1
|
Bouwman W, Raymakers R, van der Poll T, van de Stolpe A. Comparison Between Signal Transduction Pathway Activity in Blood Cells of Sepsis Patients and Laboratory Models. Cells 2025; 14:311. [PMID: 39996782 PMCID: PMC11854017 DOI: 10.3390/cells14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Sepsis represents a serious disease burden that lacks effective treatment. Drug development for sepsis requires laboratory models that adequately represent sepsis patients. Simultaneous Transcriptome-based Activity Profiling of Signal Transduction Pathway (STAP-STP) technology quantitatively infers STP activity from mRNA levels of target genes of the STP-associated transcription factor. Here, we used STAP-STP technology to compare STP activities between sepsis patients and lipopolysaccharide (LPS)-based models. Activity scores of Androgen Receptor (AR), TGFβ, NFκB, JAK-STAT1/2, and JAK-STAT3 STPs were calculated based on publicly available transcriptome data. Peripheral blood mononuclear cells (PBMCs) from patients with Gram-negative sepsis, nor PBMCs stimulated with LPS in vitro, showed altered STP activity. Increased NFκB, JAK-STAT1/2, and JAK-STAT3 STP activity was found in whole blood stimulated with LPS in vitro, and in whole blood obtained after intravenous injection of LPS in humans in vivo; AR and TGFβ STP activity only increased in the in vivo LPS model. These results resembled previously reported STP activity in whole blood of sepsis patients. We provide the first comparison of STP activity between patients with sepsis and laboratory model systems. Results are of use for the refinement of sepsis model systems for rational drug development.
Collapse
Affiliation(s)
- Wilbert Bouwman
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Hendrikse CSE, Theelen PMM, Verhaegh W, Lambrechts S, Bekkers RLM, van de Stolpe A, Piek JMJ. Patient-Representative Cell Line Models in a Heterogeneous Disease: Comparison of Signaling Transduction Pathway Activity Between Ovarian Cancer Cell Lines and Ovarian Cancer. Cancers (Basel) 2024; 16:4041. [PMID: 39682227 DOI: 10.3390/cancers16234041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Advances in treatment options have barely improved the prognosis of ovarian carcinoma (OC) in recent decades. The inherent heterogeneity of OC underlies challenges in treatment (development) and patient stratification. One hurdle for effective drug development is the lack of patient-representative disease models available for preclinical drug research. Based on quantitative measurement of signal transduction pathway (STP) activity in cell lines, we aimed to identify cell line models that better mirror the different clinical subtypes of OC. Methods: The activity of seven oncogenic STPs (signal transduction pathways) was determined by previously described STP technology using transcriptome data from untreated OC cell lines available in the GEO database. Hierarchal clustering of cell lines was performed based on STP profiles. Associations between cell line histology (original tumor), cluster, and STP profiles were analyzed. Subsequently, STP profiles of clinical OC tissue samples were matched with OC cell lines. Results: Cell line search resulted in 80 cell line transcriptome data from 23 GEO datasets, with 51 unique cell lines. These cell lines were derived from eight different histological OC subtypes (as determined for the primary tumor). Clustering revealed seven clusters with unique STP profiles. When borderline tumors (n = 6), high-grade serous (n = 51) and low-grade (n = 31) OC were matched with cell lines, twelve different cell lines were identified as potentially patient-representative OC cell line models. Conclusions: Based on STP activity, we identified twelve different cell lines that were the most representative of the common subtypes of OC. These findings are important to improve drug development for OC.
