1
|
Dong W, Li J, Zhuang Z. Neutrophil-related Signature Characterizes Immune Landscape and Predicts Prognosis of Invasive Breast Cancer. Biochem Genet 2024:10.1007/s10528-024-10940-0. [PMID: 39417978 DOI: 10.1007/s10528-024-10940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
As a leading prevalent malignancy, breast cancer remains a significant worldwide health issue. Recent research indicates that neutrophils play a crucial role in breast cancer development. The prognostic significance of neutrophil-related genes (NRGs) or the immune landscape of the neutrophil-related signature in invasive breast cancer (IBC) is, nevertheless, unknown. To uncover innovative therapy alternatives, the significance of the neutrophil-related signatures in IBC was evaluated here. Briefly, a prediction model based on neutrophil-related core prognostic genes and The Cancer Genome Atlas data was created (TCGA). The model may assess IBC patients' prognosis. The IBC data from the Gene Expression Omnibus (GEO) confirmed the prognostic accuracy of the model. The overall survival (OS) of patients was worse in the group with a high NRGs score compared to the group with a low NRGs score. In addition, patients with low NRGs scores were considerably more sensitive to vinorelbine, cyclophosphamide, epirubicin, gemcitabine, paclitaxel, 5-fluorouracil, docetaxel, and cisplatin. Patients with low NRGs scores responded better to CTLA-4 and PD-1 treatments. Additionally, the immune microenvironment components were more abundant in patients with low NRGs scores. Moreover, qRT-PCR results confirmed that LEF1 had a higher expression level in tumor samples compared to normal samples, whereas NRG1 and STX11 exhibited lower expression levels in tumor samples than in normal samples. These results suggest that NRGs might be utilized as biomarkers to predict the prognosis of individuals with IBC, thereby paving the way for the creation of customized therapies for IBC.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. Methods Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. Results Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. Conclusion Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
3
|
Joaquim A, Góis A, Soares A, Garcia C, Amarelo A, Antunes P, Afreixo V, Geraldes V, Capela A, Viamonte S, Alves AJ, Ferreira HB, Guerra I, Afonso AI, Domingues MR, Helguero LA. Effect of physical exercise on immune, inflammatory, cardiometabolic biomarkers, and fatty acids of breast cancer survivors: results from the MAMA_MOVE Gaia After Treatment trial. Support Care Cancer 2024; 32:174. [PMID: 38378875 DOI: 10.1007/s00520-024-08365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Physical exercise has positive effects on clinical outcomes of breast cancer survivors such as quality of life, fatigue, anxiety, depression, body mass index, and physical fitness. We aimed to study its impact on immune, inflammatory, cardiometabolic, and fatty acids (FA) biomarkers. METHODS An exploratory sub-analysis of the MAMA_MOVE Gaia After Treatment trial (NCT04024280, registered July 18, 2019) was performed. Blood sample collections occurred during the control phase and at eight weeks of the intervention phase. Samples were subjected to complete leukocyte counts, cytokine, and cardiometabolic marker evaluation using flow cytometry, enzyme-linked immunoassays, and gas chromatography. RESULTS Ninety-three percent of the 15 participants had body mass index ≥ 25 kg/m2. We observed a decrease of the plasmatic saturated FA C20:0 [median difference - 0.08% (p = 0.048); mean difference - 0.1 (95%CI - 0.1, - 0.0)], positively associated with younger ages. A tendency to increase the saturated FA C18:0 and the ratio of unsaturated/saturated FA and a tendency to decrease neutrophils (within the normal range) and interferon-gamma were observed. CONCLUSIONS Positive trends of physical exercise on circulating immune cells, inflammatory cytokines, and plasmatic FA were observed. Larger studies will further elucidate the implications of physical exercise on metabolism. These exploratory findings may contribute to future hypothesis-driven research and contribute to meta-analyses.
Collapse
Affiliation(s)
- Ana Joaquim
- Medical Oncology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502, Vila Nova de Gaia, Portugal.
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal.
