies or lack effective treatment. Notably, cytolysin-producing Enterococcus faecalis, Klebsiella pneumoniae and Enterococcus gallinarum were defined for ALD, NASH, and AIH, respectively. These groundbreaking discoveries drive a rapid development in innovative therapeutics, such as fecal microbial transplantation and implementation of specific bacteriophages in addition to prebiotics, probiotics, or synbiotics for intervention of dysbiosis. Although most emerging interventions are in preclinical development or early clinical trials, a better delineation of specific dysbiosis in these disorders at metabolic, immunogenic, or molecular levels in establishing particular causal effects aids in modulating or correcting the microbial community which is the part of daily life for human being.
Collapse
Affiliation(s)
- Chang Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jian Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
16
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
17
|
Wraith DC, Krishna MT. Peptide allergen-specific immunotherapy for allergic airway diseases-State of the art. Clin Exp Allergy 2021; 51:751-769. [PMID: 33529435 DOI: 10.1111/cea.13840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Allergen-specific immunotherapy (AIT) is the only means of altering the natural immunological course of allergic diseases and achieving long-term remission. Pharmacological measures are able to suppress the immune response and/or ameliorate the symptoms but there is a risk of relapse soon after these measures are withdrawn. Current AIT approaches depend on the administration of intact allergens, often comprising crude extracts of the allergen. We propose that the challenges arising from current approaches, including the risk of serious side-effects, burdensome duration of treatment, poor compliance and high cost, are overcome by application of peptides based on CD4+ T cell epitopes rather than whole allergens. Here we describe evolving approaches, summarize clinical trials involving peptide AIT in allergic rhinitis and asthma, discuss the putative mechanisms involved in their action, address gaps in evidence and propose future directions for research and clinical development.
Collapse
Affiliation(s)
- David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mamidipudi T Krishna
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
18
|
Amir M, Parekh SM. Classic Autoimmune Liver Disorders and Celiac Hepatitis. Clin Liver Dis (Hoboken) 2021; 17:347-352. [PMID: 34136140 PMCID: PMC8177834 DOI: 10.1002/cld.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Muhammad Amir
- Division of Digestive Diseases Department of Medicine Emory University School of Medicine Atlanta GA
| | - Samir M Parekh
- Division of Digestive Diseases Department of Medicine Emory University School of Medicine Atlanta GA
| |
Collapse
|
19
|
Aghabi YO, Yasin A, Kennedy JI, Davies SP, Butler AE, Stamataki Z. Targeting Enclysis in Liver Autoimmunity, Transplantation, Viral Infection and Cancer. Front Immunol 2021; 12:662134. [PMID: 33953725 PMCID: PMC8089374 DOI: 10.3389/fimmu.2021.662134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent liver inflammation can lead to cirrhosis, which associates with significant morbidity and mortality worldwide. There are no curative treatments beyond transplantation, followed by long-term immunosuppression. The global burden of end stage liver disease has been increasing and there is a shortage of donor organs, therefore new therapies are desperately needed. Harnessing the power of the immune system has shown promise in certain autoimmunity and cancer settings. In the context of the liver, regulatory T cell (Treg) therapies are in development. The hypothesis is that these specialized lymphocytes that dampen inflammation may reduce liver injury in patients with chronic, progressive diseases, and promote transplant tolerance. Various strategies including intrinsic and extracorporeal expansion of Treg cells, aim to increase their abundance to suppress immune responses. We recently discovered that hepatocytes engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune liver diseases and in patients receiving a transplant. Moreover, in settings where the abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection or liver cancer, enhancement of enclysis could result in transient, localized reduction of Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We describe enclysis as is a natural process of liver immune regulation that lends itself to therapeutic targeting, particularly in combination with current Treg cell approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Zania Stamataki
- College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol 2021; 70:75-81. [PMID: 33878516 PMCID: PMC8376632 DOI: 10.1016/j.coi.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Specific immunotherapy is the ‘holy grail’ for treatment of autoimmunity. Antigens are delivered by either direct or indirect presentation mechanisms. Liver APC and steady state DC mediate distinct forms of immune regulation. Tr1 cell induction involves epigenetic modification of tolerance associated genes. Trials reveal that antigen-specific immunotherapy can control autoimmune diseases.
Current treatments for autoimmune diseases do not address the immune pathology underlying their initiation and progression and too often rely on non-specific immunosuppressive drugs for control of symptoms. Antigen-specific immunotherapy aims to induce tolerance selectively among the cells causing the disease while leaving the rest of the adaptive immune system capable of protecting against infectious diseases and cancers. Here we describe how novel approaches for antigen-specific immunotherapy are designed to manipulate antigen presentation and promote tolerance to specific self-antigens. This analysis points to liver antigen presenting cells, targeted by carrier particles, and steady-state dendritic cells, to which antigen-processing independent T-cell epitopes (apitopes) bind directly, as the principal targets for antigen-specific immunotherapy. Delivery of antigens to these cells holds great promise for effective control of this rapidly expanding group of diseases.
Collapse
Affiliation(s)
- Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
21
|
He C, Yang Y, Zheng K, Chen Y, Liu S, Li Y, Han Q, Zhao RC, Wang L, Zhang F. Mesenchymal stem cell-based treatment in autoimmune liver diseases: underlying roles, advantages and challenges. Ther Adv Chronic Dis 2021; 12:2040622321993442. [PMID: 33633826 PMCID: PMC7887681 DOI: 10.1177/2040622321993442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune liver disease (AILD) is a series of chronic liver diseases with abnormal immune responses, including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The treatment options for AILD remain limited, and the adverse side effects of the drugs that are typically used for treatment frequently lead to a low quality of life for AILD patients. Moreover, AILD patients may have a poor prognosis, especially those with an incomplete response to first-line treatment. Mesenchymal stem cells (MSCs) are pluripotent stem cells with low immunogenicity and can be conveniently harvested. MSC-based therapy is emerging as a promising approach for treating liver diseases based on their advantageous characteristics of immunomodulation, anti-fibrosis effects, and differentiation to hepatocytes, and accumulating evidence has revealed the positive effects of MSC therapy in AILD. In this review, we first summarize the mechanisms, safety, and efficacy of MSC treatment for AILD based on work in animal and clinical studies. We also discuss the challenges of MSC therapy in clinical applications. In summary, although promising data from preclinical studies are now available, MSC therapy is currently far for being applied in clinical practice, thus developing MSC therapy in AILD is still challenging and warrants further research.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanlei Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|