1
|
Pan C, Xu S, Zhang W, Zhao Y, Zhao J, Song M. Expression of TLR7/8 in canine sperm and evaluation of the effect of ligand R848 on the sorting of canine X/Y sperm. Theriogenology 2025; 231:127-132. [PMID: 39447373 DOI: 10.1016/j.theriogenology.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to analyze the expression pattern of Toll receptor 7/8 (TLR7/8) in canine sperm, and explore the feasibility of using TLR7/8 ligand resiquimod(R848)to separate canine X and Y sperm. In this study, cellular immunofluorescence was used to analyze the expression of TLR7/8 in canine sperm, real-time fluorescence quantitative PCR was used to calculate the proportion of X sperm in the lower layer of the incubation solution with R848 to evaluate the sorting effect of R848 on canine X/Y sperm, and sperm quality detection system was used to analyze the effect of R848 on the motility of canine sperm. The mechanism of effect of R848 on canine sperm motility was analyzed by Western blot. The results showed that TLR8 was not expressed in all canine sperm, while TLR7 was expressed in all canine sperm and was localized in the head and tail of sperm. When 0.4 μM R848 was incubated with canine sperm for 1 h, the total motility, average path velocity (VAP), average straight-line velocity (VSL), and average curved-line velocity (VCL) of canine sperm were significantly decreased(P < 0.05). There was no significant difference between the lower and upper layers of the R848 treatment group and the control group(P > 0.05), and the proportion of X sperm was nearly half. The levels of NF-κB and GSK3α/β phosphorylation of sperm in R848 treatment group were significantly increased compared with control group(P < 0.05). The above results showed that TLR7/8 was not differentially expressed in canine X and Y sperm. R848 could decrease the motility of canine spermatozoa and inhibit sperm motility by the GSK3α/β-hexokinase pathway through the phosphorylation of NFκB and GSK3α/β, while could not separate X and Y spermatozoa. The method of sorting X/Y sperm based on TLR7/8 is not feasible for dogs.
Collapse
Affiliation(s)
- Caixia Pan
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China.
| | - Shu Xu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Wencai Zhang
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Yu Zhao
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Jianli Zhao
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Mingqiang Song
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| |
Collapse
|
2
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Váradi J, Oláh B, Hosszú D, Fenyvesi F, Remenyik J, Homoki J, Nagy B, Fejes Z, Bácskay I, Klusóczki Á. Development of Imiquimod-induced HaCaT-THP-1 co-culture for modeling of psoriasis. Eur J Pharm Sci 2024; 200:106846. [PMID: 38972610 DOI: 10.1016/j.ejps.2024.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Psoriasis is one of the most prevalent and chronic inflammatory disease of the skin, associated with disrupted barrier function. Currently, a widely accepted, generally usable cell culture model has not been developed yet. In the present work, we aimed to establish a co-culture model with human keratinocyte (HaCaT) and human monocyte cells (THP-1) induced by Imiquimod (IMQ), which acts on the TLR7 receptor. The role of TLR7 expressed on THP-1 cells was confirmed by immunofluorescence staining of NF-κB activation. Chloroquine (CH) was used as a receptor inhibitor, in the presence or absence of which the NF-κB pathway was activated. We determined the most effective proliferation-stimulating IMQ concentration by RTCA method and the hyperproliferative effect was investigated by wound-healing test. The effect of IMQ was compared with the effects of the anthocyanin (AC) components from the anti-inflammatory sour cherry extract that we have already studied. We found that IMQ significantly increased the migration rate however, the combined treatment resulted in a decreased migration rate compared to the IMQ treatment alone. Inflammatory cytokines were measured from the supernatant of co-culture by ELISA. During the development of the co-culture intended to model psoriasis, we confirmed the induction effect of IMQ and in the case of AC treatment, we supported the stabilizing effect of the barrier.