- Institute of Biomedicine (IBIMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - André Góis
- Institute of Biomedicine (IBIMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Anabela Soares
- Institute of Biomedicine (IBIMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Garcia
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
- Research Center in Sports Sciences Health Sciences and Human Development, University of Maia, 4475-690, Maia, Portugal
| | - Anabela Amarelo
- Medical Oncology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502, Vila Nova de Gaia, Portugal
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
| | - Pedro Antunes
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
- Research Center in Sports Sciences Health Sciences and Human Development, University of Beira Interior, 6201-001, Covilhã, Portugal
| | - Vera Afreixo
- Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal
- Center for Research & Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera Geraldes
- Institute of Physiology, Faculty of Medicine of the University of Lisbon and Cardiovascular Centre of the University of Lisbon, 1649-028, Lisbon, Portugal
| | - Andreia Capela
- Medical Oncology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502, Vila Nova de Gaia, Portugal
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
| | - Sofia Viamonte
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
- Institute of Biomedicine (IBIMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Centro de Reabilitação Do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4405-565, Vila Nova de Gaia, Portugal
| | - Alberto J Alves
- ONCOMOVE®-Associação de Investigação de Cuidados de Suporte em Oncologia (AICSO), 4410-406, Vila Nova de Gaia, Portugal
- Research Center in Sports Sciences Health Sciences and Human Development, University of Maia, 4475-690, Maia, Portugal
| | - Helena B Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Mass Spectrometry Centre &, 3810-193, Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Guerra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Mass Spectrometry Centre &, 3810-193, Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana I Afonso
- Institute of Physiology, Faculty of Medicine of the University of Lisbon and Cardiovascular Centre of the University of Lisbon, 1649-028, Lisbon, Portugal
| | - M Rosário Domingues
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Mass Spectrometry Centre &, 3810-193, Aveiro, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luisa A Helguero
- Institute of Biomedicine (IBIMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
5
|
Charles A, Thomas RM. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia 2023; 37:100878. [PMID: 36696837 PMCID: PMC9879786 DOI: 10.1016/j.neo.2023.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Cancer remains a leading cause of death despite many advances in medical and surgical therapy. In recent decades, the investigation for novel therapeutic strategies with greater efficacy and reduced side effects has led to a deeper understanding of the relationship between the microbiome and the immune system in the context of cancer. The ability of the immune system to detect and kill cancer is now recognized to be greatly influenced by the microbial ecosystem of the host. While most of these studies, as well as currently used immunotherapeutics, focus on the adaptive immune system, this minimizes the impact of the innate immune system in cancer surveillance and its regulation by the host microbiome. In this review, known influences of the microbiome on the innate immune cells in the tumor microenvironment will be discussed in the context of individual innate immune cells. Current and needed areas of investigation will highlight the field and its potential impact in the clinical treatment of solid malignancies.
Collapse
Affiliation(s)
- Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,Corresponding author at: University of Florida, Department of Surgery, PO Box 100109, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Xie T, Liu B, Liu D, Zhou Y, Yang Q, Wang D, Tang M, Liu W. Cuproptosis-related lncRNA signatures predict prognosis and immune relevance of kidney renal papillary cell carcinoma. Front Pharmacol 2022; 13:1103986. [PMID: 36618928 PMCID: PMC9810632 DOI: 10.3389/fphar.2022.1103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) has a high mortality rate and a poor prognosis. Cu concentrations differed significantly between renal cancer tissues and adjacent normal tissues. Cuproptosis is a newly identified cell death. Long non-coding RNAs (lncRNAs) play a crucial role in the progression of KIRP. In this study, we focused on constructing and validating cuproptosis-related lncRNA signatures to predict the prognosis of KIRP patients and their immune correlation. We created prognosis models using Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. We found that patients in the high-risk group had poorer overall survival (OS) and progression-free survival (PFS) and higher mortality. Risk score and stage are prognosis factors independent of other clinical features. Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and C-index curves showed that cuproptosis-related lncRNA signatures could more accurately predict the prognosis of patients. Functional enrichment analysis suggests that the function of differentially expressed genes (DEGs) is associated with KIRP development and immunity. In immune-related function analysis, we found a significant difference in parainflammation responses between high-risk and low-risk groups. The mutation frequencies of TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D genes in the high-risk group were higher than those in the low-risk group, but the mutation frequencies of MUC16, KIAA109, CUBN, USH2A, DNAH8 and HERC2 genes were significantly lower than those in the low-risk group. Survival analysis of tumor mutation burden (TMB) and combined TMB-risk showed better OS in patients with high TMB. Immune infiltration and immune checkpoint analysis assessed the immune association of six high mutation frequency genes (TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D) with KIRP. Finally, we performed a drug sensitivity analysis and screened 15 potential drugs that differed between high-risk and low-risk patients. In this study, we constructed and validated cuproptosis-related lncRNA signatures that can more accurately predict the prognosis of KIRP patients and provide new potential therapeutic targets and prognosis markers for KIRP patients.
