1
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
2
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Belchamber KBR, Thein OS, Hazeldine J, Grudzinska FS, Faniyi AA, Hughes MJ, Jasper AE, Yip KP, Crowley LE, Lugg ST, Sapey E, Parekh D, Thickett DR, Scott A. Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells 2022; 11:2901. [PMID: 36139476 PMCID: PMC9496854 DOI: 10.3390/cells11182901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Onn S. Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aduragbemi A. Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice E. Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E. Crowley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- PIONEER HDR-UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B12 2GW, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐Castrellon P, Ma X. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm (Beijing) 2022; 3:e154. [PMID: 35923762 PMCID: PMC9340488 DOI: 10.1002/mco2.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic has become a global crisis. In the immunopathogenesis of COVID-19, SARS-CoV-2 infection induces an excessive inflammatory response in patients, causing an inflammatory cytokine storm in severe cases. Cytokine storm leads to acute respiratory distress syndrome, pulmonary and other multiorgan failure, which is an important cause of COVID-19 progression and even death. Among them, activation of inflammatory pathways is a major factor in generating cytokine storms and causing dysregulated immune responses, which is closely related to the severity of viral infection. Therefore, elucidation of the inflammatory signaling pathway of SARS-CoV-2 is important in providing otential therapeutic targets and treatment strategies against COVID-19. Here, we discuss the major inflammatory pathways in the pathogenesis of COVID-19, including induction, function, and downstream signaling, as well as existing and potential interventions targeting these cytokines or related signaling pathways. We believe that a comprehensive understanding of the regulatory pathways of COVID-19 immune dysregulation and inflammation will help develop better clinical therapy strategies to effectively control inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Yujie Jiang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Xueyan Zhou
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Yu Xiang
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| | - Pedro Gutierrez‐Castrellon
- Center for Translational Research on Health Science Hospital General Dr. Manuel Gea GonzalezMinistry of HealthMexico CityMexico
| | - Xuelei Ma
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
6
|
Kirchenwitz M, Stahnke S, Prettin S, Borowiak M, Menke L, Sieben C, Birchmeier C, Rottner K, Stradal TEB, Steffen A. SMER28 Attenuates PI3K/mTOR Signaling by Direct Inhibition of PI3K p110 Delta. Cells 2022; 11:1648. [PMID: 35626685 PMCID: PMC9140127 DOI: 10.3390/cells11101648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
SMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression. Most strikingly, SMER28 treatment led to a complete arrest of receptor tyrosine kinase signaling, and, consequently, growth factor-induced cell scattering and dorsal ruffle formation. This coincided with a dramatic reduction in phosphorylation patterns of PI3K downstream effectors. Consistently, SMER28 directly inhibited PI3Kδ and to a lesser extent p110γ. The biological relevance of our observations was underscored by SMER28 interfering with InlB-mediated host cell entry of Listeria monocytogenes, which requires signaling through the prominent receptor tyrosine kinase c-Met. This effect was signaling-specific, since entry of unrelated, gram-negative Salmonella Typhimurium was not inhibited. Lastly, in B cell lymphoma cells, which predominantly depend on tonic signaling through PI3Kδ, apoptosis upon SMER28 treatment is profound in comparison to non-hematopoietic cells. This indicates SMER28 as a possible drug candidate for the treatment of diseases that derive from aberrant PI3Kδ activity.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Malgorzata Borowiak
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Laura Menke
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| |
Collapse
|
7
|
Margaria JP, Moretta L, Alves-Filho JC, Hirsch E. PI3K Signaling in Mechanisms and Treatments of Pulmonary Fibrosis Following Sepsis and Acute Lung Injury. Biomedicines 2022; 10:756. [PMID: 35453505 PMCID: PMC9028704 DOI: 10.3390/biomedicines10040756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a pathological fibrotic process affecting the lungs of five million people worldwide. The incidence rate will increase even more in the next years due to the long-COVID-19 syndrome, but a resolving treatment is not available yet and usually prognosis is poor. The emerging role of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling in fibrotic processes has inspired the testing of drugs targeting the PI3K/Akt pathway that are currently under clinical evaluation. This review highlights the progress in understanding the role of PI3K/Akt in the development of lung fibrosis and its causative pathological context, including sepsis as well as acute lung injury (ALI) and its consequent acute respiratory distress syndrome (ARDS). We further summarize current knowledge about PI3K inhibitors for pulmonary fibrosis treatment, including drugs under development as well as in clinical trials. We finally discuss how the design of inhaled compounds targeting the PI3K pathways might potentiate efficacy and improve tolerability.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| | - Lucia Moretta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirao Preto 14049-900, Brazil;
