1
|
Liao J, Zhang S, Ding Z. Prognostic factors and prognostic model of non-metastatic clear cell renal cell carcinoma. BMC Cancer 2024; 24:1263. [PMID: 39390388 PMCID: PMC11468267 DOI: 10.1186/s12885-024-12922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Although there are some established prognostic evaluation models for clear cell renal cell carcinoma (ccRCC), more robust postoperative prognostic evaluation model is urgently needed. Our study intends to explore new clinical and pathological prognostic factors related to non-metastatic ccRCC, which help to establish a better prognostic risk evaluation model in non-metastatic ccRCC. PATIENTS AND METHODS A retrospective cohort study was conducted in non-metastatic ccRCC patients spanning from 2010 to 2018. Clinical and pathological factors of these patients were collected. Cox regression analysis was employed to assess the relationship between these factors and disease-free survival (DFS), and a nomogram risk prediction model was also constructed. RESULTS A total of 1467 patients were ultimately included, comprising 994 men (67.8%), with 800 patients aged between 40 and 60 years old (54.5%), and 80 patients (5.5%) experiencing relapse or metastasis of ccRCC within three years after operation. The follow-up duration ranged from 39 to 146 months. Univariate and multivariate Cox regression analysis identified five independent prognostic factors of DFS (P < 0.05) including sex, tumor maximum diameter, T stage, lactate dehydrogenase (LDH), and basophils. Leveraging these five factors, we established a prognostic evaluation model demonstrating good predictive efficacy. CONCLUSION Male, tumor maximum diameter, T stage, LDH, and basophils serve as prognostic indicators for DFS in patients with non-metastatic ccRCC. Patients with high scores based on our model exhibit an elevated likelihood of recurrence or metastasis, thereby potentially selecting postoperative patients with high risk for adjuvant therapy.
Collapse
Affiliation(s)
- Juanyan Liao
- Department of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Shuang Zhang
- Department of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Zhenyu Ding
- Department of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Manoharan V, Adegbayi OO, Maynard JP. P2 purinergic receptor expression and function in tumor-related immune cells. Purinergic Signal 2024:10.1007/s11302-024-10054-7. [PMID: 39387963 DOI: 10.1007/s11302-024-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
P2 purinergic receptor expression is dysregulated in multiple cancer subtypes and is associated with worse outcomes. Studies identify roles for P2 purinergic receptors in tumor cells that drive disease aggressiveness. There is also sufficient evidence that P2 purinergic receptor expression within the tumor microenvironment (TME) is critical for disease initiation and progression. Immune cells constitute a significant component of the TME and display both tumorigenic and anti-tumorigenic potential. Studies pre-dating the investigation of P2 purinergic receptors in cancer identify P2 receptor expression on multiple immune cells including macrophages, neutrophils, T-cells, and dendritic cells; all of which are implicated in tumor initiation, tumor promotion, or response to treatment. Herein, we discuss P2 purinergic receptor expression and function in tumor-related immune cells. We provide a rationale for further investigations of P2 purinergic receptors within the TME to better define the mechanistic pathways of inflammation-mediate tumorigenesis and explore P2 purinergic receptors as potential targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vahinipriya Manoharan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwafemi O Adegbayi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zhu JH, Xu BJ, Pang XY, Lian J, Gu K, Ji SJ, Lu HB. Genetic Evidence for a Causal Relationship Between Innate Leukocytes and the Risk of Digestive System Cancers in East Asians and Europeans. World J Oncol 2024; 15:482-491. [PMID: 38751703 PMCID: PMC11092417 DOI: 10.14740/wjon1860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
Background Peripheral traditional immune cell disorder plays an important role in cancer onset and development. The causal relationships between leukocytes prior to cancer and the risk of digestive system cancer remain unknown. This study assesses the causal correlations between leukocytes and digestive system cancer risk in East Asians and Europeans. Methods Summary-level data on leukocyte-related genetic variation were extracted from Biobank Japan (107,964 participants) and a recent large-scale meta-analysis (563,946 participants). Summary-level data for the cancers were obtained from Biobank Japan (212,978 individuals) and the FinnGen consortium (178,802 participants). Univariable and multivariable Mendelian randomization (MR) analyses were performed on East Asians and Europeans separately. Results Univariable MR analysis demonstrated the significant association between circulating eosinophil counts and risk of colorectal cancer (CRC) in East Asians (odds ratio (OR) = 0.80, 95% confidence interval (CI): 0.69 - 0.92, P = 0.002) and a suggestive relationship in the European population (OR = 0.86, 95% CI: 0.77 - 0.97, P = 0.013). An inverse suggestive association was observed between levels of basophils and the risk of gastric cancer (GC) in East Asians (OR = 0.83, 95% CI: 0.72 - 0.97, P = 0.019). The multivariable MR analysis showed the independent causal effect of eosinophil count on CRC risk in East Asians (OR = 0.72, 95% CI: 0.57 - 0.92, P = 0.009) and Europeans (OR = 0.80, 95% CI: 0.70 - 0.92, P = 0.002). Circulating basophils served as the negative causal factor in GC risk in East Asians (OR = 0.80, 95% CI: 0.67 - 0.94, P = 0.007). Conclusions Our MR analyses revealed a genetic causal relationship between reduced blood eosinophils and an increased CRC risk in both Europeans and East Asians. Furthermore, our results suggested a causal association between decreased basophils and an elevated GC risk specifically in East Asians.
