1
|
Wu X, Shen T, Ji W, Huang M, Sima J, Li J, Song H, Xiong W, Cen M. lncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p. J Orthop Surg Res 2024; 19:757. [PMID: 39543626 PMCID: PMC11562309 DOI: 10.1186/s13018-024-05226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a pivotal role in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA-miRNA regulatory network. OBJECTIVES This research aimed to elucidate the role of lncRNA CASC11 in the delayed healing process of tibial fractures and to explore its potential regulatory mechanisms. MATERIALS AND METHODS The expression levels of CASC11 and miR-150-3p in serum samples were detected and the predictive capability of CASC11 regarding delayed healing in fracture patients. Furthermore, the study confirmed the accuracy of the binding sites between CASC11 and miR-150-3p. Subsequently, overexpression/interference plasmids of CASC11, along with overexpression plasmids co-transfected with both CASC11 and miR-150-3p, were systematically introduced into MC3T3-E1 cells to investigate their effects on the expression of osteogenic marker genes, as well as their influence on cellular proliferation and apoptosis. RESULTS The expression levels of CASC11 were significantly elevated, while miR-150-3p levels were markedly decreased in individuals exhibiting delayed fracture healing (P < 0.001). CASC11 was observed to suppress the expression of osteogenic marker genes, inhibit the proliferation of MC3T3-E1 cells, and promote cell apoptosis (P < 0.05). Furthermore, the overexpression of miR-150-3p effectively countered the inhibitory impact of CASC11 on osteogenic differentiation and the promoting effect on cell apoptosis (P < 0.05). CONCLUSION The sponging effect of CASC11 on miR-150-3p led to delayed fracture healing. CASC11 emerges as a potential target for treating delayed fracture healing.
Collapse
Affiliation(s)
- Xiaoming Wu
- Orthopedics, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Tuwang Shen
- Operating Room, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Wenjun Ji
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Miao Huang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jincheng Sima
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Hao Song
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Wei Xiong
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China.
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Youjiang District, Baise, Guangxi, 533000, China.
| |
Collapse
|
2
|
Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024; 22:478. [PMID: 39452886 PMCID: PMC11509156 DOI: 10.3390/md22100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.
Collapse
Affiliation(s)
- Maria Carpena
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Cláudia S. G. P. Pereira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Aurora Silva
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Barciela
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - A. Olivia S. Jorge
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Ana Perez-Vazquez
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Antia G. Pereira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| |
Collapse
|
3
|
Qiu F, Xie D, Chen H, Wang Z, Huang J, Cao C, Liang Y, Yang X, He DY, Fu X, Lu A, Liang C. Generation of cytotoxic aptamers specifically targeting fibroblast-like synoviocytes by CSCT-SELEX for treatment of rheumatoid arthritis. Ann Rheum Dis 2024:ard-2024-225565. [PMID: 39237134 DOI: 10.1136/ard-2024-225565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease characterised by aggressive fibroblast-like synoviocytes (FLSs). Very few RA patients-derived FLSs (RA-FLSs)-specific surface signatures have been identified, and there is currently no approved targeted therapy for RA-FLSs. This study aimed to screen therapeutic aptamers with cell-targeting and cytotoxic properties against RA-FLSs and to uncover the molecular targets and mechanism of action of the screened aptamers. METHODS We developed a cell-specific and cytotoxic systematic evolution of ligands by exponential enrichment (CSCT-SELEX) method to screen the therapeutic aptamers without prior knowledge of the surface signatures of RA-FLSs. The molecular targets and mechanisms of action of the screened aptamers were determined by pull-down assays and RNA sequencing. The therapeutic efficacy of the screened aptamers was examined in arthritic mouse models. RESULTS We obtained an aptamer SAPT8 that selectively recognised and killed RA-FLSs. The molecular target of SAPT8 was nucleolin (NCL), a shuttling protein overexpressed on the surface and involved in the tumor-like transformation of RA-FLSs. Mechanistically, SAPT8 interacted with the surface NCL and was internalised to achieve lysosomal degradation of NCL, leading to the upregulation of proapoptotic p53 and downregulation of antiapoptotic B-cell lymphoma 2 (Bcl-2) in RA-FLSs. When administrated systemically to arthritic mice, SAPT8 accumulated in the inflamed FLSs of joints. SAPT8 monotherapy or its combination with tumour necrosis factor (TNF)-targeted biologics was shown to relieve arthritis in mouse models. CONCLUSIONS CSCT-SELEX could be a promising strategy for developing cell-targeting and cytotoxic aptamers. SAPT8 aptamer selectively ablates RA-FLSs via modulating NCL-p53/Bcl-2 signalling, representing a potential alternative or complementary therapy for RA.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Xu Yang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong-Yi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
4
|