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| |
Collapse
|
8
|
Basile MS, Cavalli E, McCubrey J, Hernández-Bello J, Muñoz-Valle JF, Fagone P, Nicoletti F. The PI3K/Akt/mTOR pathway: A potential pharmacological target in COVID-19. Drug Discov Today 2022; 27:848-856. [PMID: 34763066 PMCID: PMC8574122 DOI: 10.1016/j.drudis.2021.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to global health. The disregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) cell signaling pathway observed in patients with COVID-19 has attracted attention for the possible use of specific inhibitors of this pathway for the treatment of the disease. Here, we review emerging data on the involvement of the PI3K/Akt/mTOR pathway in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the clinical studies investigating its tailored inhibition in COVID-19. Current in silico, in vitro, and in vivo data convergently support a role for the PI3K/Akt/mTOR pathway in COVID-19 and suggest the use of specific inhibitors of this pathway that, by a combined mechanism entailing downregulation of excessive inflammatory reactions, cell protection, and antiviral effects, could ameliorate the course of COVID-19.
Collapse
Affiliation(s)
- Maria Sofia Basile
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody Medical Sciences Building, East Carolina University, Greenville, NC 27834, USA
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, 44340 Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- University Center for Health Science, Department of Molecular Biology and Genomics, University of Guadalajara, Jalisco 49000, Mexico
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy,Corresponding author
| |
Collapse
|
9
|
Ji W, Chen L, Yang W, Li K, Zhao J, Yan C, You C, Jiang M, Zhou M, Shen X. Transcriptional landscape of circulating platelets from patients with COVID-19 reveals key subnetworks and regulators underlying SARS-CoV-2 infection: implications for immunothrombosis. Cell Biosci 2022; 12:15. [PMID: 35139909 PMCID: PMC8827164 DOI: 10.1186/s13578-022-00750-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Background Thrombosis and coagulopathy are pervasive pathological features of coronavirus disease 2019 (COVID-19), and thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ failure and increased mortality. Platelets are essential cells that regulate hemostasis, thrombus formation and inflammation; however, the mechanism underlying the interaction between platelets and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. Results The present study performed RNA sequencing on the RNA isolated from platelets obtained from 10 COVID-19 patients and eight healthy donors, and discovered that SARS-CoV-2 not only significantly altered the coding and non-coding transcriptional landscape, but also altered the function of the platelets, promoted thrombus formation and affected energy metabolism of platelets. Integrative network biology analysis identified four key subnetworks and 16 risk regulators underlying SARS-CoV-2 infection, involved in coronavirus disease-COVID-19, platelet activation and immune response pathways. Furthermore, four risk genes (upstream binding transcription factor, RNA polymerase II, I and III subunit L, Y-box binding protein 1 and yippee like 2) were found to be associated with COVID-19 severity. Finally, a significant alteration in the von Willebrand factor/glycoprotein Ib-IX-V axis was revealed to be strongly associated with platelet aggregation and immunothrombosis. Conclusions The transcriptional landscape and the identification of critical subnetworks and risk genes of platelets provided novel insights into the molecular mechanisms of immunothrombosis in COVID-19 progression, which may pave the way for the development of novel therapeutic strategies for preventing COVID-19-associated thrombosis and improving the clinical outcome of COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00750-5.
Collapse
Affiliation(s)
- Weiping Ji
- New Coronavirus Infectious Disease Prevention and Control Leadership Office, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, People's Republic of China
| | - Lu Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Wei Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, People's Republic of China
| | - Ke Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jingting Zhao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Cancan You
- New Coronavirus Infectious Disease Prevention and Control Leadership Office, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, People's Republic of China
| | - Minghua Jiang
- New Coronavirus Infectious Disease Prevention and Control Leadership Office, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, People's Republic of China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Xian Shen
- New Coronavirus Infectious Disease Prevention and Control Leadership Office, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, People's Republic of China.