Collapse
Affiliation(s)
- Cynthia S E Hendrikse
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pauline M M Theelen
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Wim Verhaegh
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Sandrina Lambrechts
- Department of Gynecology and Obstetrics, Maastricht University Hospital, 6229 HX Maastricht, The Netherlands
| | - Ruud L M Bekkers
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Gynecology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Anja van de Stolpe
- Drug Companion Diagnostics Company-Therapeutics (DCDC-Tx), 5263 EM Vught, The Netherlands
| | - Jurgen M J Piek
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| |
Collapse
|
3
|
Bouwman W, Verhaegh W, van Doorn A, Raymakers R, van der Poll T, van de Stolpe A. Quantitative characterization of immune cells by measuring cellular signal transduction pathway activity. Sci Rep 2024; 14:24487. [PMID: 39424625 PMCID: PMC11489675 DOI: 10.1038/s41598-024-75666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
For many diseases, including cancer, infections, and auto-immune diseases, the immune response is a major determinant of disease progression, response to therapy, and clinical outcome. Innate and adaptive immune responses are controlled by coordinated activity of different immune cell types. The functional activity state of immune cells is determined by Signal Transduction Pathways (STPs). A recently developed technology (Simultaneous Transcriptome-based Activity Profiling of Signal Transduction Pathways, STAP-STP) enables simultaneous and quantitative activity measurement of relevant STPs in immune cells based on mRNA-analysis. STAP-STP technology was used to analyze public transcriptome data of a variety of immune cell types in resting and activated functional state. In addition, a clinical study on rheumatoid arthritis (RA) was analyzed to illustrate utility of the technology. Per sample, activity of androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, NFκB, JAK-STAT1/2, and JAK-STAT3 STPs was calculated, generating an STP activity profile (SAP) consisting of 9 activity scores. Each analyzed immune cell type, i.e. naive/resting and immune-activated CD4 + and CD8 + T cells, T helper cells, B cells, NK cells, monocytes, macrophages, and dendritic cells, had a reproducible and characteristic SAP, reflecting both cell type and its activity state. Analysis of clinical RA samples revealed increased TGFβ STP activity in whole blood samples. In conclusion, STAP-STP technology enables quantitative measurement of the functional activity state of immune cells of the innate and adaptive immune system. Aside from diagnostic applications, utility lies in unravelling abnormal immune function in disease and immunomodulatory drug development.
Collapse
Affiliation(s)
- Wilbert Bouwman
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Tom van der Poll
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Wimalawansa SJ. Unlocking insights: Navigating COVID-19 challenges and Emulating future pandemic Resilience strategies with strengthening natural immunity. Heliyon 2024; 10:e34691. [PMID: 39166024 PMCID: PMC11334859 DOI: 10.1016/j.heliyon.2024.e34691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
The original COVID-19 vaccines, developed against SARS-CoV-2, initially mitigated hospitalizations. Bivalent vaccine boosters were used widely during 2022-23, but the outbreaks persisted. Despite this, hospitalizations, mortality, and outbreaks involving dominant mutants like Alpha and Delta increased during winters when the population's vitamin D levels were at their lowest. Notably, 75 % of human immune cell/system functions, including post-vaccination adaptive immunity, rely on adequate circulatory vitamin D levels. Consequently, hypovitaminosis compromises innate and adaptive immune responses, heightening susceptibility to infections and complications. COVID-19 vaccines primarily target SARS-CoV-2 Spike proteins, thus offering only a limited protection through antibodies. mRNA vaccines, such as those for COVID-19, fail to generate secretory/mucosal immunity-like IgG responses, rendering them ineffective in halting viral spread. Additionally, mutations in the SARS-CoV-2 binding domain reduce immune recognition by vaccine-derived antibodies, leading to immune evasion by mutant viruses like Omicron variants. Meanwhile, the repeated administration of bivalent boosters intended to enhance efficacy resulted in the immunoparesis of recipients. As a result, relying solely on vaccines for outbreak prevention, it became less effective. Dominant variants exhibit increased affinity to angiotensin-converting enzyme receptor-2, enhancing infectivity but reducing virulence. Meanwhile, spike protein-related viral mutations do not impact the potency of widely available, repurposed early therapies, like vitamin D and ivermectin. With the re-emergence of COVID-19 and impending coronaviral pandemics, regulators and health organizations should proactively consider approval and strategic use of cost-effective adjunct therapies mentioned above to counter the loss of vaccine efficacy against emerging variants and novel coronaviruses and eliminate vaccine- and anti-viral agents-related serious adverse effects. Timely implementation of these strategies could reduce morbidity, mortality, and healthcare costs and provide a rational approach to address future epidemics and pandemics. This perspective critically reviews relevant literature, providing insights, justifications, and viewpoints into how the scientific community and health authorities can leverage this knowledge cost-effectively.
