1
|
Cetinkaya PG, Abras IF, Evcili I, Yildirim T, Ceylan Y, Kara Eroglu F, Kayaoglu B, İpekoglu EM, Akarsu A, Yıldırım M, Kahraman T, Cengiz AB, Sahiner UM, Sekerel BE, Ozsurekci Y, Soyer O, Gursel I. Plasma Extracellular Vesicles Derived from Pediatric COVID-19 Patients Modulate Monocyte and T Cell Immune Responses Based on Disease Severity. Immunol Invest 2024; 53:1141-1175. [PMID: 39115924 DOI: 10.1080/08820139.2024.2385992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND The COVID-19 pandemic has caused significant morbidity and mortality globally. The role of plasma-derived extracellular vesicles (EVs) in pediatric COVID-19 patients remains unclear. METHODS We isolated EVs from healthy controls (n = 13) and pediatric COVID-19 patients (n = 104) with varying severity during acute and convalescent phases using serial ultracentrifugation. EV effects on healthy PBMCs, naïve CD4+ T cells, and monocytes were assessed through in vitro assays, flow cytometry, and ELISA. RESULTS Our findings indicate that COVID-19 severity correlates with diverse immune responses. Severe acute cases exhibited increased cytokine levels, decreased IFNγ levels, and lower CD4+ T cell and monocyte counts, suggesting immunosuppression. EVs from severe acute patients stimulated healthy cells to express higher PDL1, increased Th2 and Treg cells, reduced IFNγ secretion, and altered Th1/Th17 ratios. Patient-derived EVs significantly reduced proinflammatory cytokine production by monocytes (p < .001 for mild, p = .0025 for severe cases) and decreased CD4+ T cell (p = .043) and monocyte (p = .033) populations in stimulated healthy PBMCs. CONCLUSION This study reveals the complex relationship between immunological responses and EV-mediated effects, emphasizing the impact of COVID-19 severity. We highlight the potential role of plasma-derived EVs in early-stage immunosuppression in severe COVID-19 patients.
Collapse
Affiliation(s)
- Pınar Gur Cetinkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Fatma Abras
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Irem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugçe Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yasemin Ceylan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fehime Kara Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Başak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert İpekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Aysegul Akarsu
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ali Bülent Cengiz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Umit Murat Sahiner
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bulent Enis Sekerel
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Ozsurekci
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozge Soyer
- Division of Pediatric Allergy and Asthma, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
2
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
3
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients. Front Immunol 2024; 14:1329026. [PMID: 38250080 PMCID: PMC10797708 DOI: 10.3389/fimmu.2023.1329026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients. Methods Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively. Results We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. Conclusion SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Elizabeth S. C. P. Williams
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Marc Elgort
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Adam P. Barker
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Vicente Planelles
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Adam M. Spivak
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Julio C. Delgado
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Leo Lin
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Timothy M. Hanley
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced Monocyte Proportions and Responsiveness in Convalescent COVID-19 Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563806. [PMID: 37961575 PMCID: PMC10634809 DOI: 10.1101/2023.10.25.563806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and COVID-19 suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We investigated the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and non-classical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients and uninfected control subjects. We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. In conclusion, SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
|
5
|
Perli VAS, Sordi AF, Lemos MM, Fernandes JSA, Capucho VBN, Silva BF, de Paula Ramos S, Valdés-Badilla P, Mota J, Branco BHM. Body composition and cardiorespiratory fitness of overweight COVID-19 survivors in different severity degrees: a cohort study. Sci Rep 2023; 13:17615. [PMID: 37848529 PMCID: PMC10582021 DOI: 10.1038/s41598-023-44738-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
COVID-19 sequelae are varied, and whether they are temporary or permanent is still unknown. Identifying these sequelae may guide therapeutic strategies to improve these individuals' recovery. This prospective cohort aimed to assess body composition, cardiopulmonary fitness, and long-term symptoms of overweight individuals affected by COVID-19. Participants (n = 90) were divided into three groups according to the severity of acute COVID-19: mild (no hospitalization), moderate (hospitalization, without oxygen support), and severe/critical cases (hospitalized in Intensive Care Unit). We assessed body composition with a tetrapolar multifrequency bioimpedance, hemodynamic variables (heart rate, blood pressure, and peripheral oxygen saturation-SpO2) at rest, and the Bruce test with direct gas exchange. Two assessments with a one-year interval were performed. The most prevalent long-term symptoms were memory deficit (66.7%), lack of concentration (51.7%), fatigue (65.6%), and dyspnea (40%). Bruce test presented a time effect with an increase in the distance walked after 1 year just for severe/critical group (p < 0.05). SpO2 was significantly lower in the severe/critical group up to 5 min after the Bruce test when compared to the mild group, and diastolic blood pressure at the end of the Bruce test was significantly higher in the severe/critical group when compared to mild group (p < 0.05; for all comparisons). A time effect was observed for body composition, with increased lean mass, skeletal muscle mass, fat-free mass, and lean mass just for the severe/critical group after 1 year (p < 0.05). Cardiopulmonary fitness parameters did not differ among the groups, except for respiratory quotient with higher values for the severe/critical group when compared to itself after 1 year. All COVID-19 patients might present long-term sequelae, regardless of the acute disease severity. Reassessing and identifying the most prevalent long-term sequelae are essential to perform more precise health promotion interventions.