| |
Collapse
|
10
|
Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad-Rezaei M, Mafi S, Jafarinia M. PI3K/Akt/mTOR pathway: a potential target for anti-SARS-CoV-2 therapy. Immunol Res 2022; 70:269-275. [PMID: 35107743 PMCID: PMC8808470 DOI: 10.1007/s12026-022-09268-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A single-stranded RNA virus from a β-Coronaviridae family causes acute clinical manifestations. Its high death rate and severe clinical symptoms have turned it into the most significant challenge worldwide. Up until now, several effective COVID-19 vaccines have been designed and marketed, but our data on specialized therapeutic drugs for the treatment of COVID-19 is still limited. In order to synthesis virus particles, SARS-CoV-2 uses host metabolic pathways such as phosphoinositide3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR). mTOR is involved in multiple biological processes. Over-activation of the mTOR pathway improves viral replication, which makes it a possible target in COVID-19 therapy. Clinical data shows the hyperactivation of the mTOR pathway in lung tissues during respiratory viral infections. However, the exact impact of mTOR pathway inhibitors on the COVID-19 severity and death rate is yet to be thoroughly investigated. There are several mTOR pathway inhibitors. Rapamycin is the most famous inhibitor of mTORC1 among all. Studies on other respiratory viruses suggest that the therapeutic inhibitors of the mTOR pathway, especially rapamycin, can be a potential approach to anti-SARS-CoV-2 therapy. Using therapeutic methods that inhibit harmful immune responses can open a new chapter in treating severe COVID-19 disease. We highlighted the potential contribution of PI3K/Akt/mTOR inhibitors in the treatment of COVID-19.
Collapse
Affiliation(s)
- Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mina Mohammad-Rezaei
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Mafi
- Medical Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Fagone E, Fruciano M, Gili E, Sambataro G, Vancheri C. Developing PI3K Inhibitors for Respiratory Diseases. Curr Top Microbiol Immunol 2022; 436:437-466. [DOI: 10.1007/978-3-031-06566-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021; 240:1-8. [PMID: 34562551 PMCID: PMC8457906 DOI: 10.1016/j.imlet.2021.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Some COVID-19 patients suffer complications from anti-viral immune responses which can lead to both a dangerous cytokine storm and development of blood-borne factors that render severe thrombotic events more likely. The precise immune response profile is likely, therefore, to determine and predict patient outcomes and also represents a target for intervention. Anti-viral T cell exhaustion in the early stages is associated with disease progression. Dysregulation of T cell functions, which precedes cytokine storm development and neutrophil expansion in alveolar tissues heralds damaging pathology.T cell function, cytokine production and factors that attract neutrophils to the lung can be modified through targeting molecules that can modulate T cell responses. Manipulating T cell responses by targeting the PI3K/Akt/mTOR pathway could provide the means to control the immune response in COVID-19 patients. During the initial anti-viral response, T cell effector function can be enhanced by delaying anti-viral exhaustion through inhibiting PI3K and Akt. Additionally, immune dysregulation can be addressed by enhancing immune suppressor functions by targeting downstream mTOR, an important intracellular modulator of cellular metabolism. Targeting this signalling pathway also has potential to prevent formation of thrombi due to its role in platelet activation. Furthermore, this signalling pathway is essential for SARS-cov-2 virus replication in host cells and its inhibition could, therefore, reduce viral load. The ultimate goal is to identify targets that can quickly control the immune response in COVID-19 patients to improve patient outcome. Targeting different levels of the PI3K/Akt/mTOR signalling pathway could potentially achieve this during each stage of the disease.
Collapse
Affiliation(s)
- Rasha Abu-Eid
- Institute of Dentistry, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, Scotland, United Kingdom; Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, Scotland, United Kingdom.