Collapse
Affiliation(s)
- Sunil J. Wimalawansa
- Medicine, Endocrinology, and Nutrition, B14 G2, De Soyza Flats, Moratuwa, Sri Lanka
| |
Collapse
|
5
|
Winkler CW, Evans AB, Carmody AB, Lack JB, Woods TA, Peterson KE. C-C motif chemokine receptor 2 and 7 synergistically control inflammatory monocyte recruitment but the infecting virus dictates monocyte function in the brain. Commun Biol 2024; 7:494. [PMID: 38658802 PMCID: PMC11043336 DOI: 10.1038/s42003-024-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Mice, Knockout
- Brain/virology
- Brain/metabolism
- Brain/immunology
- Herpesvirus 1, Human/physiology
- La Crosse virus/genetics
- La Crosse virus/physiology
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Encephalitis, California/virology
- Encephalitis, California/genetics
- Encephalitis, California/metabolism
- Encephalitis, California/immunology
- Mice, Inbred C57BL
- Inflammation/metabolism
- Inflammation/virology
- Female
- Male
Collapse
Affiliation(s)
- Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Alyssa B Evans
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyson A Woods
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
6
|
Dickson A, Geerling E, Stone ET, Hassert M, Steffen TL, Makkena T, Smither M, Schwetye KE, Zhang J, Georges B, Roberts MS, Suschak JJ, Pinto AK, Brien JD. The role of vaccination route with an adenovirus-vectored vaccine in protection, viral control, and transmission in the SARS-CoV-2/K18-hACE2 mouse infection model. Front Immunol 2023; 14:1188392. [PMID: 37662899 PMCID: PMC10469340 DOI: 10.3389/fimmu.2023.1188392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Vaccination is the most effective mechanism to prevent severe COVID-19. However, breakthrough infections and subsequent transmission of SARS-CoV-2 remain a significant problem. Intranasal vaccination has the potential to be more effective in preventing disease and limiting transmission between individuals as it induces potent responses at mucosal sites. Methods Utilizing a replication-deficient adenovirus serotype 5-vectored vaccine expressing the SARS-CoV-2 RBD (AdCOVID) in homozygous and heterozygous transgenic K18-hACE2, we investigated the impact of the route of administration on vaccine immunogenicity, SARS-CoV-2 transmission, and survival. Results Mice vaccinated with AdCOVID via the intramuscular or intranasal route and subsequently challenged with SARS-CoV-2 showed that animals vaccinated intranasally had improved cellular and mucosal antibody responses. Additionally, intranasally vaccinated animals had significantly better viremic control, and protection from lethal infection compared to intramuscularly vaccinated animals. Notably, in a novel transmission model, intranasal vaccination reduced viral transmission to naïve co-housed mice compared to intramuscular vaccination. Discussion Our data provide convincing evidence for the use of intranasal vaccination in protecting against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Taneesh Makkena
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Madeleine Smither
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Katherine E. Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | | | | | | | | | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| |
Collapse
|
7
|
Koehm M, Klippstein M, Dauth S, Hallmann K, Kohmer N, Burkhardt H, Ciesek S, Geisslinger G, Rabenau HF, Behrens F. Impact of different classes of immune-modulating treatments on B cell-related and T cell-related immune response before and after COVID-19 booster vaccination in patients with immune-mediated diseases and primary immunodeficiency: a cohort study. RMD Open 2023; 9:e003094. [PMID: 37652553 PMCID: PMC10476126 DOI: 10.1136/rmdopen-2023-003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES To evaluate the potential of immunosuppressed patients to mount B-cell and T-cell responses to COVID-19 booster vaccination (third vaccination). METHODS Patients with primary immunodeficiency (PID), immune-mediated inflammatory diseases (IMIDs) on CD20-depleting treatment with rituximab (RTX), or IMIDs treated with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) or biological disease-modifying antirheumatic drug (bDMARDs) were included and assessed before (baseline visit (BL)) and 2, 4 and 8 weeks after COVID-19 booster vaccination. Serum B-cell responses were assessed by antibody levels against SARS-CoV-2 spike protein (anti-spike IgG antibody (S-AB)) and a surrogate virus neutralisation test (sVNT). T-cell responses were assessed by an interferon gamma release assay (IGRA). RESULTS Fifty patients with PID (n=6), treated with RTX therapy (n=13), or treated with csDMARDs/bDMARDs (n=31) were included. At BL, anti-S-AB titres in PID and csDMARD/bDMARD-treated patients were low (although significantly