Zhai W, Zhao M, Wei C, Zhang G, Qi Y, Zhao A, Sun L. Biomarker profiling to determine clinical impact of microRNAs in cognitive disorders. Sci Rep 2024; 14:8270. [PMID: 38594359 PMCID: PMC11004146 DOI: 10.1038/s41598-024-58882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease (AD) and post-stroke cognitive impairment (PSCI) are the leading causes of progressive dementia related to neurodegenerative and cerebrovascular injuries in elderly populations. Despite decades of research, patients with these conditions still lack minimally invasive, low-cost, and effective diagnostic and treatment methods. MicroRNAs (miRNAs) play a vital role in AD and PSCI pathology. As they are easily obtained from patients, miRNAs are promising candidates for the diagnosis and treatment of these two disorders. In this study, we performed complete sequencing analysis of miRNAs from 24 participants, split evenly into the PSCI, post-stroke non-cognitive impairment (PSNCI), AD, and normal control (NC) groups. To screen for differentially expressed miRNAs (DE-miRNAs) in patients, we predicted their target genes using bioinformatics analysis. Our analyses identified miRNAs that can distinguish between the investigated disorders; several of them were novel and never previously reported. Their target genes play key roles in multiple signaling pathways that have potential to be modified as a clinical treatment. In conclusion, our study demonstrates the potential of miRNAs and their key target genes in disease management. Further in-depth investigations with larger sample sizes will contribute to the development of precise treatments for AD and PSCI.
Collapse
Affiliation(s)
- Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yiming Qi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Anguo Zhao
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Pan W, Yang B, He D, Chen L, Fu C. Functions and targets of miRNAs in pharmacological and toxicological effects of major components of Tripterygium wilfordii Hook F. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1997-2019. [PMID: 37831113 DOI: 10.1007/s00210-023-02764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Tripterygium wilfordii Hook F (TwHF) has a long history of use as a traditional Chinese medicine and has been widely administered to treat various inflammatory and autoimmune diseases. MicroRNAs (miRNAs) are endogenous, short, non-coding RNAs that regulate gene expression post-transcriptionally. They participate in the efficacies and even toxicities of the components of TwHF, rendering miRNAs an appealing therapeutic strategy. This review summarizes the recent literature related to the roles and mechanisms of miRNAs in the pharmacological and toxicological effects of main components of TwHF, focusing on two active compounds, triptolide (TP) and celastrol (CEL). Additionally, the prospects for the "You Gu Wu Yun" theory regarding TwHF nephrotoxicity are presented.
Collapse
Affiliation(s)
- Wei Pan
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bo Yang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Dongxiu He
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Chengxiao Fu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China.
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med 2023; 55:973-989. [PMID: 36905646 PMCID: PMC10795602 DOI: 10.1080/07853890.2023.2172605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and autoimmune disease that is mainly featured abnormal fibroblast-like synoviocyte (FLS) proliferation and inflammatory cell infiltration. Abnormal expression or function of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are closely related to human diseases, including RA. There has been increasing evidence showing that in the competitive endogenous RNA (ceRNA) networks, both lncRNA and circRNA are vital in the biological functions of cells. Nevertheless, the exact mechanism of ceRNA in RA remains to be investigated. Herein, we summarized the molecular potencies of lncRNA/circRNA-mediated ceRNA networks in RA, with emphasis on the phenotypic regulation of ceRNA in the progression of RA, including regulation of proliferation, invasion, inflammation and apoptosis, as well as the role of ceRNA in traditional Chinese medicine (TCM) in the treatment of RA. In addition, we also discussed the future direction and potential clinical value of ceRNA in the treatment of RA, which may provide potential reference value for clinical trials of TCM therapy for the treatment of RA.Key messagesLong noncoding RNA/circular RNA can work as the competitive endogenous RNA sponge and participate in the pathogenesis of rheumatoid arthritis.Traditional Chinese medicine and its agents have shown potential roles in the prevention and treatment of rheumatoid arthritis via competitive endogenous RNA.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Li W, Yan C, Du D, Ma Y. Bibliometric analysis of trends in research of Tripterygium wilfordii Hook F for treating rheumatoid arthritis. Medicine (Baltimore) 2023; 102:e36338. [PMID: 38013265 PMCID: PMC10681618 DOI: 10.1097/md.0000000000036338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tripterygium wilfordii Hook F (TwHF) has been widely used to relieve rheumatoid arthritis (RA) in many countries. However, a bibliometric analysis of published articles discussing this treatment has not been conducted. This study aimed to explore the current status and trends of TwHF for treating RA. Literature was extracted from the Science Citation Index Expanded Database of the Web of Science from January 1, 2013 to December 31, 2022. CiteSpace and the "bibliometrix" package were adopted to analyze the number of publications, countries, institutions, journals, authors, and keywords and to draw collaborative network maps. One hundred sixty-seven articles were identified. China has the most articles, followed by the United States. The China Academy of Chinese Medical Science had the study's most significant publications and the highest centrality. The author analysis combined with the analysis of the cited authors, the rank of Lin Na is in an important position. The Journal of Ethnopharmacology, Frontiers in Pharmacology has published the most relevant articles and is the hottest related journal. For keyword analysis, "classification," "criteria," "mechanism," and "methotrexate" were still being researched hot until 2022. Further investigation showed that "TNF-α," "proliferation," "endothelial growth factor," "NF-κB," and "collagen-induced arthritis" also remains research hotspot. Our results provide information on the research status, institutions, countries, authors, published journals, keywords related to using TwHF to treat RA, and theoretical support for further research.