Collapse
Affiliation(s)
- Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Boglárka Oláh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Dominik Hosszú
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Egyetem tér 1., Debrecen H-4032, Hungary
| | - Judit Homoki
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Egyetem tér 1., Debrecen H-4032, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary; Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary
| | - Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98., Debrecen H-4032, Hungary.
| |
Collapse
|
4
|
Dang BTN, Duwa R, Lee S, Kwon TK, Chang JH, Jeong JH, Yook S. Targeting tumor-associated macrophages with mannosylated nanotherapeutics delivering TLR7/8 agonist enhances cancer immunotherapy. J Control Release 2024; 372:587-608. [PMID: 38942083 DOI: 10.1016/j.jconrel.2024.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute 50-80% of stromal cells in most solid tumors with high mortality and poor prognosis. Tumor-infiltrating dendritic cells (TIDCs) and TAMs are key components mediating immune responses within the tumor microenvironment (TME). Considering their refractory properties, simultaneous remodeling of TAMs and TIDCs is a potential strategy of boosting tumor immunity and restoring immunosurveillance. In this study, mannose-decorated poly(lactic-co-glycolic acid) nanoparticles loading with R848 (Man-pD-PLGA-NP@R848) were prepared to dually target TAMs and TIDCs for efficient tumor immunotherapy. The three-dimensional (3D) cell culture model can simulate tumor growth as influenced by the TME and its 3D structural arrangement. Consequently, cancer spheroids enriched with tumor-associated macrophages (TAMs) were fabricated to assess the therapeutic effectiveness of Man-pD-PLGA-NP@R848. In the TME, Man-pD-PLGA-NP@R848 targeted both TAMs and TIDCs in a mannose receptor-mediated manner. Subsequently, Man-pD-PLGA-NP@R848 released R848 to activate Toll-like receptors 7 and 8, following dual-reprograming of TIDCs and TAMs. Man-pD-PLGA-NP@R848 could uniquely reprogram TAMs into antitumoral phenotypes, decrease angiogenesis, reprogram the immunosuppressive TME from "cold tumor" into "hot tumor", with high CD4+ and CD8+ T cell infiltration, and consequently hinder tumor development in B16F10 tumor-bearing mice. Therefore, dual-reprograming of TIDCs and TAMs with the Man-pD-PLGA-NP@R848 is a promising cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Bao-Toan Nguyen Dang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Felch KL, Crider JD, Bhattacharjee D, Huhn C, Wilson M, Bengtén E. TLR7 in channel catfish (Ictalurus punctatus) is expressed in the endolysosome and is stimulated by synthetic ssRNA analogs, imiquimod, and resiquimod. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105197. [PMID: 38763479 PMCID: PMC11234115 DOI: 10.1016/j.dci.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.
Collapse
Affiliation(s)
- Kristianna L Felch
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Jonathan D Crider
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Department of Biology, Belmont University, 1900 Belmont Blvd, 37212, Nashville, TN, USA.
| | - Debduti Bhattacharjee
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Cameron Huhn
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Melanie Wilson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| |
Collapse
|
6
|
Tong JF, Yu L, Gan RH, Shi LP, Bu SY, Gu Y, Wen X, Sun JL, Song FB, Zhou L, Gui JF, Luo J. Establishment and characterization of a golden pompano (Trachinotus blochii) fin cell line for applications in marine fish pathogen immunology. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109568. [PMID: 38636741 DOI: 10.1016/j.fsi.2024.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1β, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.