Collapse
Affiliation(s)
- Jia Hao Zhu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
- These authors contributed equally to the study
| | - Ben Jie Xu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
- These authors contributed equally to the study
| | - Xiang Yi Pang
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
- These authors contributed equally to the study
| | - Jie Lian
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Sheng Jun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Hai Bo Lu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
| |
Collapse
|
4
|
Trépanier G, Nykopp T, Rosebush-Mercier R, Gris T, Fadel J, Black PC, Toren P. Circulating Basophils as a Prognostic Marker for Response to Bacillus Calmette-Guérin. Clin Genitourin Cancer 2024; 22:354-359.e1. [PMID: 38185610 DOI: 10.1016/j.clgc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE To predict recurrence and progression in non-muscle-invasive bladder cancer (NMIBC) patients receiving bacillus Calmette-Guérin (BCG), we evaluated circulating basophils as a biomarker that could be detected from the complete blood count. PATIENTS AND METHODS We use a pooled cohort of patients from the Centre Hospitalier Universitaire de Québec-Université Laval (2016-2020) and the Vancouver General Hospital (2010-2018) where a complete blood count was available before transurethral resection of bladder tumor (TURBT) of a high-grade NMIBC and subsequent BCG. Descriptive statistics described the cohort based on the dichotomous presence or absence of basophils on the complete blood count. Kaplan-Meier estimates and a log-rank test compared recurrence-free survival (RFS) and progression-free survival (PFS), with multivariable cox regression analysis used to estimate proportional hazard ratios. RESULTS The study cohort included 261 patients, with a median follow-up of 31.5 months (interquartile range 18.1-45.0 months). The median age was 74.0 years and 16.8% were female. Circulating basophils were detectable in 49 (18.9%) patients. Both RFS and PFS were significantly lower in patients with detectable basophils. Multivariable analysis demonstrated detectable basophils were an independent predictor of both recurrence (HR = 1.85; 95% confidence interval [CI] 1.20-2.85; P = .01) and progression (HR = 2.29; 95% CI 1.14-4.60; P = .02). CONCLUSION Our results confirm that baseline levels of circulating basophils are an immunological biomarker to predict recurrence and progression of NMIBC.