| | - Frank James Ward
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
13
|
Comparison of SARS-CoV-2 Receptors Expression in Primary Endothelial Cells and Retinoic Acid-Differentiated Human Neuronal Cells. Viruses 2021; 13:v13112193. [PMID: 34834998 PMCID: PMC8620655 DOI: 10.3390/v13112193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is primarily responsible for coronavirus disease (COVID-19) and it is characterized by respiratory illness with fever and dyspnea. Severe vascular problems and several other manifestations, including neurological ones, have also been frequently reported, particularly in the great majority of “long hauler” patients. SARS-CoV-2 infects and replicates in lung epithelial cells, while dysfunction of endothelial and neuronal brain cells has been observed in the absence of productive infection. It has been shown that the Spike protein can interact with specific cellular receptors, supporting both viral entry and cellular dysfunction. It is thus clear that understanding how and when these receptors are regulated, as well as how much they are expressed would help in unveiling the multifaceted aspects of this disease. Here, we show that SH-SY5Y neuroblastoma cells express three important cellular surface molecules that interact with the Spike protein, namely ACE2, TMPRSS2, and NRP1. Their levels increase when cells are treated with retinoic acid (RA), a commonly used agent known to promote differentiation. This increase matched the higher levels of receptors observed on HUVEC (primary human umbilical vein endothelial cells). We also show by confocal imaging that replication-defective pseudoviruses carrying the SARS-CoV-2 Spike protein can infect differentiated and undifferentiated SH-SY5Y, and HUVEC cells, although with different efficiencies. Neuronal cells and endothelial cells are potential targets for SARS-CoV-2 infection and the interaction of the Spike viral protein with these cells may cause their dysregulation. Characterizing RNA and protein expression tempo, mode, and levels of different SARS-CoV-2 receptors on both cell subpopulations may have clinical relevance for the diagnosis and treatment of COVID-19-infected subjects, including long hauler patients with neurological manifestations.
Collapse
|
14
|
Borchers C, Thyagarajan A, Rapp CM, Travers JB, Sahu RP. Evaluation of SARS-CoV-2 Spike S1 Protein Response on PI3K-Mediated IL-8 Release. Med Sci (Basel) 2021; 9:medsci9020030. [PMID: 34069835 PMCID: PMC8162560 DOI: 10.3390/medsci9020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 01/19/2023] Open
Abstract
A novel coronavirus related to a condition known as a severe acute respiratory syndrome (SARS) was termed as SARS Coronavirus-19 (SARS-CoV-2 or COVID-19), which has caused an unprecedented global pandemic. Extensive efforts have been dedicated worldwide towards determining the mechanisms of COVID-19 associated pathogenesis with the goals of devising potential therapeutic approaches to mitigate or overcome comorbidities and mortalities. While the mode of SARS-CoV-2 infection, its structural configuration, and mechanisms of action, including the critical roles of the Spike protein have been substantially explored, elucidation of signaling pathways regulating its cellular responses is yet to be fully determined. Notably, phosphoinositide 3-kinases (PI3K) and its downstream pathway have been exploited among potential therapeutic targets for SARS-CoV-2, and its activation modulates the release of cytokines such as IL-8. To that end, the current studies were sought to determine the response of the SARS-CoV-2 Spike S1 protein on PI3K-mediated IL-8 release using relevant and widely used cellular models. Overall, these studies indicate that PI3K signaling does not directly mediate Spike S1 protein-induced IL-8 release in these cellular models.
Collapse
Affiliation(s)
- Christina Borchers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345, USA; (C.B.); (A.T.); (C.M.R.); (J.B.T.)
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345, USA; (C.B.); (A.T.); (C.M.R.); (J.B.T.)
| | - Christine M. Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345, USA; (C.B.); (A.T.); (C.M.R.); (J.B.T.)
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345, USA; (C.B.); (A.T.); (C.M.R.); (J.B.T.)
- Department of Dermatology, Wright State Physicians, Wright State University, Dayton, OH 45345, USA
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345, USA; (C.B.); (A.T.); (C.M.R.); (J.B.T.)
- Correspondence:
| |
Collapse
|
15
|
Tobaiqy M, Elkout H, MacLure K. Analysis of Thrombotic Adverse Reactions of COVID-19 AstraZeneca Vaccine Reported to EudraVigilance Database. Vaccines (Basel) 2021; 9:393. [PMID: 33923530 PMCID: PMC8074142 DOI: 10.3390/vaccines9040393] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The development of safe, effective, affordable vaccines against COVID-19 remains the cornerstone to mitigating this pandemic. Early in December 2020, multiple research groups had designed potential vaccines. From 11 March 2021, several European countries temporarily suspended the use of the Oxford-AstraZeneca vaccine amid reports of blood clot events and the death of a vaccinated person, despite the European Medicines Agency (EMA) and the World Health Organization's assurance that there was no indication that vaccination was linked. This study aimed to identify and analyse the thrombotic adverse reactions associated with the Oxford-AstraZeneca vaccine. This was a retrospective descriptive study using spontaneous reports submitted to the EudraVigilance database in the period from 17 February to 12 March 2021. There were 54,571 adverse reaction reports, of which 28 were associated with thrombotic adverse reactions. Three fatalities were related to pulmonary embolism; one fatality to thrombosis. With 17 million people having had the AstraZeneca vaccine, these are extremely rare events The EMA's Pharmacovigilance Risk Assessment Committee (18 March 2021) concluded that the vaccine was safe, effective and the benefits outweighed the risks. Conducting further analyses based on more detailed thrombotic adverse event reports, including patients' characteristics and comorbidities, may enable assessment of the causality with higher specificity.