higher than RTX patients); measures of B-cell-mediated response increased significantly after booster vaccination. In the RTX cohort, low BL anti-S-AB and sVNT values did not improve after booster vaccination, but patients had significantly elevated IGRA responses post booster vaccination compared with the other groups. csDMARD/bDMARD-treated patients showed the highest BL values in all three assays with greater increases in all parameters after booster vaccination compared with patients with PID. CONCLUSION Patients with IMID on therapeutic B-cell depletion have low anti-S-AB and sVNT values before and after booster vaccination but show significantly higher levels of IGRA compared with other immunosuppressed patients, suggesting an underlying mechanism attempting to compensate compromised humoral immunity by upregulating T-cell responsiveness. PID appears to have a stronger impact on antiviral immune response than csDMARD/bDMARD treatment.
Collapse
Affiliation(s)
- Michaela Koehm
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Maximilian Klippstein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Stephanie Dauth
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Konstantin Hallmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Harald Burkhardt
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Virology, German Centre for Infection Research, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Behrens
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Bouwman W, Verhaegh W, van de Stolpe A. Improved diagnosis of inflammatory bowel disease and prediction and monitoring of response to anti-TNF alpha treatment based on measurement of signal transduction pathway activity. Front Pharmacol 2022; 13:1008976. [PMID: 37090899 PMCID: PMC10115426 DOI: 10.3389/fphar.2022.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Ulcerative colitis (UC) and Crohn’s disease (CD) are two subtypes of chronic inflammatory bowel disease (IBD). Differential diagnosis remains a challenge. Anti-TNFα treatment is an important treatment for IBD, yet resistance frequently occurs and cannot be predicted. Consequently, many patients receive ineffective therapy with potentially adverse effects. Novel assays are needed to improve diagnosis, and predict and monitor response to anti-TNF-α compounds.Design: Signal transduction pathway (STP) technology was used to quantify activity of STPs (androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, Hedgehog, Wnt, NFκB, JAK-STAT1/2, and JAK-STAT3 pathways) in colon mucosa samples of CD and UC patients, based on transcriptome analysis. Previously described STP assay technology is based on computational inference of STP activity from mRNA levels of target genes of the STP transcription factor.Results: Results show that NFκB, JAK-STAT3, Wnt, MAPK, and androgen receptor pathways were abnormally active in CD and UC. Colon and ileum-localized CD differed with respect to STP activity, the JAK-STAT1/2 pathway being abnormally active in ileal CD. High activity of NFκB, JAK-STAT3, and TGFβ pathways was associated with resistance to anti-TNFα treatment in UC and colon-located CD, but not in ileal CD. Abnormal STP activity decreased with successful treatment.Conclusion: We believe that measuring mucosal STP activity provides clinically relevant information to improve differential diagnosis of IBD and prediction of resistance to anti-TNFα treatment in patients with colon-localized IBD, and provides new targets for treatment and overcoming anti-TNFα resistance.
Collapse
|
9
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
10
|
Batra A, Banerjee SC, Sharma R. Persistent Correlation in Cellular Noise Determines Longevity of Viral Infections. J Phys Chem Lett 2022; 13:7252-7260. [PMID: 35913772 DOI: 10.1021/acs.jpclett.2c01875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The slowly decaying viral dynamics, even after 2-3 weeks from diagnosis, is one of the characteristics of COVID-19 infection that is still unexplored in theoretical and experimental studies. This long-lived characteristic of viral infections in the framework of inherent variations or noise present at the cellular level is often overlooked. Therefore, in this work, we aim to understand the effect of these variations by proposing a stochastic non-Markovian model that not only captures the coupled dynamics between the immune cells and the virus but also enables the study of the effect of fluctuations. Numerical simulations of our model reveal that the long-range temporal correlations in fluctuations dictate the long-lived dynamics of a viral infection and, in turn, also affect the rates of immune response. Furthermore, predictions of our model system are in agreement with the experimental viral load data of COVID-19 patients from various countries.