Collapse
Affiliation(s)
- Wenyuan Li
- Geriatric Medical Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanzhu Yan
- Prevention and Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongqing Du
- Department of Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxia Ma
- Department of Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Shan Y, Zhao J, Wei K, Jiang P, Xu L, Chang C, Xu L, Shi Y, Zheng Y, Bian Y, Zhou M, Schrodi SJ, Guo S, He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14:1282610. [PMID: 38027004 PMCID: PMC10646552 DOI: 10.3389/fphar.2023.1282610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
10
|
miR-4478 Accelerates Nucleus Pulposus Cells Apoptosis Induced by Oxidative Stress by Targeting MTH1. Spine (Phila Pa 1976) 2023; 48:E54-E69. [PMID: 36130054 PMCID: PMC9897280 DOI: 10.1097/brs.0000000000004486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Low back pain is the leading cause of disability in the elderly population and is strongly associated with intervertebral disk degeneration (IVDD). However, the precise molecular mechanisms regulating IVDD remain elusive. This study aimed to investigate the role of differentially expressed miRNAs in the pathogenesis of IVDD. MATERIALS AND METHODS We analyzed miRNA microarray datasets to identify differentially expressed miRNAs in IVDD progression and conducted quantitative real-time polymerase chain reaction and fluorescence in situ hybridization analysis to further confirm the differential expression of miR-4478 in nucleus pulposus (NP) tissues of patients diagnosed with IVDD. Using public databases of miRNA-mRNA interactions, we predicted the target genes of miR-4478, and subsequent flow cytometry and western blot analyses demonstrated the effect of MTH1 in H 2 O 2 -induced nucleus pulposus cells (NPCs) apoptosis. Finally, miR-4478 inhibitor was injected into NP tissues of the IVDD mouse model to explore the effect of miR-4478 in vivo. RESULTS miR-4478 was upregulated in NP tissues from IVDD patients. Silencing of miR-4478 inhibits H 2 O 2 -induced NPCs apoptosis. MTH1 was identified as a target gene for miR-4478, and miR-4478 regulates H 2 O 2 -induced NPCs apoptosis by modulating MTH1. In addition, downregulation of miR-4478 alleviated IVDD in a mouse model. CONCLUSIONS In summary, our study provides evidence that miR-4478 may aggravate IVDD through its target gene MTH1 by accelerating oxidative stress in NPCs and demonstrates that miR-4478 has therapeutic potential in IVDD treatment.