Collapse
Affiliation(s)
- Jin-Feng Tong
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Lang Yu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li-Ping Shi
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Shao-Yang Bu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Yue Gu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Xin Wen
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Jun-Long Sun
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Fei-Biao Song
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Luo
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Soleiman-Meigooni S, Yarahmadi A, Kheirkhah AH, Afkhami H. Recent advances in different interactions between toll-like receptors and hepatitis B infection: a review. Front Immunol 2024; 15:1363996. [PMID: 38545106 PMCID: PMC10965641 DOI: 10.3389/fimmu.2024.1363996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis B virus (HBV) B infections remain a primary global health concern. The immunopathology of the infection, specifically the interactions between HBV and the host immune system, remains somewhat unknown. It has been discovered that innate immune reactions are vital in eliminating HBV. Toll-like receptors (TLRs) are an essential category of proteins that detect pathogen-associated molecular patterns (PAMPs). They begin pathways of intracellular signals to stimulate pro-inflammatory and anti-inflammatory cytokines, thus forming adaptive immune reactions. HBV TLRs include TLR2, TLR3, TLR4, TLR7 and TLR9. Each TLR has its particular molecule to recognize; various TLRs impact HBV and play distinct roles in the pathogenesis of the disease. TLR gene polymorphisms may have an advantageous or disadvantageous efficacy on HBV infection, and some single nucleotide polymorphisms (SNPs) can influence the progression or prognosis of infection. Additionally, it has been discovered that similar SNPs in TLR genes might have varied effects on distinct populations due to stress, diet, and external physical variables. In addition, activation of TLR-interceded signaling pathways could suppress HBV replication and increase HBV-particular T-cell and B-cell reactions. By identifying these associated polymorphisms, we can efficiently advance the immune efficacy of vaccines. Additionally, this will enhance our capability to forecast the danger of HBV infection or the threat of dependent liver disease development via several TLR SNPs, thus playing a role in the inhibition, monitoring, and even treatment guidance for HBV infection. This review will show TLR polymorphisms, their influence on TLR signaling, and their associations with HBV diseases.
Collapse
Affiliation(s)
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Amir-Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Ramirez-Perez S, Vekariya R, Gautam S, Reyes-Perez IV, Drissi H, Bhattaram P. MyD88 dimerization inhibitor ST2825 targets the aggressiveness of synovial fibroblasts in rheumatoid arthritis patients. Arthritis Res Ther 2023; 25:180. [PMID: 37749630 PMCID: PMC10519089 DOI: 10.1186/s13075-023-03145-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Dimerization of the myeloid differentiation primary response 88 protein (MyD88) plays a pivotal role in the exacerbated response to innate immunity-dependent signaling in rheumatoid arthritis (RA). ST2825 is a highly specific inhibitor of MyD88 dimerization, previously shown to inhibit the pro-inflammatory gene expression in peripheral blood mononuclear cells from RA patients (RA PBMC). In this study, we elucidated the effect of disrupting MyD88 dimerization by ST2825 on the pathological properties of synovial fibroblasts from RA patients (RA SFs). METHODS RA SFs were treated with varying concentrations of ST2825 in the presence or absence of bacterial lipopolysaccharides (LPS) to activate innate immunity-dependent TLR signaling. The DNA content of the RA SFs was quantified by imaging cytometry to investigate the effect of ST2825 on different phases of the cell cycle and apoptosis. RNA-seq was used to assess the global response of the RA SF toward ST2825. The invasiveness of RA SFs in Matrigel matrices was measured in organoid cultures. SFs from osteoarthritis (OA SFs) patients and healthy dermal fibroblasts were used as controls. RESULTS ST2825 reduced the proliferation of SFs by arresting the cells in the G0/G1 phase of the cell cycle. In support of this finding, transcriptomic analysis by RNA-seq showed that ST2825 may have induced cell cycle arrest by primarily inhibiting the expression of critical cell cycle regulators Cyclin E2 and members of the E2F family transcription factors. Concurrently, ST2825 also downregulated the genes encoding for pain, inflammation, and joint catabolism mediators while upregulating the genes required for the translocation of nuclear proteins into the mitochondria and members of the mitochondrial respiratory complex 1. Finally, we demonstrated that ST2825 inhibited the invasiveness of RA SFs, by showing decreased migration of LPS-treated RA SFs in spheroid cultures. CONCLUSIONS The pathological properties of the RA SFs, in terms of their aberrant proliferation, increased invasiveness, upregulation of pain and inflammation mediators, and disruption of mitochondrial homeostasis, were attenuated by ST2825 treatment. Taken together with the previously reported anti-inflammatory effects of ST2825 in RA PBMC, this study strongly suggests that targeting MyD88 dimerization could mitigate both systemic and synovial pathologies in a variety of inflammatory arthritic diseases.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| | - Rushi Vekariya