Collapse
Affiliation(s)
- Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| | - Shoubhik Chandan Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
11
|
Kramer A, Prinz C, Fichtner F, Fischer AL, Thieme V, Grundeis F, Spagl M, Seeber C, Piechotta V, Metzendorf MI, Golinski M, Moerer O, Stephani C, Mikolajewska A, Kluge S, Stegemann M, Laudi S, Skoetz N. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev 2022; 6:CD015209. [PMID: 35695334 PMCID: PMC9190191 DOI: 10.1002/14651858.cd015209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).
Collapse
Affiliation(s)
- Andre Kramer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Carolin Prinz
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna-Lena Fischer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Felicitas Grundeis
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Manuel Spagl
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian Seeber
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Golinski
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Caspar Stephani
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Laudi
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Wesseling-Rozendaal Y, van Doorn A, Willard-Gallo K, van de Stolpe A. Characterization of Immunoactive and Immunotolerant CD4+ T Cells in Breast Cancer by Measuring Activity of Signaling Pathways That Determine Immune Cell Function. Cancers (Basel) 2022; 14:cancers14030490. [PMID: 35158758 PMCID: PMC8833374 DOI: 10.3390/cancers14030490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Immunotherapy enhances the immune response against cancer and is potentially curative. Unfortunately, few patients with breast cancer benefit from this therapy. It is not possible to predict which patients will benefit. A blood cell, called CD4+ T-cell, plays a role in the immune response and in resistance to immunotherapy. Its function is determined by activity of biochemical processes, called signal transduction pathways (STPs). We developed a new technology to measure activity of these STPs, which was used to investigate whether CD4+ T cells function abnormally in breast cancer patients. We show that in CD4+ T-cells from most of the investigated breast cancer patients a number of these STPs are overactive. The abnormal activity of a few notable STPs (Notch and TGFβ) suggests that CD4+ T-cells have changed into regulatory T-cells, which inhibit the immune response against cancer and have been associated with resistance to immunotherapy. We also provide evidence that this change in the CD4+ T- cells is caused by a factor produced by breast cancer cells. We conclude that this new technology can be used to measure STP activity in blood of patients with cancer and has the potential to better identify patients who will benefit from immunotherapy. Abstract Cancer immunotolerance may be reversed by checkpoint inhibitor immunotherapy; however, only a subset of patients responds to immunotherapy. The prediction of clinical response in the individual patient remains a challenge. CD4+ T cells play a role in activating adaptive immune responses against cancer, while the conversion to immunosuppression is mainly caused by CD4+ regulatory T cell (Treg) cells. Signal transduction pathways (STPs) control the main functions of immune cells. A novel previously described assay technology enables the quantitative measurement of activity of multiple STPs in individual cell and tissue samples. The activities of the TGFβ, NFκB, PI3K-FOXO, JAK-STAT1/2, JAK-STAT3, and Notch STPs were measured in CD4+ T cell subsets and used to investigate cellular mechanisms underlying breast cancer-induced immunotolerance. Methods: STP activity scores were measured on Affymetrix expression microarray data of the following: (1) resting and immune-activated CD4+ T cells; (2) CD4+ T-helper 1 (Th1) and T-helper 2 (Th2) cells; (3) CD4+ Treg cells; (4) immune-activated CD4+ T cells incubated with breast cancer tissue supernatants; and (5) CD4+ T cells from blood, lymph nodes, and cancer tissue of 10 primary breast cancer patients. Results: CD4+ T cell activation induced PI3K, NFκB, JAK-STAT1/2, and JAK-STAT3 STP activities. Th1, Th2, and Treg cells each showed a typical pathway activity profile. The incubation of activated CD4+ T cells with cancer supernatants reduced the PI3K, NFκB, and JAK-STAT3 pathway activities and increased the TGFβ pathway activity, characteristic of an immunotolerant state. Immunosuppressive Treg cells were characterized by high NFκB, JAK-STAT3, TGFβ, and Notch pathway activity scores. An immunotolerant pathway activity profile was identified in CD4+ T cells from tumor infiltrate and blood of a subset of primary breast cancer patients, which was most similar to the pathway activity profile in immunosuppressive Treg cells. Conclusion: Signaling pathway assays can be used to quantitatively measure the functional immune response state of lymphocyte subsets in vitro and in vivo. Clinical results suggest that, in primary breast cancer, the adaptive immune response of CD4+ T cells may be frequently replaced by immunosuppressive Treg cells, potentially causing resistance to checkpoint inhibition. In vitro study results suggest that this is mediated by soluble factors from cancer tissue. Signaling pathway activity analysis on TIL and/or blood samples may improve response prediction and monitoring response to checkpoint inhibitors and may provide new therapeutic targets (e.g., the Notch pathway) to reduce resistance to immunotherapy.