Collapse
Affiliation(s)
- Geneviève Trépanier
- Department of Biology, Faculty of Medicine, Université Laval, Quebec City, Canada; Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada
| | - Timo Nykopp
- Department of Surgery, University of Eastern Finland, Kuopio, Finland; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Typhaine Gris
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada
| | - Jonathan Fadel
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Peter C Black
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Paul Toren
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
5
|
Krizova L, Benesova I, Zemanova P, Spacek J, Strizova Z, Humlova Z, Mikulova V, Petruzelka L, Vocka M. Immunophenotyping of peripheral blood in NSCLC patients discriminates responders to immune checkpoint inhibitors. J Cancer Res Clin Oncol 2024; 150:99. [PMID: 38383923 PMCID: PMC10881622 DOI: 10.1007/s00432-024-05628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) dramatically changed the prognosis of patients with NSCLC. Unfortunately, a reliable predictive biomarker is still missing. Commonly used biomarkers, such as PD-L1, MSI, or TMB, are not quite accurate in predicting ICI efficacy. METHODS In this prospective observational cohort study, we investigated the predictive role of erythrocytes, thrombocytes, innate and adaptive immune cells, complement proteins (C3, C4), and cytokines from peripheral blood of 224 patients with stage III/IV NSCLC treated with ICI alone (pembrolizumab, nivolumab, and atezolizumab) or in combination (nivolumab + ipilimumab) with chemotherapy. These values were analyzed for associations with the response to the treatment and survival endpoints. RESULTS Higher baseline Tregs, MPV, hemoglobin, and lower monocyte levels were associated with favorable PFS and OS. Moreover, increased baseline basophils and lower levels of C3 predicted significantly improved PFS. The levels of the baseline immature granulocytes, C3, and monocytes were significantly associated with the occurrence of partial regression at the first restaging. Multiple studied parameters (n = 9) were related to PFS benefit at the time of first restaging as compared to baseline values. In addition, PFS nonbenefit group showed a decrease in lymphocyte count after three months of therapy. The OS benefit was associated with higher levels of lymphocytes, erythrocytes, hemoglobin, MCV, and MPV, and a lower value of NLR after three months of treatment. CONCLUSION Our work suggests that parameters from peripheral venous blood may be potential biomarkers in NSCLC patients on ICI. The baseline values of Tregs, C3, monocytes, and MPV are especially recommended for further investigation.
Collapse
Affiliation(s)
- Ludmila Krizova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Petra Zemanova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Humlova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Mikulova
- Institute of Medical Biochemistry and Laboratory Diagnostics, Laboratory of Clinical Immunology and Allergology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
6
|
Myles J, Castaño N, Kim S, Zhu Z, Tang SKY. Parallelized Immunomagnetic Isolation of Basophils Directly from Whole Blood. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300122. [PMID: 39005942 PMCID: PMC11244651 DOI: 10.1002/anbr.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Basophils are the rarest circulating white blood cells (WBCs), but they play important roles in allergic disorders and other diseases. To enhance diagnostic capabilities, it would be desirable to isolate and analyze basophils efficiently from small blood samples. In 100 μL of whole blood, there are typically ~103 basophils, outnumbered by ~105 WBCs and ~108 red blood cells (RBCs). Basophils' low abundance has therefore presented a significant challenge in their isolation from whole blood. Conventional in-bulk basophil isolation methods require lengthy processing steps and cannot work with small volumes of blood. Here we report a parallelized integrated basophil isolation device (pi-BID) for the negative immunomagnetic selection of basophils directly from 4 samples of 100 μL of whole blood, in parallel, within 14 minutes including sample preparation time. The pi-BID interfaces directly with standard sample tubes, and uses a single pressure source to drive the flow in parallel microfluidic channels. Compared with conventional in-bulk basophil isolation, the pi-BID is >3× faster, and has higher purity (~93%) and similar recovery (~67%). Compared with other microfluidic devices for the immunomagnetic isolation of WBC sub-types, our pi-BID achieves 10× higher enrichment of target cells from whole blood, with no prior removal of RBCs necessary.
Collapse
Affiliation(s)
- Justin Myles
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenyun Zhu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Chen C, Tang WH, Wu CC, Lee TL, Tsai IT, Hsuan CF, Wang CP, Chung FM, Lee YJ, Yu TH, Wei CT. Pretreatment Circulating Albumin, Platelet, and RDW-SD Associated with Worse Disease-Free Survival in Patients with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:23-39. [PMID: 38250195 PMCID: PMC10799625 DOI: 10.2147/bctt.s443292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Objective Breast cancer is the second most common malignancy globally and a leading cause of cancer death in women. Analysis of factors related to disease-free survival (DFS) has improved understanding of the disease and characteristics related to recurrence. The aim of this study was to investigate the predictors of DFS in patients with breast cancer to enable the identification of patients at high risk who may benefit from prevention interventions. Methods We retrospectively analyzed 559 women with breast cancer who underwent treatment between 2004 and 2022. The study endpoint was DFS. Recurrence was defined as local recurrence, regional recurrence, distant metastases, contralateral breast cancer, other second primary cancer, and death. Baseline tumor-related characteristics, treatment-related characteristics, sociodemographic and biochemical data were analyzed using Cox proportional hazards analysis. Results The median DFS was 45 months (range, 2 to 225 months). Breast cancer recurred in 86 patients (15.4%), of whom 10 had local recurrence, 10 had regional recurrence, 17 had contralateral breast cancer, 29 had distant metastases, 10 had second primary cancer, and 10 patients died. Multivariate forward stepwise Cox regression analysis showed that AJCC stage III, Ki67 ≥14%, albumin, platelet, and red cell distribution width-standard deviation (RDW-SD) were predictors of worse DFS. In addition, the effects of albumin, platelet, and RDW-SD on disease recurrence were confirmed by structural equation model (SEM) analysis. Conclusion In addition to the traditional predictors of worse DFS such as AJCC stage III and Ki67 ≥14%, lower pretreatment circulating albumin, higher pretreatment circulating platelet count and RDW-SD could significantly predict worse DFS in this study, and SEM delineated possible causal pathways and inter-relationships of albumin, platelet, and RDW-SD contributing to the disease recurrence among Chinese women with breast cancer.