Collapse
Affiliation(s)
| | | | - Maurício Medeiros Lemos
- University Cesumar, Maringa, Parana, Brazil
- Graduate Program in Health Promotion, University Cesumar, Maringa, Paraná, Brazil
| | | | | | | | | | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar, Chile
| | - Jorge Mota
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center of Physical Activity, Health, and Leisure, Faculty of Sports, University of Porto, Porto, Portugal
| | - Braulio Henrique Magnani Branco
- University Cesumar, Maringa, Parana, Brazil.
- Graduate Program in Health Promotion, University Cesumar, Maringa, Paraná, Brazil.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center of Physical Activity, Health, and Leisure, Faculty of Sports, University of Porto, Porto, Portugal.
- Interdisciplinary Laboratory of Intervention in Health Promotion, Cesumar Institute of Science, Technology and Innovation, Avenida Guedner, 1610, Maringá, Paraná, Brazil.
| |
Collapse
|
6
|
Hamza M, Alhujaily M, Alosaimi B, El Bakkouri K, AlDughaim MS, Alonazi M, Alanazi MA, Abbass B, Alshehri A, Al-Shouli ST, Alturaiki W, Awadalla M. Association between inflammatory cytokines/chemokines, clinical laboratory parameters, disease severity and in-hospital mortality in critical and mild COVID-19 patients without comorbidities or immune-mediated diseases. J Immunoassay Immunochem 2023; 44:13-30. [PMID: 35915975 DOI: 10.1080/15321819.2022.2104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are limited data on inflammatory cytokines and chemokines; the humoral immune response; and main clinical laboratory parameters as indicators for disease severity and mortality in patients with critical and mild COVID-19 without comorbidities or immune-mediated diseases in Saudi Arabia. We determined the expression levels of major proinflammatory cytokines and chemokines; C-reactive protein (CRP); procalcitonin; SARS-CoV-2 IgM antibody and twenty-two clinical laboratory parameters and assessed their usefulness as indicators of disease severity and in-hospital death. Our results showed a significant increase in the expression levels of SARS-CoV-2 IgM antibody; IL1-β; IL-6; IL-8; TNF-α and CRP in critical COVID-19 patients; neutrophil count; urea; creatinine and troponin were also increased. The elevation of these biomarkers was significantly associated and positively correlated with in-hospital death in critical COVID-19 patients. Our results suggest that the levels of IL1-β; IL-6; IL-8; TNF-α; and CRP; neutrophil count; urea; creatinine; and troponin could be used to predict disease severity in COVID-19 patients without comorbidities or immune-mediated diseases. These inflammatory mediators could be used as predictive early biomarkers of COVID-19 disease deterioration; shock and death among COVID-19 patients without comorbidities or immune-mediated diseases.
Collapse
Affiliation(s)
- Muaawia Hamza
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia.,Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory, College of Applied Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia.,Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Karim El Bakkouri
- Department Project Manage; Microbiology Department, Laboratoire national de santé, Dudelange, Luxembourg
| | | | - Mona Alonazi
- Biochemistry Department, College of Science, King Saud University, Saudi Arabia
| | - Mona Awad Alanazi
- Second Health Cluster, Ministry of Healt, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Basma Abbass
- Department of Biological Sciences, College of Science, University of Jeddah, Saudi Arabia
| | - Abdulsalam Alshehri
- Second Health Cluster, Ministry of Healt, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Pathology department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | |
Collapse
|
7
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Siemińska I, Węglarczyk K, Surmiak M, Kurowska-Baran D, Sanak M, Siedlar M, Baran J. Mild and Asymptomatic COVID-19 Convalescents Present Long-Term Endotype of Immunosuppression Associated With Neutrophil Subsets Possessing Regulatory Functions. Front Immunol 2021; 12:748097. [PMID: 34659245 PMCID: PMC8511487 DOI: 10.3389/fimmu.2021.748097] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Kurowska-Baran
- Department of Clinical Microbiology, Laboratory of Virology and Serology, University Children’s Hospital, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|