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Surabhi Gautam
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Itzel Viridiana Reyes-Perez
- Department of Molecular Biology and Genomics, University Center for Health Science, University of Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| |
Collapse
|
9
|
Kim S, Park Y, Kim J, Kim S, Choi K, Kang T, Lee I, Lim YT, Um SH, Kim C. ProLonged Liposomal Delivery of TLR7/8 Agonist for Enhanced Cancer Vaccine. Vaccines (Basel) 2023; 11:1503. [PMID: 37766179 PMCID: PMC10538091 DOI: 10.3390/vaccines11091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite numerous studies on cancer treatment, cancer remains a challenging disease to cure, even after decades of research. In recent years, the cancer vaccine has emerged as a promising approach for cancer treatment, offering few unexpected side effects compared to existing therapies. However, the cancer vaccine faces obstacles to commercialization due to its low efficacy. Particularly, the Toll-like receptor (TLR) adjuvant system, specifically the TLR 7/8 agonist, has shown potential for activating Th1 immunity, which stimulates both innate and adaptive immune responses through T cells. In this study, we developed ProLNG-S, a cholesterol-conjugated form of resiquimod (R848), to enhance immune efficacy by stimulating the immune system and reducing toxicity. ProLNG-S was formulated as ProLNG-001, a positively charged liposome, and co-administered with ovalbumin (OVA) protein in the B16-OVA model. ProLNG-001 effectively targeted secondary lymphoid organs, resulting in a robust systemic anti-tumor immune response and tumor-specific T cell activation. Consequently, ProLNG-001 demonstrated potential for preventing tumor progression and improving survival compared to AS01 by enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Sehui Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
| | - Yeji Park
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
| | - Jeonghun Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Sohyun Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Kyungmin Choi
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Taegyun Kang
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Inho Lee
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Yong Taik Lim
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Chul Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| |
Collapse
|
10
|
Bian Y, Walter DL, Zhang C. Efficiency of Interferon-γ in Activating Dendritic Cells and Its Potential Synergy with Toll-like Receptor Agonists. Viruses 2023; 15:v15051198. [PMID: 37243284 DOI: 10.3390/v15051198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Interferon-γ (IFN-γ) is a cytokine that plays an important role in immune regulation, especially in the activation and differentiation of immune cells. Toll-like receptors (TLRs) are a family of pattern-recognition receptors that sense structural motifs related to pathogens and alert immune cells to the invasion. Both IFN-γ and TLR agonists have been used as immunoadjuvants to augment the efficacy of cancer immunotherapies and vaccines against infectious diseases or psychoactive compounds. In this study, we aimed to explore the potential of IFN-γ and TLR agonists being applied simultaneously to boost dendritic cell activation and the subsequent antigen presentation. In brief, murine dendritic cells were treated with IFN-γ and/or the TLR agonists, polyinosinic-polycytidylic acid (poly I:C), or resiquimod (R848). Next, the dendritic cells were stained for an activation marker, a cluster of differentiation 86 (CD86), and the percentage of CD86-positive cells was measured by flow cytometry. From the cytometric analysis, IFN-γ efficiently stimulated a considerable number of the dendritic cells, while the TLR agonists by themselves could merely activate a few compared to the control. The combination of IFN-γ with poly I:C or R848 triggered a higher amount of dendritic cell activation than IFN-γ alone. For instance, 10 ng/mL IFN-γ with 100 µg/mL poly I:C achieved 59.1% cell activation, which was significantly higher than the 33.4% CD86-positive cells obtained by 10 ng/mL IFN-γ. These results suggested that IFN-γ and TLR agonists could be applied as complementary systems to promote dendritic cell activation and antigen presentation. There might be a synergy between the two classes of molecules, but further investigation is warranted to ascertain the interaction of their promotive activities.