Collapse
Affiliation(s)
- Chia‐Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien, 98142, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Cheng-Ching Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou, University, Kaohsiung, 82445, Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yau-Jiunn Lee
- Lee’s Endocrinologic Clinic, Pingtung, 90000, Taiwan
| | - Teng-Hung Yu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| |
Collapse
|
8
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
9
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
10
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
11
|
Chen XY, Long ZQ, Huang HY, Wen W, Lin F, Guo L, Lin HX. Predicting Survival of Patients with Nonmetastatic Breast Cancer Based on Fibrinogen-to-Albumin Ratio and Lymphocyte-to-Monocyte Ratio: A Nomogram-Based Assessment. Breast Care (Basel) 2023; 18:374-389. [PMID: 37901049 PMCID: PMC10601685 DOI: 10.1159/000531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2023] [Indexed: 10/31/2023] Open
Abstract
Background Parameters of systemic inflammation have received attention as prognostic surrogates in various malignant tumors. Fibrinogen-to-albumin ratio (FAR) and lymphocyte-to-monocyte ratio (LMR) correlate with tumor growth and dissemination. We aimed to bring the combination of FAR and LMR (FAR-LMR) together to establish novel nomograms for survival and recurrence in nonmetastatic breast cancer patients. Methods We retrospectively recruited 461 female patients with nonmetastatic breast cancer from January 2011 to December 2013 in our hospital and randomly assigned them into the training cohort (N = 318) and the validation cohort (N = 143). The potential predictive factors for overall survival (OS), locoregional recurrence-free survival (LRFS), and distant metastasis-free survival (DMFS) were assessed by Cox proportional hazards models and log-rank test. Results Elevated FAR was associated with poor OS (p < 0.001) and DMFS (p = 0.02), whereas increased LMR was associated with satisfactory OS (p = 0.01) and LRFS (p = 0.01). High FAR combined with low LMR was associated with less favorable OS (p = 0.001), LRFS (p = 0.005), and DMFS (p = 0.003) Based on multivariate analysis, FAR-LMR, tumor size, lymph node metastasis, age, and pathologic status contributed to prognostic nomograms of OS, DMFS, and LRFS. Nomograms presented exceptional performance for 3-, 5-, and 8-year OS, DMFS, and LRFS prediction compared with clinical TNM stage. The C-index was significantly higher than that of TNM stage, either of FAR or LMR (3-year: 0.709 vs. 0.621 vs. 0.544 vs. 0.641, 5-year: 0.761 vs. 0.597 vs. 0.605 vs. 0.677, 8-year: 0.84 vs. 0.62 vs. 0.539 vs. 0.623). Conclusions We developed and validated a convenient predictive model for the survival outcomes of patients with nonmetastatic breast cancer. The nomograms can be utilized as auxiliary tools to provide prognostic information.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wen Wen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Fei Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ling Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
12
|
Maruyama S, Okamura A, Kanie Y, Kuriyama K, Sakamoto K, Kanamori J, Imamura Y, Watanabe M. Prognostic significance of circulating basophil counts in patients who underwent esophagectomy for esophageal cancer. Langenbecks Arch Surg 2023; 408:235. [PMID: 37329456 DOI: 10.1007/s00423-023-02977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Recent reports have suggested that basophils influence allergic reactions and tumor immunity. In this study, we aimed to elucidate the association between preoperative circulating basophil (CB) counts and the outcomes of patients who underwent esophagectomy for esophageal cancer. METHODS A total of 783 consecutive patients who underwent esophagectomy for esophageal cancer were eligible. The clinicopathological factors and prognoses were compared between the groups stratified by the preoperative counts of CB. RESULTS There were more advanced clinical T and N stages in the low CB group than in the high CB group (P = 0.01 and = 0.04, respectively). The incidences of postoperative complications were comparable between the groups. The low CB count was associated with unfavorable overall and recurrence-free survivals (P = 0.04 and 0.01, respectively). In the multivariate analysis, low CB count was one of the independent prognostic factors for poor recurrence-free survival (HR 1.33; 95% CI 1.04-1.70; P = 0.02). In addition, hematogenous recurrence occurred more frequently in the low CB group than in the high CB group (57.6% vs. 41.4%, P = 0.04). CONCLUSION A preoperative low CB count was an unfavorable prognosticator in patients who underwent esophagectomy for esophageal cancer.