Collapse
Affiliation(s)
- Tongjin Xie
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongbo Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dai Wang
- Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wei Liu,
| |
Collapse
|
7
|
Sifón MDR, Marcolini N, Barber MJ, Mclean I, Rizzo M, Rivero S, Costanzo MV, Nervo A, Crimi G, Perazzo F, Levy EM, Mandó P. Lack of Prognostic Value of Pretreatment Neutrophil-to-Lymphocyte Ratio in Early Breast Cancer. Breast Care (Basel) 2022; 17:546-553. [PMID: 36590145 PMCID: PMC9801394 DOI: 10.1159/000525287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Background Breast cancer is a highly heterogeneous disease with large differences in the risk of recurrence. An elevated neutrophil-to-lymphocyte ratio (NLR) is correlated with a poor prognosis in a variety of tumors, and although it is still controversial in breast cancer, there are multiple studies, including meta-analysis, suggesting this. The purpose of this study was to analyze the prognostic value of preoperative NLR in an Argentine population of patients with nonmetastatic breast cancer, not exposed to neoadjuvant treatment. Methods Retrospective multicenter cohort study that includes patients over 18 years of age from three centers in the city and province of Buenos Aires who have had surgery for early breast cancer between January 1, 1999, and December 31, 2014. Based on the previous literature, a cutoff value of 2.0 was defined. Results A total of 791 patients were eligible for the analysis. Median age was 55 years (IQR 45-65). Median NLR was 1.92 (IQR 1.50-2.56). The distribution of groups according to the 8th edition of the AJCC was 54.1% for stage I, 35.6% stage II, and 10.4% stage III. Among the different tumor phenotypes, 79.0% were HR+/HER2-, 11.4% were HR+ or-/HER2+, and 9.2% were HR-/HER2-. With a median follow-up of 5.3 years, 112 patients (14.2%) had disease recurrence. Stage III patients had a higher NLR than stage I and stage II patients (p = 0.002). The rest of the clinical and pathological characteristics did not show differences in the groups according to NLR. There were no differences in relapse-free survival according to the NLR (p = 0.37), and it did not change after adjusting for other prognostic variables. Conclusion We consider it is important to determine the efficacy of prognostic markers that are easily accessible and of simple, systematic application. However, NLR does not appear to be an independent prognostic factor for recurrence in our population. In this sense, we consider it is important to publish negative results in order to avoid publication bias.
Collapse
Affiliation(s)
- Maria del Rosario Sifón
- Clinical Oncology, Centro de Educación médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Nicolas Marcolini
- Clinical Oncology, Hospital Universitario Austral (HUA), Buenos Aires, Argentina
| | - Maria Julia Barber
- Breast Surgery Unit, Hospital Universitario Austral (HUA), Buenos Aires, Argentina
| | - Ignacio Mclean
- Breast Surgery Unit, Hospital Universitario Austral (HUA), Buenos Aires, Argentina
| | - Manglio Rizzo
- Clinical Oncology, Hospital Universitario Austral (HUA), Buenos Aires, Argentina
| | - Sergio Rivero
- Clinical Oncology, Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | | | - Adrian Nervo
- Clinical Oncology, Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | - Gabriel Crimi
- Breast Surgery Unit, Centro de Educación médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Florencia Perazzo
- Clinical Oncology, Centro de Educación médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | | | - Pablo Mandó
- Clinical Oncology, Centro de Educación médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| |
Collapse
|
8
|
Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. J Clin Med 2022; 11:jcm11205986. [PMID: 36294305 PMCID: PMC9604853 DOI: 10.3390/jcm11205986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system plays a fundamental role in neoplastic disease. In the era of immunotherapy, the adaptive immune response has been in the spotlight whereas the role of innate immunity in cancer development and progression is less known. The tumor microenvironment influences the terminal differentiation of innate immune cells, which can explicate their pro-tumor or anti-tumor effect. Different cells are able to recognize and eliminate no self and tumor cells: macrophages, natural killer cells, monocytes, dendritic cells, and neutrophils are, together with the elements of the complement system, the principal players of innate immunity in cancer development and evolution. Metastatic breast cancer is a heterogeneous disease from the stromal, immune, and biological point of view and requires deepened exploration to understand different patient outcomes. In this review, we summarize the evidence about the role of innate immunity in breast cancer metastatic sites and the potential targets for optimizing the innate response as a novel treatment opportunity.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
- Correspondence:
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Marta Palafox Sancez
- Tumor Heterogeneity, Metastasis and Resistance Laboratory, University of Basel, 4001 Basel, Switzerland
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
9
|