Collapse
Affiliation(s)
| | | | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Anja van de Stolpe
- Molecular Pathway Diagnostics, Philips, 5656 AE Eindhoven, The Netherlands;
- Correspondence: ; Tel.: +31-612784841
| |
Collapse
|
13
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
14
|
Bouwman W, Verhaegh W, van de Stolpe A. Androgen Receptor Pathway Activity Assay for Sepsis Diagnosis and Prediction of Favorable Prognosis. Front Med (Lausanne) 2021; 8:767145. [PMID: 34888328 PMCID: PMC8650119 DOI: 10.3389/fmed.2021.767145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Sepsis is a life-threatening complication of a bacterial infection. It is hard to predict which patients with a bacterial infection will develop sepsis, and accurate and timely diagnosis as well as assessment of prognosis is difficult. Aside from antibiotics-based treatment of the causative infection and supportive measures, treatment options have remained limited. Better understanding of the immuno-pathophysiology of sepsis is expected to lead to improved diagnostic and therapeutic solutions. Functional activity of the innate (inflammatory) and adaptive immune response is controlled by a dedicated set of cellular signal transduction pathways, that are active in the various immune cell types. To develop an immune response-based diagnostic assay for sepsis and provide novel therapeutic targets, signal transduction pathway activities have been analyzed in whole blood samples from patients with sepsis. Methods: A validated and previously published set of signal transduction pathway (STP) assays, enabling determination of immune cell function, was used to analyze public Affymetrix expression microarray data from clinical studies containing data from pediatric and adult patients with sepsis. STP assays enable quantitative measurement of STP activity on individual patient sample data, and were used to calculate activity of androgen receptor (AR), estrogen receptor (ER), JAK-STAT1/2, JAK-STAT3, Notch, Hedgehog, TGFβ, FOXO-PI3K, MAPK-AP1, and NFκB signal transduction pathways. Results: Activity of AR and TGFβ pathways was increased in children and adults with sepsis. Using the mean plus two standard deviations of normal pathway activity (in healthy individuals) as threshold for abnormal STP activity, diagnostic assay parameters were determined. For diagnosis of pediatric sepsis, the AR pathway assay showed high sensitivity (77%) and specificity (97%), with a positive prediction value (PPV) of 99% and negative prediction value (NPV) of 50%. For prediction of favorable prognosis (survival), PPV was 95%, NPV was 21%. The TGFβ pathway activity assay performed slightly less for diagnosing sepsis, with a sensitivity of 64% and specificity of 98% (PPV 99%, NPV 39%). Conclusion: The AR and TGFβ pathways have an immunosuppressive role, suggesting a causal relation between increased pathway activity and sepsis immunopathology. STP assays have been converted to qPCR assays for further evaluation of clinical utility for sepsis diagnosis and prediction of prognosis, as well as for prediction of risk at developing sepsis in patients with a bacterial infection. STPs may present novel therapeutic targets in sepsis.