Collapse
Affiliation(s)
- Yuanzhi Bian
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Debra L Walter
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Chen X, Zhang P, Li P, Wang G, Li J, Wu Y, Cao Z, Zhou Y, Sun Y. CpG ODN 1668 as TLR9 agonist mediates humpback grouper (Cromileptes altivelis) antibacterial immune responses. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108839. [PMID: 37207883 DOI: 10.1016/j.fsi.2023.108839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Cromileptes altivelis (humpback grouper) is the main farmed species in the southern coastal area of China owing to its important economic value. Toll-like receptor 9 (TLR9) belongs to the toll-like receptor (TLR) family and functions as a pattern recognition receptor, recognising unmethylated oligodeoxynucleotides containing the CpG motif (CpG ODNs) in bacterial and viral genomes, thereby activating host immune response. In this study, the C. altivelis TLR9 (CaTLR9) ligand CpG ODN 1668 was screened and found to significantly enhance the antibacterial immunity of humpback grouper in vivo and head kidney lymphocytes (HKLs) in vitro. In addition, CpG ODN 1668 also promoted the cell proliferation and immune gene expression of HKLs and strengthened the phagocytosis activity of head kidney macrophages. However, when the CaTLR9 expression was knocked down in the humpback group, the expression levels of TLR9, myeloid differentiation factor 88 (Myd88), tumour necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-1β (IL-1β), IL-6, and IL-8 were significantly reduced, and the antibacterial immune effects induced by CpG ODN 1668 were mostly abolished. Therefore, CpG ODN 1668 induced antibacterial immune responses in a CaTLR9-dependent pathway. These results enhance the knowledge of the antibacterial immunity of fish TLR signalling pathways and have important implications for exploring natural antibacterial molecules in fish.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Panpan Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Guotao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianlong Li
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Chen X, Wu Y, Qiu Y, Li P, Cao Z, Zhou Y, Sun Y. CpG ODN 2102 promotes antibacterial immune responses and enhances vaccine-induced protection in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108783. [PMID: 37137380 DOI: 10.1016/j.fsi.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) are oligodeoxynucleotides containing CpG motifs and can be recognized by toll-like receptor 9 (TLR9), activating the host's immune responses. In this study, ten different CpG ODNs were designed and synthesized to study the antibacterial immune responses of CpG ODNs in golden pompano (Trachinotus ovatus). Results showed that CpG ODN 2102 significantly improved the immunity of golden pompano against bacteria. Besides, CpG ODN 2102 promoted the proliferation of head kidney lymphocytes and activated the head kidney macrophages. When TLR9-specific small interfering RNA (siRNA) was used to interfere with TLR9 expression, the immune responses were decreased. Moreover, the expression levels of myeloid differentiation primary response 88 (Myd88), p65, tumor necrosis factor receptor-associated factor 6 (TRAF6), and tumor necrosis factor-alpha (TNF-α) in the TLR9-knockdown golden pompano kidney (GPK) cells were significantly reduced. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) promoter activity of the TLR9-knockdown GPK cells was also significantly reduced. In vivo, the antibacterial immune effects induced by CpG ODN 2102 in golden pompano were mostly abolished when TLR9 expression was knocked down. These results suggested that TLR9 was involved in the immune responses induced by CpG ODN 2102. CpG ODN 2102 also enhanced the protective effect of the Vibrio harveyi vaccine pCTssJ, where the survival rate of golden pompano was significantly improved by 20%. In addition, CpG ODN 2102 enhanced the messenger RNA (mRNA) expression levels of TLR9, Myxovirus resistance (Mx), interferon γ (IFN-γ), TNF-α, interleukin (IL)-1β, IL-8, major histocompatibility complex class (MHC) Iα, MHC IIα, Immunoglobulin D (IgD), and IgM. Therefore, TLR9 was involved in the antibacterial immune responses induced by CpG ODN 2102 and CpG ODN 2102 possessed adjuvant immune effects. These results enlarged our knowledge of the antibacterial immunity of fish TLRs signaling pathway and had important implications for exploring natural antibacterial molecules in fish and developing new vaccine adjuvants.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yulin Qiu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