He X, Wang J, Yu H, Lv W, Wang Y, Zhang Q, Liu Z, Wu Y. Clinical significance for diagnosis and prognosis of POP1 and its potential role in breast cancer: a comprehensive analysis based on multiple databases. Aging (Albany NY) 2022; 14:6936-6956. [PMID: 36084948 PMCID: PMC9512506 DOI: 10.18632/aging.204255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Background: Breast cancer (BC) is one of the most common cancers in women. The discovery of available biomarkers is crucial for early diagnosis and improving prognosis. The effect of POP1 in BC remains unrevealed. Our study aims to explore the expression of POP1 in BC and demonstrate its clinical significance and potential molecular mechanisms. Methods: The Cancer Genome Atlas (TCGA) BC cohort transcriptome data and corresponding clinical information were downloaded. GSE42568 cohort, GSE162228 cohort, GSE7904 cohort, and GSE161533 cohort in the Gene Expression Omnibus (GEO) database were used as verification groups. R software and several web tools were used for statistical analysis. Moreover, the proliferation, transwell, wound healing experiments, and flow cytometry were used for in vitro investigation. Results: Compared with normal breast tissue, POP1 expression was up-regulated in BC tissue with a higher mutation rate. POP1 had good diagnostic value for BC and could be utilized as a new marker. POP1 was significantly correlated with multiple pathways in BC and played an important role in the immune infiltration of BC. High-POP1 expression patients were more prone to be responded to immunotherapy and had a significantly higher percentage of immunotherapy response rate. Moreover, POP1 promoted proliferation and migration and inhibited apoptosis in BC cells. Conclusions: POP1 expression was up-regulated in BC and was associated with a poor prognosis. Patients with high-POP1 expression were more likely to be responded to immunotherapy. Our study can provide a potential marker POP1 for BC, which is beneficial in the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ji Wang
- Department of Emergency, The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang 443000, Hubei, China
| | - Honghao Yu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
10
|
Zhao H, Xie R, Zhang C, Lu G, Kong H. Pan-cancer analysis of prognostic and immunological role of DTYMK in human tumors. Front Genet 2022; 13:989460. [PMID: 36159971 PMCID: PMC9493117 DOI: 10.3389/fgene.2022.989460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Deoxythymidylate kinase (DTYMK) has been reported to correlate with the progression of hepatocellular carcinoma. However, the role of DTYMK in human cancers is not studied. In this study, we studied the prognostic value, functional states, and correlations with immune infiltration of DTYMK in human cancers. Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UALCAN, Clinical Proteomic Tumor Analysis Consortium (CPTAC), the search tool for the retrieval of interacting genes (STRING), GeneMANIA, cBioPortal, Cancer Single-cell State Atlas (CancerSEA), and Tumor IMmune Estimation Resource (TIMER) databases were utilized to analyze DTYMK in cancers. Results: In general, DTYMK is abnormally expressed between most human cancer and normal tissues from a pan-cancer perspective. DTYMK can be used as a diagnostic biomarker to differentiate tumor tissues from normal tissues in most tumors. Upregulation of DTYMK predicted poor survival status in most cancer types in TCGA. Moreover, DTYMK expression was correlated with the T stage in ACC, BRCA, KIRC, LIHC, and LUAD, with the N stage in BLCA, HNSC, KICH, KIRC, LUAD, LUSC, and THCA, with the M stage in ACC, KIRC, KIRP, and LUAD, with TNM stage in ACC, KIRC, LIHC, LUAD, and LUSC. In addition, based on single-cell sequencing data, we concluded that the expression of DTYMK was correlated with the functional status of the cell cycle, DNA damage, DNA repair, invasion, EMT, and proliferation. Finally, DTYMK expression was correlated with six infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells by investigating TIMER. Conclusion: Our findings suggested that abnormally expressed DTYMK was correlated with poor survival, malignant functional status, and immune infiltrates. DTYMK might be served as a potential biomarker for diagnosis and poor prognosis in various cancer types. DTYMK might act as a potential target for immune therapy.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guojun Lu, ; Hui Kong,
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Guojun Lu, ; Hui Kong,
| |
Collapse
|
11
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
Efficacy and Mechanism of Roxadustat plus Oral Iron in the Treatment of Elderly Chronic Kidney Disease with Anemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9192655. [PMID: 35795277 PMCID: PMC9252627 DOI: 10.1155/2022/9192655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022]
Abstract
Objective For investigating the efficacy and mechanism of Roxadustat + oral iron in the treatment of elderly chronic kidney disease (CKD) complicated with anemia. Methods A total of 100 elderly patients with CKD and anemia admitted to our hospital between April 2020 and December 2021 were enrolled as research subjects, and the patients were assigned to control group (Con group, n = 50) or experimental group (Exp group, n = 50). The patients in the Con group were given oral iron, and those in the Exp group were given Roxadustat capsule based on the Con group. Both groups were given subcutaneous injection of recombinant human erythropoietin. The clinical efficacy, anemia indexes, iron metabolism indexes, inflammatory indexes, and adverse reactions were compared between the two groups. Results The Exp group showed a notably higher treatment effective rate than the Con group (P < 0.05). After treatment, the anemia indexes, iron metabolism indexes, and inflammatory indexes in the Exp group were notably better than those in the Con group (P < 0.05). The Exp group showed a notably lower incidence of adverse reactions during treatment than the Con group (P < 0.05). Conclusion Roxadustat plus oral iron yields a pronounced clinical efficacy in the therapy of elderly patients with CKD and anemia.
