1
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
3
|
Huang Y, Zheng W, Gan W, Zhang T. Chlamydia psittaci pneumonia: a clinical analysis of 12 patients. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:144. [PMID: 36846017 PMCID: PMC9951019 DOI: 10.21037/atm-22-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
Background We conducted a retrospective analysis to explore the clinical characteristics, laboratory examination, imaging features, treatment outcomes, and prognosis of the Chlamydia psittaci (C. psittaci) pneumonia, aiming to improve early diagnosis and treatment. Methods The clinical data of 12 patients with C. psittaci pneumonia diagnosed by metagenomic next-generation sequencing (mNGS) in our hospital were retrospectively analyzed. These data included baseline information, epidemiological history, clinical symptoms and signs, laboratory and chest computed tomography (CT) examination findings, treatment schemes, and prognosis. Results The average age of the 12 patients was 58.25±13.27 years, and there were 7 (58.3%) males and 5 (41.7%) females in this cohort. Five patients had clear exposure to poultry or birds. The main clinical manifestations included fever (12/12, 100.0%), cough (12/12, 100.0%), expectoration (10/12, 83.3%), and dyspnea (10/12, 83.3%). Laboratory examination showed marked elevation of the total white blood cell (WBC) count, neutrophil (NEUT) count, C-reactive protein (CRP), procalcitonin (PCT), D-dimer, aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine, and creatine kinase (CK) levels; as well as decreased hemoglobin (HGB), blood platelet (PLT), and albumin (ALB) levels. Arterial blood gas analysis showed that the average value of the oxygenation index (PO2/FiO2) was 290.9±83.1, which was less than 300 in 6 cases (50.0%). The main chest CT features were patchy or consolidation in the bilateral or unilateral lungs, and the boundary was not clear but showed a bronchial inflation sign. Also, some of the cases were accompanied by pleural effusion. Once the etiology was obtained, the patients were quickly treated with doxycycline combined with other antibiotics. All 12 patients improved and were discharged from the hospital. However, two severe patients were admitted to the intensive care unit (ICU) and received ventilation and monitoring treatment. There were no deaths. Conclusions C. psittaci pneumonia is an atypical community-acquired pneumonia (CAP) caused by C. psittaci infection, with its own laboratory and imaging characteristics. In this study, diagnosis was established based on the application of mNGS owing to the absence of easily available conventional pathogenic evidence. In addition, an aggressive and precise treatment strategy can help achieve a favorable prognosis for patients.
Collapse
Affiliation(s)
- Yubo Huang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenzheng Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenlei Gan
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Heinemann AS, Stalp JL, Bonifacio JPP, Silva F, Willers M, Heckmann J, Fehlhaber B, Völlger L, Raafat D, Normann N, Klos A, Hansen G, Schmolke M, Viemann D. Silent neonatal influenza A virus infection primes systemic antimicrobial immunity. Front Immunol 2023; 14:1072142. [PMID: 36761727 PMCID: PMC9902881 DOI: 10.3389/fimmu.2023.1072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.
Collapse
Affiliation(s)
- Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Filo Silva
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lena Völlger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Lanfermann C, Kohn M, Laudeley R, Rheinheimer C, Klos A. Chlamydia trachomatis Cross-Serovar Protection during Experimental Lung Reinfection in Mice. Vaccines (Basel) 2021; 9:vaccines9080871. [PMID: 34451996 PMCID: PMC8402589 DOI: 10.3390/vaccines9080871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Chlamydia trachomatis causes most bacterial sexually transmitted diseases worldwide. Different major outer membrane proteins (MOMPs) define various serovars of this intracellular pathogen: In women, D to L3 can cause urethritis, cervicitis, salpingitis, and oophoritis, and, thus, infertility. Protective immunity might be serovar-specific since chlamydial infection does not appear to induce an effective acquired immunity and reinfections occur. A better understanding of induced cross-serovar protection is essential for the selection of suitable antigens in vaccine development. In our mouse lung infection screening model, we evaluated the urogenital serovars D, E, and L2 in this regard. Seven weeks after primary infection or mock-infection, respectively, mice were infected a second time with the identical or one of the other serovars. Body weight and clinical score were monitored for 7 days. Near the peak of the second lung infection, bacterial load, myeloperoxidase, IFN-γ, and TNF-α in lung homogenate, as well as chlamydia-specific IgG levels in blood were determined. Surprisingly, compared with mice that were infected then for the first time, almost independent of the serovar combination used, all acquired parameters of disease were similarly diminished. Our reinfection study suggests that efficient cross-serovar protection could be achieved by a vaccine combining chlamydial antigens that do not include nonconserved MOMP regions.
Collapse
|