Collapse
Affiliation(s)
- Mansour Tobaiqy
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 45311, Saudi Arabia
| | - Hajer Elkout
- Department of Family and Community Medicine, Medical Faculty, University of Tripoli, Tripoli 13275, Libya;
| | - Katie MacLure
- Independent Research Consultant, Aberdeen AB32 6RU, UK;
| |
Collapse
|
16
|
Joma M, Fovet CM, Seddiki N, Gressens P, Laforge M. COVID-19 and Pregnancy: Vertical Transmission and Inflammation Impact on Newborns. Vaccines (Basel) 2021; 9:391. [PMID: 33921113 PMCID: PMC8071483 DOI: 10.3390/vaccines9040391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic is ongoing and we are still compiling new findings to decipher and understand SARS-CoV-2 infection during pregnancy. No reports encompass any conclusive confirmation of vertical transmission. Nevertheless, cases of fetal distress and multiple organ failure have been reported, as well as rare cases of fetal demise. While clinicians and scientists continue to seek proof of vertical transmission, they miss the greater point, namely the cause of preterm delivery. In this review, we suggest that the cause might not be due to the viral infection but the fetal exposure to maternal inflammation or cytokine storm that translates into a complication of COVID-19. This statement is extrapolated from previous experience with infections and inflammation which were reported to be fatal by increasing the risk of preterm delivery and causing abnormal neonatal brain development and resulting in neurological disorders like atypical behavioral phenotype or autistic syndrome. Given the potentially fatal consequences on neonate health, we highlight the urgent need for an animal model to study vertical transmission. The preclinical model will allow us to make the link between SARS-COV-2 infection, inflammation and long-term follow-up of child brain development.
Collapse
Affiliation(s)
- Mohamed Joma
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Claire-Maelle Fovet
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Nabila Seddiki
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Mireille Laforge
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| |
Collapse
|
17
|
Cazzato G, Foti C, Colagrande A, Cimmino A, Scarcella S, Cicco G, Sablone S, Arezzo F, Romita P, Lettini T, Resta L, Ingravallo G. Skin Manifestation of SARS-CoV-2: The Italian Experience. J Clin Med 2021; 10:jcm10081566. [PMID: 33917774 PMCID: PMC8068198 DOI: 10.3390/jcm10081566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
At the end of December 2019, a new coronavirus denominated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in Wuhan, Hubei province, China. Less than three months later, the World Health Organization (WHO) declared coronavirus disease-19 (COVID-19) to be a global pandemic. Growing numbers of clinical, histopathological, and molecular findings were subsequently reported, among which a particular interest in skin manifestations during the course of the disease was evinced. Today, about one year after the development of the first major infectious foci in Italy, various large case series of patients with COVID-19-related skin manifestations have focused on skin specimens. However, few are supported by histopathological, immunohistochemical, and polymerase chain reaction (PCR) data on skin specimens. Here, we present nine cases of COVID-positive patients, confirmed by histological, immunophenotypical, and PCR findings, who underwent skin biopsy. A review of the literature in Italian cases with COVID-related skin manifestations is then provided.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Caterina Foti
- Section of Dermatology and Venereology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (C.F.); (P.R.)
| | - Anna Colagrande
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Antonietta Cimmino
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Sara Scarcella
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Gerolamo Cicco
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Sara Sablone
- Section of Forensic Medicine, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Francesca Arezzo
- Section of Gynecologic and Obstetrics Clinic, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Paolo Romita
- Section of Dermatology and Venereology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (C.F.); (P.R.)
| | - Teresa Lettini
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Leonardo Resta
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
| | - Giuseppe Ingravallo
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.C.); (A.C.); (A.C.); (S.S.); (G.C.); (T.L.); (L.R.)