Collapse
|
13
|
Zhao H, Lu G. Prognostic Implication and Immunological Role of PSMD2 in Lung Adenocarcinoma. Front Genet 2022; 13:905581. [PMID: 35754829 PMCID: PMC9214243 DOI: 10.3389/fgene.2022.905581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although previous studies reported that 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) is involved in many human cancers. However, its clinical significance and function in lung adenocarcinoma remain unclear. Here, we examined the prognostic and immunological role of PSMD2 in lung adenocarcinoma. Methods: The Cancer Genome Atlas (TCGA) was conducted to analyze PSMD2 expression and verified using UALCAN. PrognoScan and Kaplan-Meier curves were utilized to assess the effect of PSMD2 on survival. cBioPortal database was conducted to identify the mutation characteristics of PSMD2. Functional enrichment was performed to determine PSMD2-related function. Cancer Single-cell State Atlas (CancerSEA) was used to explore the cancer functional status of PSMD2 at single-cell resolution. PSMD2-related immune infiltration analysis was conducted. Tumor-Immune system interaction database (TISIDB) was performed to verify the correlation between PSMD2 expression and tumor-infiltrating lymphocytes (TILs). Results: Both mRNA and protein expression of PSMD2 were significantly elevated in lung adenocarcinoma. High expression of PSMD2 was significantly correlated with high T stage (p = 0.014), lymph node metastases (p < 0.001), and TNM stage p = 0.005). Kaplan-Meier curves indicated that high expression of PSMD2 was correlated with poor overall survival (38.2 vs. 59.7 months, p < 0.001) and disease-specific survival (59.9 months vs. not available, p = 0.004). Multivariate analysis suggested that PSMD2 was an independent biomarker for poor overall survival (HR 1.471, 95%CI, 1.024–2.114, p = 0.037). PSMD2 had a high mutation frequency of 14% in lung adenocarcinoma. The genetic mutation of PSMD2 was also correlated with poor overall survival, disease-specific survival, and progression-free survival in lung adenocarcinoma. Functional enrichment suggested PSMD2 expression was involved in the cell cycle, RNA transport, and cellular senescence. CancerSEA analysis indicated PSMD2 expression was positively correlated with cell cycle, DNA damage, and DNA repair. Immune infiltration analysis suggested that PSMD2 expression was correlated with immune cell infiltration levels and abundance of TILs. Conclusion: The upregulation of PSMD2 is significantly correlated with poor prognosis and immune infiltration levels in lung adenocarcinoma. Our findings suggest that PSMD2 is a potential biomarker for poor prognosis and immune therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
15
|
Weighted Gene Coexpression Network Analysis Identifies TBC1D10C as a New Prognostic Biomarker for Breast Cancer. Anal Cell Pathol 2022; 2022:5259187. [PMID: 35425695 PMCID: PMC9005324 DOI: 10.1155/2022/5259187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 12/09/2022] Open
Abstract
Background Immune checkpoint inhibitors are a promising therapeutic strategy for breast cancer (BRCA) patients. The tumor microenvironment (TME) can downregulate the immune response to cancer therapy. Our study is aimed at finding a TME-related biomarker to identify patients who might respond to immunotherapy. Method We downloaded raw data from several databases including TCGA and MDACC to identify TME hub genes associated with overall survival (OS) and the progression-free interval (PFI) by WGCNA. Correlations between hub genes and either tumor-infiltrating immune cells or immune checkpoints were conducted by ssGSEA. Result TME-related green and black modules were selected by WGCNA to further screen hub genes. Random forest and univariate and multivariate Cox regressions were applied to screen hub genes (MYO1G, TBC1D10C, SELPLG, and LRRC15) and construct a nomogram to predict the survival of BRCA patients. The C-index for the nomogram was 0.713. A DCA of the predictive model revealed that the net benefit of the nomogram was significantly higher than others and the calibration curve demonstrated a good performance by the nomogram. Only TBC1D10C was correlated with both OS and the PFI (both p values < 0.05). TBC1D10C also had a high positive association with tumor-infiltrating immune cells and common immune checkpoints (PD-1, CTLA-4, and TIGIT). Conclusion We constructed a TME-related gene signature model to predict the survival probability of BRCA patients. We also identified a hub gene, TBC1D10C, which was correlated with both OS and the PFI and had a high positive association with tumor-infiltrating immune cells and common immune checkpoints. TBC1D10C may be a new biomarker to select patients who may benefit from immunotherapy.