Collapse
|
15
|
Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT Pathway Inhibition and their Implications in COVID-19 Therapy. Postgrad Med 2021; 133:489-507. [PMID: 33245005 PMCID: PMC7784782 DOI: 10.1080/00325481.2020.1855921] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
As the incidence of COVID-19 increases with time, more and more efforts are made to pave a way out for the therapeutic strategies to deal with the disease progression. Inflammation being a significant influencer in COVID-19 patients, it drives our focus onto the signaling cascades of the JAK/STAT pathway. JAK phosphorylation mediated by cytokine receptor activation leads to phosphorylation of STATs that translocate into the nucleus to translate for inflammatory mediators. The SARS-CoV-2 structural proteins like spike, nucleocapsid, membrane and envelope proteins along with the non- structural proteins 1-16 including proteases like 3CL pro and PLpro promote its entry and survival in hosts. The SARS-CoV-2 infection triggers inflammation via the JAK/STAT pathway leading to recruitment of pneumocytes, endothelial cells, macrophages, monocytes, lymphocytes, natural killer cells and dendritic cells progressing towards cytokine storm. This produces various inflammatory markers in the host that determine the disease severity. The JAK/STAT signaling also mediates immune responses via B cell and T cell differentiation.With an attempt to reduce excessive inflammation, JAK/STAT inhibitors like Ruxolitinib, Baricitinib, Tofacitinib have been employed that mediate its actions via suppressors of cytokine signaling, cytokine inducible SH2 containing protein, Protein inhibitor of activated STAT and protein tyrosine phosphatases. Even though they are implicated with multiple adverse effects, the regulatory authorities have supported its use, and numerous clinical trials are in progress to prove their safety and efficacy. On the contrary, the exact mechanism of JAK/STAT inhibition at molecular levels remains speculative for which further investigations are required.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Antriya Annie Tom
- Department of Pharmacy Practice, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Roshitha Ann Shaji
- Department of Pharmacy Practice, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Aaja Alosious
- Department of Pharmacy Practice, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Mariya Luvis
- Department of Pharmacy Practice, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
van de Stolpe A, Verhaegh W, Blay JY, Ma CX, Pauwels P, Pegram M, Prenen H, De Ruysscher D, Saba NF, Slovin SF, Willard-Gallo K, Husain H. RNA Based Approaches to Profile Oncogenic Pathways From Low Quantity Samples to Drive Precision Oncology Strategies. Front Genet 2021; 11:598118. [PMID: 33613616 PMCID: PMC7893109 DOI: 10.3389/fgene.2020.598118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Precision treatment of cancer requires knowledge on active tumor driving signal transduction pathways to select the optimal effective targeted treatment. Currently only a subset of patients derive clinical benefit from mutation based targeted treatment, due to intrinsic and acquired drug resistance mechanisms. Phenotypic assays to identify the tumor driving pathway based on protein analysis are difficult to multiplex on routine pathology samples. In contrast, the transcriptome contains information on signaling pathway activity and can complement genomic analyses. Here we present the validation and clinical application of a new knowledge-based mRNA-based diagnostic assay platform (OncoSignal) for measuring activity of relevant signaling pathways simultaneously and quantitatively with high resolution in tissue samples and circulating tumor cells, specifically with very small specimen quantities. The approach uses mRNA levels of a pathway's direct target genes, selected based on literature for multiple proof points, and used as evidence that a pathway is functionally activated. Using these validated target genes, a Bayesian network model has been built and calibrated on mRNA measurements of samples with known pathway status, which is used next to calculate a pathway activity score on individual test samples. Translation to RT-qPCR assays enables broad clinical diagnostic applications, including small analytes. A large number of cancer samples have been analyzed across a variety of cancer histologies and benchmarked across normal controls. Assays have been used to characterize cell types in the cancer cell microenvironment, including immune cells in which activated and immunotolerant states can be distinguished. Results support the expectation that the assays provide information on cancer driving signaling pathways which is difficult to derive from next generation DNA sequencing analysis. Current clinical oncology applications have been complementary to genomic mutation analysis to improve precision medicine: (1) prediction of response and resistance to various therapies, especially targeted therapy and immunotherapy; (2) assessment and monitoring of therapy efficacy; (3) prediction of invasive cancer cell behavior and prognosis; (4) measurement of circulating tumor cells. Preclinical oncology applications lie in a better understanding of cancer behavior across cancer types, and in development of a pathophysiology-based cancer classification for development of novel therapies and precision medicine.