Collapse
Affiliation(s)
- Suguru Maruyama
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Akihiko Okamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan.
| | - Yasukazu Kanie
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Kengo Kuriyama
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Kei Sakamoto
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Jun Kanamori
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| |
Collapse
|
13
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
14
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
15
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
16
|
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023; 23:106-120. [PMID: 35697799 DOI: 10.1038/s41577-022-00737-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The Immunotherapy Platform, The University of Texas MD Anderson Cancer, Center, Houston, TX, USA.
| |
Collapse
|
17
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
19
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
20
|
Mohale S, Kunde SS, Wairkar S. Biomimetic fabrication of nanotherapeutics by leukocyte membrane cloaking for targeted therapy. Colloids Surf B Biointerfaces 2022; 219:112803. [PMID: 36084510 DOI: 10.1016/j.colsurfb.2022.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Cell membrane cloaking is an important biomimetic approach for improving drug residence time in the body due to its distinctive concealment ability, making it highly biocompatible and efficient for targeted drug delivery. Leukocytes are considered a fundamental part of the immune system. Leukocyte membrane cloaked nanoparticles offer site-specificity and can escape the opsonization process besides enhanced systemic circulation time. This review emphasizes the anatomical and physiological features of different leukocytes in addition to the preparation and characterization of leukocyte membrane cloaked nanoparticles. It also covers the recent advancements of this biointerfacing platform in cancer therapy, inflammatory disorders, multifunctional targeted therapy and hybrid membrane-coated nanoparticles. However, leukocytes are complex, nucleated cell structures and isolating their membranes poses a greater difficulty. Leukocyte membrane cloaking is an upcoming strategy in the infancy stage; nevertheless, there is immense scope to explore this biomimetic delivery system in terms of clinical transition, particularly for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Samyak Mohale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
21
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
23
|
Castaño N, Kim S, Martin AM, Galli SJ, Nadeau KC, Tang SKY. Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system. LAB ON A CHIP 2022; 22:1690-1701. [PMID: 35438713 PMCID: PMC9080715 DOI: 10.1039/d2lc00154c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite their rarity in peripheral blood, basophils play important roles in allergic disorders and other diseases including sepsis and COVID-19. Existing basophil isolation methods require many manual steps and suffer from significant variability in purity and recovery. We report an integrated basophil isolation device (i-BID) in microfluidics for negative immunomagnetic selection of basophils directly from 100 μL of whole blood within 10 minutes. We use a simulation-driven pipeline to design a magnetic separation module to apply an exponentially increasing magnetic force to capture magnetically tagged non-basophils flowing through a microtubing sandwiched between magnetic flux concentrators sweeping across a Halbach array. The exponential profile captures non-basophils effectively while preventing their excessive initial buildup causing clogging. The i-BID isolates basophils with a mean purity of 93.9% ± 3.6% and recovery of 95.6% ± 3.4% without causing basophil degradation or unintentional activation. Our i-BID has the potential to enable basophil-based point-of-care diagnostics such as rapid allergy assessment.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, USA.
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, USA.
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, USA.
| | - Stephen J Galli
- Department of Pathology, Stanford University, USA.
- Department of Microbiology and Immunology, Stanford University, USA
| | - Kari C Nadeau
- Department of Medicine and Pediatrics, with courtesy in Otolaryngology and in Population Science and Epidemiology, Stanford University, USA.
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, USA.
| |
Collapse
|
24
|
Clinical and Translational Significance of Basophils in Patients with Cancer. Cells 2022; 11:cells11030438. [PMID: 35159247 PMCID: PMC8833920 DOI: 10.3390/cells11030438] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcɛRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).