Collapse
|
16
|
Locy H, Verhulst S, Cools W, Waelput W, Brock S, Cras L, Schiettecatte A, Jonckheere J, van Grunsven LA, Vanhoeij M, Thielemans K, Breckpot K. Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Front Immunol 2022; 13:794175. [PMID: 35222378 PMCID: PMC8876933 DOI: 10.3389/fimmu.2022.794175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Scoring of tumor-infiltrating lymphocytes (TILs) in breast cancer specimens has gained increasing attention, as TILs have prognostic and predictive value in HER2+ and triple-negative breast cancer. We evaluated the intra- and interrater variability when scoring TILs by visual inspection of hematoxylin and eosin-stained tissue sections. We further addressed whether immunohistochemical staining of these sections for immune cell surface markers CD45, CD3, CD4, and CD8 and combination with nanoString nCounter® gene expression analysis could refine TIL scoring. Formalin-fixed paraffin-embedded and fresh-frozen core needle biopsies of 12 female and treatment-naive breast cancer patients were included. Scoring of TILs was performed twice by three independent pathologists with a washout period of 3 days. Increasing intra- and interrater variability was observed with higher TIL numbers. The highest reproducibility was observed on tissue sections stained for CD3 and CD8. The latter TIL scores correlated well with the TIL scores obtained through nanoString nCounter® gene expression analysis. Gene expression analysis also revealed 104 and 62 genes that are positively and negatively related to both TIL scores. In conclusion, integration of immunohistochemistry and gene expression analysis is a valuable strategy to refine TIL scoring in breast tumors.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| | | | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, VUB, Brussels, Belgium
| | - Wim Waelput
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stefanie Brock
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| |
Collapse
|
17
|
Bartlett DB, Hanson ED, Lee JT, Wagoner CW, Harrell EP, Sullivan SA, Bates LC, Alzer MS, Amatuli DJ, Deal AM, Jensen BC, MacDonald G, Deal MA, Muss HB, Nyrop KA, Battaglini CL. The Effects of 16 Weeks of Exercise Training on Neutrophil Functions in Breast Cancer Survivors. Front Immunol 2021; 12:733101. [PMID: 34777343 PMCID: PMC8578958 DOI: 10.3389/fimmu.2021.733101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Following therapy, breast cancer survivors (BCS) have an increased risk of infections because of age and cancer dysregulation of inflammation and neutrophil functions. Neutrophil functions may be improved by exercise training, although limited data exist on exercise and neutrophil functions in BCS.Sixteen BCS [mean age: 56 (SD 11) years old] completed 16 weeks of community-based exercise training and a 45-minute acute bout of cycling before (Base) and after (Final) the exercise training program. Exercise training consisted of 3 x 40 – 60 minute mixed mode aerobic exercises, comprising 10 – 30 minutes aerobic and 30 minutes resistance training. At Base and Final, we took BCS blood samples before (PRE), immediately after (POST), and 1 hour after (1Hr) acute exercise to determine neutrophil counts, phenotype, bacterial killing, IL-6, and IL-8 levels. Eleven healthy, age- and physical activity levels-matched women (Control) completed the acute bout of exercise once as a healthy response reference. Resting Responses. BCS and Controls had similar Base PRE absolute neutrophil counts [mean (SD): 3.3 (1.9) v 3.1 (1.2) x 109/L, p=0.801], but BCS had lower bacterial phagocytosis [3991 (1233) v 4881 (417) MFI, p=0.035] and higher oxidative killing [6254 (1434) v 4709 (1220) MFI, p=0.005], lower CD16 [4159 (1785) v 7018 (1240) MFI, p<0.001], lower CXCR2 [4878 (1796) v 6330 (1299) MFI, p=0.032] and higher TLR2 [98 (32) v 72 (17) MFI, p=0.022] expression, while IL-6 [7.4 (5.4) v 4.0 (2.7) pg/mL, p=0.079] levels were marginally higher and IL-8 [6.0 (4.7) v 7.9 (5.0) pg/mL, p=0.316] levels similar. After 16 weeks of training, compared to Controls, BCS Final PRE phagocytosis [4510 (738) v 4881 (417) MFI, p=0.146] and TLR2 expression [114 (92) v 72 (17) MFI, p=0.148] were no longer different. Acute Exercise Responses. As compared to Controls, at Base, BCS phagocytic Pre-Post response was lower [mean difference, % (SD): 