Boucher J, Rousseau A, Boucher C, Subra C, Bazié WW, Hubert A, Bourgeault E, Benmoussa A, Goyer B, Tessier PA, Gilbert C. Immune Cells Release MicroRNA-155 Enriched Extracellular Vesicles That Promote HIV-1 Infection. Cells 2023; 12:cells12030466. [PMID: 36766808 PMCID: PMC9914104 DOI: 10.3390/cells12030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The hallmark of HIV-1 infection is the rapid dysregulation of immune functions. Recent investigations for biomarkers of such dysregulation in people living with HIV (PLWH) reveal a strong correlation between viral rebound and immune activation with an increased abundance of extracellular vesicles (EVs) enriched with microRNA-155. We propose that the activation of peripheral blood mononuclear cells (PBMCs) leads to an increased miR-155 expression and production of miR-155-rich extracellular vesicles (miR-155-rich EVs), which can exacerbate HIV-1 infection by promoting viral replication. PBMCs were incubated with either HIV-1 (NL4.3Balenv), a TLR-7/8 agonist, or TNF. EVs were harvested from the cell culture supernatant by differential centrifugation, and RT-qPCR quantified miR-155 in cells and derived EVs. The effect of miR-155-rich EVs on replication of HIV-1 in incubated PBMCs was then measured by viral RNA and DNA quantification. HIV-1, TLR7/8 agonist, and TNF each induced the release of miR-155-rich EVs by PBMCs. These miR-155-rich EVs increased viral replication in PBMCs infected in vitro. Infection with HIV-1 and inflammation promote the production of miR-155-rich EVs, enhancing viral replication. Such autocrine loops, therefore, could influence the course of HIV-1 infection by promoting viral replication.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Alyssa Rousseau
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Catherine Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Caroline Subra
- U.S. Military HIV Research Program, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Wilfried W. Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Audrey Hubert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Emma Bourgeault
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Abderrahim Benmoussa
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Benjamin Goyer
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Philippe A. Tessier
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46107); Fax: +1-418-654-2765
| |
Collapse
|
14
|
Yin C, Cai J, Gou Y, Li D, Tang H, Wang L, Liu H, Luo B. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front Immunol 2023; 13:1078880. [PMID: 36713445 PMCID: PMC9876561 DOI: 10.3389/fimmu.2022.1078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- *Correspondence: Hui Liu, ; Bo Luo,
| | - Bo Luo
- *Correspondence: Hui Liu, ; Bo Luo,
| |
Collapse
|
15
|
Zhang Y, Feng Z, Liu J, Li H, Su Q, Zhang J, Huang P, Wang W, Liu J. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater 2022; 16:359-371. [PMID: 35386314 PMCID: PMC8965723 DOI: 10.1016/j.bioactmat.2021.12.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioresistance reduces the antitumor efficiency of radiotherapy and further restricts its clinical application, which is mainly caused by the aggravation of immunosuppressive tumor microenvironment (ITM). Especially tumor-associated macrophages (TAMs) usually display the tumor-promoting M2 phenotype during high-dose fractional radiotherapy mediating radiotherapy resistance. Herein, the toll like receptor agonist TLR7/8a was conjugated with radiosensitive peptide hydrogel (Smac-TLR7/8 hydrogel) to regulate TAMs repolarization from M2 type into M1 type, thus modulating the ITM and overcoming the radioresistance. The Smac-TLR7/8 hydrogel was fabricated through self-assembly with nanofibrous morphology, porous structure and excellent biocompatibility. Upon γ-ray radiation, Smac-TLR7/8 hydrogel effectively polarized the macrophages into M1 type. Notably, combined with radiotherapy, TAMs repolarization regulated by Smac-TLR7/8 hydrogel could increase tumor necrosis factor secretion, activate antitumor immune response and effectively inhibit tumor growth. Moreover, TAMs repolarization rebuilt the ITM and elicited the immunogenic phenotypes in solid tumors, thus enhanced the PD1-blockade efficacy through increasing tumor infiltrating lymphocytes (TILs) and decreasing Treg cells in two different immune activity tumor mice models. Overall, this study substantiated that recruiting and repolarization of TAMs were critical in eliciting antitumor immune response and overcoming radioresistance, thus improving the efficacy of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- Corresponding author.
