1
|
Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, Paz-Elizur T, Grossman R, Ram Z, Volovitz I. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers (Basel) 2023; 15:574. [PMID: 36765532 PMCID: PMC9913544 DOI: 10.3390/cancers15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.
Collapse
Affiliation(s)
- Meytal Dror Levinsky
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Baruch Brenner
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Institute of Oncology, Davidoff Cancer Center, The Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Michal Yalon
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Pediatric Hematology-Oncology Department, Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zohar Levi
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Gastroenterology Department; The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Zvi Livneh
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zoya Cohen
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Tamar Paz-Elizur
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rachel Grossman
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zvi Ram
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
3
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|
4
|
Durkee-Shock J, Lazarski CA, Jensen-Wachspress MA, Zhang A, Son A, Kankate VV, Field NE, Webber K, Lang H, Conway SR, Hanley PJ, Bollard CM, Keller MD, Schwartz DM. Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific T cell therapy products. Mol Ther Methods Clin Dev 2022; 25:439-447. [PMID: 35506060 PMCID: PMC9050197 DOI: 10.1016/j.omtm.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/25/2022] [Indexed: 10/29/2022]
Abstract
Adoptive T cell immunotherapy has been used to restore immunity against multiple viral targets in immunocompromised patients after bone-marrow transplantation and has been proposed as a strategy for preventing coronavirus 2019 (COVID-19) in this population. Ideally, expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-virus-specific T cells (CSTs) should demonstrate marked cell expansion, T cell specificity, and CD8+ T cell skewing prior to adoptive transfer. However, current methodologies using IL-4 + IL-7 result in suboptimal specificity, especially in CD8+ cells. Using a microexpansion platform, we screened various cytokine cocktails (IL-4 + IL-7, IL-15, IL-15 + IL-4, IL-15 + IL-6, and IL-15 + IL-7) for the most favorable culture conditions. IL-15 + IL-7 optimally balanced T cell expansion, polyfunctionality, and CD8+ T cell skewing of a final therapeutic T cell product. Additionally, the transcriptomes of CD4+ and CD8+ T cells cultured with IL-15 + IL-7 displayed the strongest induction of antiviral type I interferon (IFN) response genes. Subsequently, microexpansion results were successfully translated to a Good Manufacturing Practice (GMP)-applicable format where IL-15 + IL-7 outperformed IL-4 + IL-7 in specificity and expansion, especially in the desirable CD8+ T cell compartment. These results demonstrate the functional implications of IL-15-, IL-4-, and IL-7-containing cocktails for therapeutic T cell expansion, which could have broad implication for cellular therapy, and pioneer the use of RNA sequencing (RNA-seq) to guide viral-specific T cell (VST) product manufacturing.
Collapse
Affiliation(s)
- Jessica Durkee-Shock
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | | | - Anqing Zhang
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Aran Son
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vaishnavi V Kankate
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Naomi E Field
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Kathleen Webber
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Susan R Conway
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.,GW Cancer Center, George Washington University, Washington, DC, USA.,Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Daniella M Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|