12% (26%), p=0.042], CD16 Pre-Post response was lower [12% (21%), p=0.016] while CD16 Pre-1Hr response was higher [13% (25%), p=0.022], TLR2 Pre-Post response was higher [15% (4%) p=0.002], while IL-8 Pre-Post response was higher [99% (48%), p=0.049]. As compared to Controls, following 16 weeks of training BCS phagocytic Pre-Post response [5% (5%), p=0.418], CD16 Pre-1Hr response [7% (7%), p=0.294], TLR2 Pre-Post response [6% (4%), p=0.092], and IL-8 Pre-Post response [1% (9%), p=0.087] were no longer different. Following cancer therapy, BCS may have impaired neutrophil functions in response to an acute bout of exercise that are partially restored by 16 weeks of exercise training. The improved phagocytosis of bacteria in BCS may represent an exercise-induced intrinsic improvement in neutrophil functions consistent with a reduced risk of infectious disease.
Collapse
Affiliation(s)
- David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A Sullivan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Grace MacDonald
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Michael A Deal
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Cilibrasi C, Papanastasopoulos P, Samuels M, Giamas G. Reconstituting Immune Surveillance in Breast Cancer: Molecular Pathophysiology and Current Immunotherapy Strategies. Int J Mol Sci 2021; 22:12015. [PMID: 34769447 PMCID: PMC8584417 DOI: 10.3390/ijms222112015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past 50 years, breast cancer immunotherapy has emerged as an active field of research, generating novel, targeted treatments for the disease. Immunotherapies carry enormous potential to improve survival in breast cancer, particularly for the subtypes carrying the poorest prognoses. Here, we review the mechanisms by which cancer evades immune destruction as well as the history of breast cancer immunotherapies and recent developments, including clinical trials that have shaped the treatment of the disease with a focus on cell therapies, vaccines, checkpoint inhibitors, and oncolytic viruses.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (P.P.); (M.S.)
| | | | | | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (P.P.); (M.S.)
| |
Collapse
|
19
|
Qin Q, Fang DL, Zhou W, Meng Y, Wei J. Classification and immune invasion analysis of breast cancer based on m6A genes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1418. [PMID: 34733970 PMCID: PMC8506726 DOI: 10.21037/atm-21-3404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Background Breast cancer (BRCA) shows genetic, epigenetic, and phenotypic diversity. Methylation of N6-methyladenosine (m6A) affects the occurrence, development, and therapeutic efficacy of BRCA. However, the characteristics and prognostic value of m6A in BRCA remain unclear. We aimed to classify and construct a scoring system for the m6A regulatory gene in BRCA, and to explore its potential mechanisms. Methods In this study, we selected 23 m6A regulatory genes and analyzed their genetic variation in BRCA, including copy number variation (CNV) data, expression differences, mutations, gene types, and correlations between genes. Survival curves were drawn by the Kaplan-Meier method, and a log-rank P<0.05 was considered statistically significant. The partitioning around medoids (PAM) algorithm was used for molecular subtype analysis of m6A, single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to quantify the relative infiltration levels of various immune cell subgroups, and a scoring system was built based on principal component analysis (PCA). Results In BRCA, m6A regulatory gene mutation frequency is not high, while that of CNV mutation is high, which is related to gene expression and closely related to prognosis. In this study, we identified 3 different m6A subtypes, which are closely related to the level of immune cell infiltration. We further constructed an m6A score system, in which lower scores were correlated with low tumor mutation burden (TMB), later clinical staging, programmed cell death 1 ligand 1 (PD-L1) expression, and triple-negative breast cancer (TNBC). Conclusions This study highlights the diversity and complexity of the role of m6A in BRCA. The classification of BRCA based on the m6A regulatory gene can help us understand the characteristics of BRCA and help develop individualized immunotherapy regimens.