Collapse
|
11
|
Tu Y, Wang L, Wang X, Wu W, Tu Y, Zou D, Deng Y, Qi J, Cao C, Xu D, Chai Y, Zhu Y, Zhang J, Sun J, Lai F, He L. LncRNA-WAKMAR2 regulates expression of CLDN1 to affect skin barrier through recruiting c-Fos. Contact Dermatitis 2023; 88:188-200. [PMID: 36461623 DOI: 10.1111/cod.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/31/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is an immune-mediated photo-allergic skin disease. In the clinic, the treatment of this disease is hampered by the lack of proper understanding of the skin barrier dysfunction mechanism. OBJECTIVE To illuminate the mechanism of skin barrier dysfunction in CAD. METHODS Transcriptome sequencing and protein profiling were used to detect skin barrier injury-related genes. RNA pull down, a promoter-reporter gene assay, and chromatin isolation by RNA purification-sequencing were used to elucidate the effect of WAKMAR2 in skin barrier functionality. RESULTS Transcriptome sequencing from patient's tissues showed a significantly decreased expression of WAKMAR2. Down-regulation of WAKMAR2 destroyed the keratinocyte barrier. Moreover, WAKMAR2 can directly bind to the c-Fos protein. This novel long non-coding RNA (LncRNA)-protein complexes were targeted to the CLDN1 promotor. Overexpression of WAKMAR2 enhanced the promoter activity of CLDN1, while the addition of AP-1 inhibitor could reverse this phenomenon. Furthermore, our in vivo results suggested that expression of WAKMAR2 was required for the repair of skin damage in mice induced by ultraviolet irradiation. CONCLUSIONS We identified a crucial LncRNA (WAKMAR2) for the protection of the skin barrier in vitro and in vivo. Mechanically, it can specifically interact with c-Fos protein for the regulation of CLDN1, a finding which could be applied for CAD treatment.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guiyang, China
| | - Li Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoli Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Can Cao
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|
13
|
An intersectional analysis of LncRNAs and mRNAs reveals the potential therapeutic targets of Bi Zhong Xiao Decoction in collagen-induced arthritis rats. Chin Med 2022; 17:110. [PMID: 36109779 PMCID: PMC9479270 DOI: 10.1186/s13020-022-00670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Bi Zhong Xiao decoction (BZXD), a traditional Chinese herbal formula, has been used clinically for many years to treat rheumatoid arthritis (RA). Both clinical and experimental studies have revealed that BZXD is effective in treating RA, but the mechanism remains unclear. In this study, we aimed to explore the mechanism of efficacy of BZXD through transcriptomic analysis of lncRNA and mRNA. Methods The combination method of ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry was used to assess the quality of BZXD. The efficacy of BZXD in treating collagen-induced arthritis (CIA) was evaluated by clinical assessment, weight changes, hematoxylin–eosin and safranin o-fast green staining, and Micro-CT. Arraystar rat lncRNA-mRNA chip technology was used to determine the lncRNA and mRNA expression profiles of the Control, CIA and BZXD groups, and to screen gene expression profiles related to the curative effect of BZXD. A lncRNA-mRNA co-expression network was constructed for the therapeutic efficacy genes. Through GO function and KEGG pathway enrichment analysis, the biological functions and signaling pathways of therapeutic efficacy genes were determined. Based on fold change and functional annotation, key differentially expressed lncRNAs and mRNAs were selected for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. The functions of lncRNAs targeting mRNAs were verified in vitro. Results We demonstrated that BZXD could effectively reverse bone erosion. After BZXD treatment, up to 33 lncRNAs and 107 mRNAs differentially expressed genes were reversely regulated by BZXD. These differentially expressed lncRNAs are mainly involved in the biological process of the immune response and are closely related to the ECM-receptor interaction, MAPK signaling pathway, Focal adhesion, Ras signaling pathway, Antigen processing and presentation, and Chemokine signaling pathway. We identified four lncRNAs (uc.361−, ENSRNOT00000092834, ENSRNOT00000089244, ENSRNOT00000084631) and three mRNAs (Acvr2a, Cbx2, Morc4) as potential therapeutic targets for BZXD and their microarray data consistent with the RT-qPCR. In vitro experiments confirmed that silencing the lncRNAs ENSRNOT00000092834 and ENSRNOT00000084631 reversed the expression of target mRNAs. Conclusions This study elucidates the possible mechanism of BZXD reversing bone erosion in CIA rats from the perspective of lncRNA and mRNA. To provide a basis and direction for further exploration of the mechanism of BZXD in treating RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00670-z.