Collapse
|
25
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Zhang J, Yin H, Chen Q, Zhao G, Lou W, Wu W, Pu N. Basophils as a potential therapeutic target in cancer. J Zhejiang Univ Sci B 2021; 22:971-984. [PMID: 34904411 DOI: 10.1631/jzus.b2100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basophils, which are considered as redundant relatives of mast cells and the rarest granulocytes in peripheral circulation, have been neglected by researchers in the past decades. Previous studies have revealed their vital roles in allergic diseases and parasitic infections. Intriguingly, recent studies even reported that basophils might be associated with cancer development, as activated basophils synthesize and release a variety of cytokines and chemokines in response to cancers. However, it is still subject to debate whether basophils function as tumor-protecting or tumor-promoting components; the answer may depend on the tumor biology and the microenvironment. Herein, we reviewed the role of basophils in cancers, and highlighted some potential and promising therapeutic strategies.
Collapse
Affiliation(s)
- Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. , .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China. ,
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Huang YK, Busuttil RA, Boussioutas A. The Role of Innate Immune Cells in Tumor Invasion and Metastasis. Cancers (Basel) 2021; 13:5885. [PMID: 34884995 PMCID: PMC8656477 DOI: 10.3390/cancers13235885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.
Collapse
Affiliation(s)
- Yu-Kuan Huang
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Rita A. Busuttil
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
28
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
29
|
Xiang Z. Mining gold out of a limited source of ore. Cytometry A 2021; 101:114-116. [PMID: 34472218 DOI: 10.1002/cyto.a.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
30
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
31
|
Poddighe D. Autoimmune pancreatitis and pancreatic cancer: Epidemiological aspects and immunological considerations. World J Gastroenterol 2021; 27:3825-3836. [PMID: 34321847 PMCID: PMC8291014 DOI: 10.3748/wjg.v27.i25.3825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ordinary chronic pancreatitis is a well-known risk factor for pancreatic cancer, whereas such an association with autoimmune pancreatitis (AIP) is widely debated. Due to the rarity of the latter disorder, there are few specific clinical and epidemiological studies investigating the relation between AIP and pancreatic cancer, which do not seem to support it. However, these studies are affected by several limitations and, therefore, a link between AIP (and, specifically, type 1 AIP) and pancreatic cancer cannot be ruled out definitively on this basis. Moreover, several immunopathological aspects of type 1 AIP and, in general, immunoglobulin G4-related disease can create an immunological context that may impair the tumoral immunosurveillance and promote the pancreatic carcinogenesis and its progression. In detail, Th2 immunological dominance, type 2 macrophage polarization and basophil infiltration observed in type 1 AIP, may play a permissive role in creating a favorable immunological environment for pancreatic carcinogenesis, in addition to the immunosuppressive therapies that can be used in these patients.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Department of Pediatrics, National Research Institute for Maternal and Child Health (NRCMCH), University Medical Center (UMC) Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
32
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
33
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
34
|
Andreone S, Gambardella AR, Mancini J, Loffredo S, Marcella S, La Sorsa V, Varricchi G, Schiavoni G, Mattei F. Anti-Tumorigenic Activities of IL-33: A Mechanistic Insight. Front Immunol 2020; 11:571593. [PMID: 33329534 PMCID: PMC7734277 DOI: 10.3389/fimmu.2020.571593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-33 (IL-33) is an epithelial-derived cytokine that can be released upon tissue damage, stress, or infection, acting as an alarmin for the immune system. IL-33 has long been studied in the context of Th2-related immunopathologies, such as allergic diseases and parasitic infections. However, its capacity to stimulate also Th1-type of immune responses is now well established. IL-33 binds to its specific receptor ST2 expressed by most immune cell populations, modulating a variety of responses. In cancer immunity, IL-33 can display both pro-tumoral and anti-tumoral functions, depending on the specific microenvironment. Recent findings indicate that IL-33 can effectively stimulate immune effector cells (NK and CD8+ T cells), eosinophils, basophils and type 2 innate lymphoid cells (ILC2) promoting direct and indirect anti-tumoral activities. In this review, we summarize the most recent advances on anti-tumor immune mechanisms operated by IL-33, including the modulation of immune checkpoint molecules, with the aim to understand its potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, CoRI, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|