| |
Collapse
|
16
|
Cao B, Chen Y, Cui J, Sun Y, Xu T. Zw10 negatively regulates the MyD88-mediated NF-κB signaling through autophagy in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104401. [PMID: 35339534 DOI: 10.1016/j.dci.2022.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
MyD88 is a typical street protein of the TLRs signaling pathway and is a central player in innate immune signaling, which can regulate the NF-κB signaling pathway and promote downstream inflammatory factors. However, studies on the molecular mechanisms of the MyD88-mediated NF-κB signaling pathway in teleosts have been poorly reported. In this study, we report that Zw10 targets MyD88 to inhibit NF-κB activation. Zw10 inhibits cell proliferation and MyD88-mediated innate immunity in fish. Zw10 interacts with MyD88, and its Δ2 domain is very critical for MyD88 degradation. In addition, we found that Zw10 degrade MyD88 by autophagy, thereby negatively regulating the MyD88-mediated NF-κB signaling pathway. This study not only enriches the research on the innate immunity of teleost fish, but also provides insights for the regulating mechanism for mammals.
Collapse
Affiliation(s)
- Baolan Cao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
17
|
Zhuang X, Chen L, Yang S, Xia S, Xu Z, Zhang T, Zeng B, Yu T, Yu N, Wang W, Lu H, Tian M, Jin N. R848 Adjuvant Laden With Self-Assembled Nanoparticle-Based mRNA Vaccine Elicits Protective Immunity Against H5N1 in Mice. Front Immunol 2022; 13:836274. [PMID: 35711431 PMCID: PMC9197463 DOI: 10.3389/fimmu.2022.836274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In order to perfect the design strategy of messenger RNA (mRNA) vaccines against the H5N1 influenza virus, we investigated whether different antigen designs and the use of adjuvants could improve the immune effect of mRNA vaccines. We designed three different forms of antigen genes, including Flu [H1/H3/H5/B-HA2(aa90~105)-M2e(24aa)], Flu-Fe (Fe, ferritin), and CD5-Flu-Fe (CD5, a secretion signal peptide). Meanwhile, R848 (Requimod) was selected as the adjuvant of the mRNA vaccine. We prepared cationic lipid nanoparticles for mRNA delivery, named LNP-Man (mannose-modified lipid nanoparticles). Cell transfection results showed that Flu-Fe/CD5-Flu-Fe containing ferritin could express the target antigens HA2 and M2e more efficiently than Flu. In the mice immune experiment, five immune groups (LNP-Man/Flu, LNP-Man/Flu-Fe, LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848) and two control groups (LNP-Man, PBS) were set up. After being infected with the 1×LD50 H5N1 avian influenza virus, the survival rate of the mice in the LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848 were 100%. More importantly, in LNP-Man/Flu-Fe+R848 and LNP-Man/CD5-Flu-Fe+R848 groups, there was no residual virus detected in the mice lung tissue on the 5th day postchallenge. Overall, this study provides a new idea for the design of H5N1 avian influenza virus mRNA vaccines in terms of antigen designs and adjuvant selection.
Collapse
Affiliation(s)
- Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luer Chen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songhui Yang
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Shengnan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Xu
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Tong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boyu Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|