- Correspondence:
| |
Collapse
|
18
|
Ahmadi M, Pashangzadeh S, Mousavi P, Saffarzadeh N, Amin Habibi M, Hajiesmaeili F, Rezaei N. ACE2 correlates with immune infiltrates in colon adenocarcinoma: Implication for COVID-19. Int Immunopharmacol 2021; 95:107568. [PMID: 33765612 PMCID: PMC7982796 DOI: 10.1016/j.intimp.2021.107568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022]
Abstract
Novel coronavirus disease (COVID-19) pandemic has become a global health emergency. It has been reported that a few conditions, including cancer, predispose individuals to SARS-CoV-2 infection and severe form of COVID-19. These findings led us to evaluate the susceptibility of colon adenocarcinoma (COAD) patients to SARS-CoV-2 infection by investigating ACE2 expression in their tumor tissues. The expression analysis revealed that both mRNA and protein levels of ACE2 had increased in colon cancer samples than normal group. Next, the prognosis analysis has indicated that the upregulation of ACE2 was not correlated with patient survival outcomes. Further assessment displayed the hypomethylation of the ACE2 gene promoter in COAD patients. This methylation status has a strong negative correlation with ACE2 gene expression. The functional enrichment analysis of the genes that had similar expression patterns with ACE2 in colon cancer tissues demonstrated that they mainly enriched in Vitamin digestion and absorption pathway. Finally, we found that ACE2 gene expression had a significant association with the immune cell infiltration levels in COAD patients. In conclusion, it has plausible that COAD patients are more likely to be infected with SARS-CoV-2 and experience severe injuries. Moreover, COVID-19 would bring unfavorable survival outcomes for patients with colon cancer by way of immune cell infiltration linked process. The present study highlights the importance of preventive actions for COAD patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Division of Medical Genetics, Booali Medical Diagnostic Laboratory, Qom, Iran.
| | - Salar Pashangzadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pegah Mousavi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Negin Saffarzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
19
|
Allergic Reactions to Current Available COVID-19 Vaccinations: Pathophysiology, Causality, and Therapeutic Considerations. Vaccines (Basel) 2021; 9:vaccines9030221. [PMID: 33807579 PMCID: PMC7999280 DOI: 10.3390/vaccines9030221] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Vaccines constitute the most effective medications in public health as they control and prevent the spread of infectious diseases and reduce mortality. Similar to other medications, allergic reactions can occur during vaccination. While most reactions are neither frequent nor serious, anaphylactic reactions are potentially life-threatening allergic reactions that are encountered rarely, but can cause serious complications. The allergic responses caused by vaccines can stem from activation of mast cells via Fcε receptor-1 type I reaction, mediated by the interaction between immunoglobulin E (IgE) antibodies against a particular vaccine, and occur within minutes or up to four hours. The type IV allergic reactions initiate 48 h after vaccination and demonstrate their peak between 72 and 96 h. Non-IgE-mediated mast cell degranulation via activation of the complement system and via activation of the Mas-related G protein-coupled receptor X2 can also induce allergic reactions. Reactions are more often caused by inert substances, called excipients, which are added to vaccines to improve stability and absorption, increase solubility, influence palatability, or create a distinctive appearance, and not by the active vaccine itself. Polyethylene glycol, also known as macrogol, in the currently available Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines, and polysorbate 80, also known as Tween 80, in AstraZeneca and Johnson & Johnson COVID-19 vaccines, are excipients mostly incriminated for allergic reactions. This review will summarize the current state of knowledge of immediate and delayed allergic reactions in the currently available vaccines against COVID-19, together with the general and specific therapeutic considerations. These considerations include: The incidence of allergic reactions and deaths under investigation with the available vaccines, application of vaccination in patients with mast cell disease, patients who developed an allergy during the first dose, vasovagal symptoms masquerading as allergic reactions, the COVID-19 vaccination in pregnancy, deaths associated with COVID-19 vaccination, and questions arising in managing of this current ordeal. Careful vaccine-safety surveillance over time, in conjunction with the elucidation of mechanisms of adverse events across different COVID-19 vaccine platforms, will contribute to the development of a safe vaccine strategy. Allergists’ expertise in proper diagnosis and treatment of allergic reactions is vital for the screening of high-risk individuals.
Collapse
|