1
|
Park H, Kingstad-Bakke B, Cleven T, Jung M, Kawaoka Y, Suresh M. Diversifying T-cell responses: safeguarding against pandemic influenza with mosaic nucleoprotein. J Virol 2025:e0086724. [PMID: 39898643 DOI: 10.1128/jvi.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Pre-existing T-cell responses have been linked to reduced disease severity and better clinical outcomes during the 2009 influenza pandemic and the recent COVID-19 pandemic. We hypothesized that diversifying T-cell responses, particularly targeting conserved viral proteins such as the influenza A virus (IAV) nucleoprotein (NP), could protect against both epidemic and pandemic IAV strains. To test this, we created a mosaic nucleoprotein (MNP) by synthesizing a sequence that maximized the representation of 9-mer epitopes from 7422 NP sequences across human, swine, and avian IAVs. Notably, the MNP sequence showed high homology with the NP of the H5N1 strain affecting dairy cows in the ongoing outbreak. Mucosal immunization with the adjuvanted MNP vaccine induced robust CD8 and CD4 T-cell responses against both known immunodominant and in silico predicted subdominant epitopes. MNP-vaccinated mice challenged with epidemic H1N1 and H3N2 strains, which shared immunodominant CD8 and/or CD4 T-cell epitopes, showed a significant (~4 log) reduction in lung viral load. Importantly, MNP-vaccinated mice challenged with a pandemic H1N1 strain lacking shared immunodominant CD8 or CD4 epitopes exhibited a superior reduction in lung viral load, linked to T-cell responses targeting subdominant epitopes present in both the MNP and pandemic strain NP. These results suggest that a diversified T-cell response induced by the MNP vaccine could provide broad protection against severe disease from both current and emerging IAV strains. IMPORTANCE The World Health Organization (WHO) estimates that seasonal influenza causes 3-5 million cases of severe illness annually. The influenza virus frequently undergoes genetic changes through antigenic drift and antigenic shift, resulting in annual epidemics and occasional pandemics. Consequently, a major public health objective is to develop a universal influenza vaccine that offers broad protection against both current and pandemic influenza A strains. In this study, we designed a nucleoprotein (NP) antigen (termed mosaic NP) comprising antigenic regions found in thousands of influenza viruses, aiming to use it as a vaccine to induce broad anti-influenza T-cell responses. Our findings indicate that the mosaic NP vaccine provided significant protection against seasonal H1N1 and H3N2, as well as the pandemic H1N1 strain, demonstrating its effectiveness across various influenza subtypes. These findings suggest that the mosaic NP is a potential universal influenza vaccine antigen, capable of protecting against diverse strains of influenza viruses.
Collapse
Affiliation(s)
- Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Myunghwan Jung
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
4
|
Haupt R, Baracco L, Harberts EM, Loganathan M, Kerstetter LJ, Krammer F, Coughlan L, Ernst RK, Frieman MB. Enhancing the protection of influenza virus vaccines with BECC TLR4 adjuvant in aged mice. Sci Rep 2023; 13:715. [PMID: 36639569 PMCID: PMC9838488 DOI: 10.1038/s41598-023-27965-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza A virus (IAV) is a leading cause of respiratory disease worldwide often resulting in severe morbidity and mortality. We have previously shown that the Bacterial Enzymatic Combinatorial Chemistry (BECC) adjuvants, BECC438 and BECC470, formulated with an influenza virus hemagglutinin (HA) protein vaccine, offer greater protection from influenza virus challenge in mouse respiratory models using adult mice than standard HA:adjuvant combinations. In this study, we determined that immunization with HA + BECC adjuvants also significantly broadened the epitopes targeted on HA as compared with other adjuvants, resulting in increased titers of antibodies directed against the highly conserved HA stalk domain. Importantly, we demonstrate that BECC470 combined with an influenza virus HA protein antigen in a prime-only immunization regimen was able to achieve complete protection from challenge in a ~ 12-month-old mouse aged model. Together, this demonstrates the heightened protection provided by the BECC470 adjuvant in an influenza virus vaccine model and shows the enhanced immune response, as compared to other adjuvants elicited by the formulation of HA with BECC470.
Collapse
Affiliation(s)
- Robert Haupt
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Center for Pathogen Research, School of Medicine, University of Maryland, Baltimore, MD, USA
- Therapeutic Discovery Branch, Molecular Biology Division, USAMRIID, Fort Detrick, MD, USA
| | - Lauren Baracco
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Center for Pathogen Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Erin M Harberts
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - Lucas J Kerstetter
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.
- Center for Pathogen Research, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Development and Evaluation of a Novel Diammonium Glycyrrhizinate Phytosome for Nasal Vaccination. Pharmaceutics 2022; 14:pharmaceutics14102000. [PMID: 36297436 PMCID: PMC9612344 DOI: 10.3390/pharmaceutics14102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present research was to formulate diammonium glycyrrhizinate (DG) into phytosomes (DG-P) to induce nasal immune responses and enhance absorption. Plackett- Burman design was used for process optimization, incorporating specific formulation and process variables to obtain the optimal parameters. Fourier transform infrared spectroscopy (FTIR), X-ray power diffraction (P-XRD), and transmission electron microscopy (TEM) were used for characterization. The adjuvant activity of the DG-P was evaluated by using bone marrow dendritic cells. In vitro nasal mucosal permeation and in situ nasal perfusion were also investigated to evaluate nasal absorption. The DG phytosomes were in the size range of 20~30 nm and zeta-potential range of −30~−40 mV. DG-P demonstrated 4.2-fold increased solubility in n-octanol. Coculturing bone marrow dendritic cells with DG-P led to enhanced dendritic cell maturation. Apparent permeability coefficient of the phytosomal formulation was almost four times higher than that of free DG determined by ex vivo permeation studies on excised porcine mucosa. In situ nasal perfusion studies in rats demonstrated that the nasal absorption of DG-P was significantly higher than that of free DG. Conclusively, the results confirmed that DG-P have potential for use as an adjuvant for nasal vaccine.
Collapse
|
6
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
7
|
PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. Eur J Pharm Sci 2022; 175:106209. [DOI: 10.1016/j.ejps.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
|
8
|
Huang J, Ding Y, Yao J, Zhang M, Zhang Y, Xie Z, Zuo J. Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines (Basel) 2022; 10:vaccines10030405. [PMID: 35335037 PMCID: PMC8952855 DOI: 10.3390/vaccines10030405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have been distributed to the population, the shortcomings of vaccines and the continuous emergence of SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells, and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2, SARS-CoV-2 variants, or SARS-CoV-n.
Collapse
Affiliation(s)
- Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yubo Ding
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
- The Third Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence: ; Tel.: +86-7345-675219
| |
Collapse
|
9
|
Wang L, Wang Z, Cao L, Ge K. Constructive strategies for drug delivery systems in antivirus disease therapy by safety materials. BIOSAFETY AND HEALTH 2022; 4:161-170. [PMID: 35291339 PMCID: PMC8912974 DOI: 10.1016/j.bsheal.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zhaoshuo Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
10
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
11
|
Abstract
Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.
Collapse
|