Collapse
Affiliation(s)
- Qiang Qin
- Department of Hematology, Baise People's Hospital, Baise, China.,Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Da Lang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Yuhua Meng
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| |
Collapse
|
20
|
Yi Y, Wu M, Zeng H, Hu W, Zhao C, Xiong M, Lv W, Deng P, Zhang Q, Wu Y. Tumor-Derived Exosomal Non-Coding RNAs: The Emerging Mechanisms and Potential Clinical Applications in Breast Cancer. Front Oncol 2021; 11:738945. [PMID: 34707990 PMCID: PMC8544822 DOI: 10.3389/fonc.2021.738945] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Key Factor Regulating Inflammatory Microenvironment, Metastasis, and Resistance in Breast Cancer: Interleukin-1 Signaling. Mediators Inflamm 2021; 2021:7785890. [PMID: 34602858 PMCID: PMC8486558 DOI: 10.1155/2021/7785890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.
Collapse
|
22
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
23
|
Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting. Cells 2021; 10:cells10071685. [PMID: 34359855 PMCID: PMC8303552 DOI: 10.3390/cells10071685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The neutrophil to lymphocyte ratio (NLR) is a promising predictive and prognostic factor in breast cancer. We investigated its ability to predict disease-free survival (DFS) and overall survival (OS) in patients with luminal A- or luminal B-HER2-negative breast cancer who received neoadjuvant chemotherapy (NACT). Pre-treatment complete blood cell counts from 168 consecutive patients with luminal breast cancer were evaluated to assess NLR. The study population was stratified into NLRlow or NLRhigh according to a cut-off value established by receiving operator curve (ROC) analysis. Data on additional pre- and post-treatment clinical-pathological characteristics were also collected. Kaplan–Meier curves, log-rank tests, and Cox proportional hazards models were used for statistical analyses. Patients with pre-treatment NLRlow showed a significantly shorter DFS (HR: 6.97, 95% CI: 1.65–10.55, p = 0.002) and OS (HR: 7.79, 95% CI: 1.25–15.07, p = 0.021) compared to those with NLRhigh. Non-ductal histology, luminal B subtype, and post-treatment Ki67 ≥ 14% were also associated with worse DFS (p = 0.016, p = 0.002, and p = 0.001, respectively). In a multivariate analysis, luminal B subtype, post-treatment Ki67 ≥ 14%, and NLRlow remained independent prognostic factors for DFS, while only post-treatment Ki67 ≥ 14% and NLRlow affected OS. The present study provides evidence that pre-treatment NLRlow helps identify women at higher risk of recurrence and death among patients affected by luminal breast cancer treated with NACT.
Collapse
|
24
|
Huang H, Zhou J, Chen H, Li J, Zhang C, Jiang X, Ni C. The immunomodulatory effects of endocrine therapy in breast cancer. J Exp Clin Cancer Res 2021; 40:19. [PMID: 33413549 PMCID: PMC7792133 DOI: 10.1186/s13046-020-01788-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Endocrine therapies with SERMs (selective estrogen receptor modulators) or SERDs (selective estrogen receptor downregulators) are standard therapies for patients with estrogen receptor (ER)-positive breast cancer. Multiple small molecule inhibitors targeting the PI3K-AKT-mTOR pathway or CDK4/6 have been developed to be used in combination with anti-estrogen drugs to overcome endocrine resistance. In addition to their direct antitumor effects, accumulating evidence has revealed the tumor immune microenvironment (TIM)-modulating effects of these therapeutic strategies, which have not been properly acknowledged previously. The immune microenvironment of breast tumors plays a crucial role in tumor development, metastasis and treatment response to endocrine therapy and immunotherapy. Therefore, in our current work, we comprehensively review the immunomodulatory effect of endocrine therapy and discuss its potential applications in combination with immune checkpoint inhibitors in breast cancer treatment.
Collapse
Affiliation(s)
- Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital Zhejiang University, Zhejiang, 310006, Hangzhou, China
| | - Hailong Chen
- Department of Breast Surgery, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Chao Zhang
- Department of Anatomy School of Medicine, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xia Jiang
- School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610064, China.
- Department of Clinical Neuroscience Centre for Molecular Medicine, Karolinska Institute, Stockholm, 17176, Sweden.
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory of Tumour Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital Zhejiang University, Zhejiang, 310009, Hangzhou, China.
| |
Collapse
|