Collapse
|
14
|
Wang R, Li H, Han Y, Li L. Knockdown of circ_0025908 inhibits proliferation, migration, invasion, and inflammation while stimulates apoptosis in fibroblast-like synoviocytes by regulating miR-650-dependent SCUBE2. Autoimmunity 2022; 55:473-484. [PMID: 35904110 DOI: 10.1080/08916934.2022.2102164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are demonstrated to play vital roles in human diseases, including rheumatoid arthritis (RA). Therefore, this research aimed to explore the effects of hsa_circRNA_0025908 (circ_0025908) on RA. METHODS RNA expression of circ_0025908, microRNA-650 (miR-650), and Signal peptide-CUBepidermal growth factor-like containing protein 2 (SCUBE2) were assessed by real-time quantitative polymerase chain reaction; protein expression of SCUBE2, apoptosis- and invasion-related proteins was evaluated by western blot assay. Functional assays were performed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometry, and enzyme linked immunosorbent assay assays. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays confirmed the interaction relationship among circ_0025908, miR-650, and SCUBE2. RESULTS Circ_0025908 was overexpressed in synovial tissues and fibroblast-like synoviocytes (FLS) from RA patients. Inhibition of circ_0025908 repressed proliferation, migration, invasion, inflammation, and cell cycle progression, while induced apoptosis in the FLS isolated from RA patients (FLS-RA), accompanied with increased Bax, cleaved caspase-3 and E-cadherin, but declined Bcl-2, N-cadherin and Vimentin. MiR-650 was a target of circ_0025908, and SCUBE2 was a target for miR-650. Silencing of miR-650 could overturned above effects of circ_0025908 knockdown in FLS-RA, whereas its overexpression could mimic those effects by downregulating SCUBE2. Additionally, SCUBE2 expression could be positively regulated by circ_0025908 and inversely regulated by miR-650. Notably, Pearson's correlation analysis confirmed the linear correlation among circ_0025908, miR-650 and SCUBE2 in these RA tissues. CONCLUSION Circ_0025908 inhibition can suppress FLS-RA dysfunctions through targeting miR-650/SCUBE2 axis, suggesting a new potential therapeutic clue for RA patients.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Rheumatology and Immunology, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Hongbo Li
- Department of Anesthesiology, Weifang People's Hospital, Weifang, China
| | - Yunning Han
- Department of Pain, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Li
- Department of Pain, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Jiang P, Wei K, Chang C, Zhao J, Zhang R, Xu L, Jin Y, Xu L, Shi Y, Guo S, Schrodi SJ, He D. SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol 2022; 13:903475. [PMID: 35795672 PMCID: PMC9251540 DOI: 10.3389/fimmu.2022.903475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/β-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
17
|
Guo X, Zhang J, Han X, Wang G. LncRNA SNHG1 Delayed Fracture Healing via Modulating miR-181a-5p/PTEN Axis. J INVEST SURG 2022; 35:1304-1312. [PMID: 35263556 DOI: 10.1080/08941939.2022.2048926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiuquan Guo
- Department of Spinal Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| | - Jialiang Zhang
- Zhucheng Linjia Village Central Health Center, Weifang, Shandong, China
| | - Xuemei Han
- Zhucheng Longdu Health Center, Weifang, Shandong, China
| | - Ganggang Wang
- Department of Hand and Foot Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
18
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
19
|
Fu Q, Song MJ, Fang J. LncRNA OSER1-AS1 regulates the inflammation and apoptosis of rheumatoid arthritis fibroblast like synoviocytes via regulating miR-1298-5p/E2F1 axis. Bioengineered 2022; 13:4951-4963. [PMID: 35164656 PMCID: PMC8974142 DOI: 10.1080/21655979.2022.2037854] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been reported that long noncoding RNAs (LncRNAs) take part in the progression and occurrence of rheumatoid arthritis (RA). The current work aimed to dig the effect of lncRNA OSER1-AS1 on RA and the associated mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was made to decide that OSER1-AS1 was significantly lowly expressed in synovial tissue and serum of RA patients, which was consistent in RA-FLSs cell lines. The result of ROC curve indicated that OSER1-AS1 could be a diagnostic biomarker for RA patients. Cell Counting Kit-8 assay (CCK-8), EdU staining and flow cytometry were performed to explore the effect of OSER1-AS1 on RA-FLSs in vitro. Relative levels of interleukin-1 (IL-1), interleukin-6 (IL-6), matrix metalloproteinases-3 (MMP-3) were detected by ELISA and the result displayed that overexpression of OSER1-AS1 inhibited RA-induced inflammatory production of IL-1, IL-6 and MMP3. Bioinformatics analysis, luciferase reporter, RNA immunoprecipitation assays (RIP) and RNA pull-down assay were conducted to confirm the binding between microRNA-1298-5p (miR-1298-5p) and OSER1-AS1 or E2F transcription factor 1 (E2F1). Mechanistically, OSER1-AS1 serves as a competing endogenous (ceRNA) in RA-FLSs through the sponge of miR-1298-5p and increase in the expression of E2F1. Further restoration experiments revealed that miR-1298-5p mimics and E2F1 silencing could partially reverse the inhibiting effect of OSER1-AS1 overexpression on propagation and apoptosis in RA-FLSs. The results illustrated the biological mechanism of OSER1-AS1/miR-1298-59/E2F1 axis in RA progression. The outcomes indicated that OSER1-AS1 might be adopted as a hopeful diagnostic and therapeutic objective for RA.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Rheumatology and Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Jie Song
- Department of Rheumatology and Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Jing Fang
- Geriatric Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|