Collapse
Affiliation(s)
| | | | - Jean-Yves Blay
- Medical Oncology, Université Claude Bernard Lyon 1, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Cynthia X. Ma
- Medicine, Division of Oncology, Section of Medical Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patrick Pauwels
- Molecular Pathology, Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Mark Pegram
- Stanford University School of Medicine, Clinical Research, Stanford Cancer Institute, Stanford, CA, United States
| | - Hans Prenen
- Oncology Department, Head of Phase I – Early Clinical Trials Unit, Clinical Trial Management Program, Oncology Department, Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Oncology-Radiotherapy, Maastro/Maastricht University Medical Center, Maastricht, Netherlands
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Head and Neck Medical Oncology Program, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | | | | | - Hatim Husain
- University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Canté-Barrett K, Holtzer L, van Ooijen H, Hagelaar R, Cordo’ V, Verhaegh W, van de Stolpe A, Meijerink JPP. A Molecular Test for Quantifying Functional Notch Signaling Pathway Activity in Human Cancer. Cancers (Basel) 2020; 12:cancers12113142. [PMID: 33120947 PMCID: PMC7692325 DOI: 10.3390/cancers12113142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Notch signal transduction pathway is important for various physiological processes, including immune responses, and plays a role in many diseases, for example cancer. We have developed a new assay to quantitatively measure Notch pathway activity, and we validated it using data from various human cancer cell lines. The assay can be applied across different cell types, and offers numerous possibilities to explore the contribution of the Notch pathway to tumor formation and the stratification of cancer patients. We assessed Notch pathway activity in a cohort of T cell acute lymphoblastic leukemia (T-ALL) patient samples, and found that the pathway activity score more accurately reflects Notch pathway activity than a prediction on the basis of NOTCH1 mutations alone. Finally, we found that patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients who had T-ALL cells with higher activity. Abstract Background: The Notch signal transduction pathway is pivotal for various physiological processes, including immune responses, and has been implicated in the pathogenesis of many diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities in Notch pathway activity among individual patients. The quantitative measurement of Notch pathway activity is therefore essential to identify patients who could benefit from targeted treatment. Methods: We here describe a new assay that infers a quantitative Notch pathway activity score from the mRNA levels of generally conserved direct NOTCH target genes. Following the calibration and biological validation of our Notch pathway activity model over a wide spectrum of human cancer types, we assessed Notch pathway activity in a cohort of T-ALL patient samples and related it to biological and clinical parameters, including outcome. Results: We developed an assay using 18 select direct target genes and high-grade serous ovarian cancer for calibration. For validation, seven independent human datasets (mostly cancer series) were used to quantify Notch activity in agreement with expectations. For T-ALL, the median Notch pathway activity was highest for samples with strong NOTCH1-activating mutations, and T-ALL patients of the TLX subtype generally had the highest levels of Notch pathway activity. We observed a significant relationship between ICN1 levels and the absence/presence of NOTCH1-activating mutations with Notch pathway activity scores. Patients with the lowest Notch activity scores had the shortest event-free survival compared to other patients. Conclusions: High Notch pathway activity was not limited to T-ALL samples harboring strong NOTCH1 mutations, including juxtamembrane domain mutations or hetero-dimerization combined with PEST-domain or FBXW7 mutations, indicating that additional mechanisms may activate Notch signaling. The measured Notch pathway activity was related to intracellular NOTCH levels, indicating that the pathway activity score more accurately reflects Notch pathway activity than when it is predicted on the basis of NOTCH1 mutations. Importantly, patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients showing higher activity.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Laurent Holtzer
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Henk van Ooijen
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Valentina Cordo’
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Wim Verhaegh
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Jules P. P. Meijerink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
- Correspondence: ; Tel.: +31-6-15064275
| |
Collapse
|