1
|
Van Roy Z, Arumugam P, Bertrand BP, Shinde DD, Thomas VC, Kielian T. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat Commun 2024; 15:8965. [PMID: 39420209 PMCID: PMC11487069 DOI: 10.1038/s41467-024-53353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Infection is a devastating post-surgical complication, often requiring additional procedures and prolonged antibiotic therapy. This is especially relevant for craniotomy and prosthetic joint infections (PJI), both of which are characterized by biofilm formation on the bone or implant surface, respectively, with S. aureus representing a primary cause. The local tissue microenvironment likely has profound effects on immune attributes that can influence treatment efficacy, which becomes critical to consider when developing therapeutics for biofilm infections. However, the extent to which distinct tissue niches influence immune function during biofilm development remains relatively unknown. To address this, we compare the metabolomic, transcriptomic, and functional attributes of leukocytes in mouse models of S. aureus craniotomy and PJI complemented with patient samples from both infection modalities, which reveals profound tissue niche-dependent differences in nucleic acid, amino acid, and lipid metabolism with links to immune modulation. These signatures are both spatially and temporally distinct, differing not only between infection sites but evolving over time within a single model. Collectively, this demonstrates that biofilms elicit unique immune and metabolic responses that are heavily influenced by the local tissue microenvironment, which will likely have important implications when designing therapeutic approaches targeting these infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prabakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhananjay D Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinai C Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Van Roy Z, Kak G, Korshoj LE, Menousek JP, Heim CE, Fallet RW, Campbell JR, Geary CR, Liu B, Gorantla S, Poluektova LY, Duan B, Campbell WS, Thorell WE, Kielian T. Single-cell profiling reveals a conserved role for hypoxia-inducible factor signaling during human craniotomy infection. Cell Rep Med 2024:101790. [PMID: 39426374 DOI: 10.1016/j.xcrm.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Neurosurgeries complicated by infection are associated with prolonged treatment and significant morbidity. Craniotomy is a common neurosurgical procedure; however, the cellular and molecular signatures associated with craniotomy infection in human subjects are unknown. A retrospective study of over 2,500 craniotomies reveals diverse patient demographics, pathogen identity, and surgical landscapes associated with infection. Leukocyte profiling in patient tissues from craniotomy infection characterizes a predominance of granulocytic myeloid-derived suppressor cells that may arise from transmigrated blood neutrophils, based on single-cell RNA sequencing (scRNA-seq) trajectory analysis. Single-cell transcriptomic analysis identifies metabolic shifts in tissue leukocytes, including a conserved hypoxia-inducible factor (HIF) signature. The importance of HIF signaling was validated using a mouse model of Staphylococcus aureus craniotomy infection, where HIF inhibition increases chemokine production and leukocyte recruitment, exacerbating tissue pathology. These findings establish conserved metabolic and transcriptional signatures that may represent promising future therapeutic targets for human craniotomy infection in the face of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James R Campbell
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol R Geary
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - W Scott Campbell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - William E Thorell
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Dong Z, Han K, Xie Q, Lin C, Shen X, Hao Y, Li J, Xu H, He L, Yu T, Kuang W. Core antibiotic resistance genes mediate gut microbiota to intervene in the treatment of major depressive disorder. J Affect Disord 2024; 363:507-519. [PMID: 39033825 DOI: 10.1016/j.jad.2024.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The relationship between depression and gut microbiota remains unclear, but an important role of gut microbiota has been verified. The relationship between gut microbiota and antibiotic resistance genes (ARGs) may be a potential new explanatory pathway. METHODS We collected samples from 63 depressed patients and 30 healthy controls for metagenomic sequencing. The two groups' microbiota characteristics, functional characteristics, and ARG differences were analyzed. RESULTS We obtained 30 differential KEGG orthologs (KOs) and their producers in 5 genera and 7 species by HUMAnN3. We found 6 KOs from Weissella_cibaria and Lactobacillus_plantaru are potentially coring functional mechanism of gut microbiota. Different metabolites including sphingolipids, pyrans, prenol lipids, and isoflavonoids also showed significance between MDD and HC. We detected 48 significantly different ARGs: 5 ARGs up-regulated and 43 ARGs down-regulated in MDD compared to HC. Based on Cox model results, Three ARGs significantly affected drug efficacy (ARG29, ARG105, and ARG111). Eggerthella, Weissella, and Lactobacillus were correlated with different core ARGs, which indicated different mechanisms in affecting MDD. LIMITATIONS The present study needs to be replicated in different ethnic groups. At the same time, a larger Chinese cohort study and detailed experimental verification are also the key to further discussion. CONCLUSION Our findings suggest that ARGs play a role in the interplay between major depressive disorder and gut microbiota. The role of ARGs should be taken into account when understanding the relationship between depression and gut microbiota.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Qinglian Xie
- Department of outpatient, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chunting Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Xiaoling Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanni Hao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jin Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Haizhen Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai 200062, PR China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Van Roy Z, Kielian T. Tumor necrosis factor regulates leukocyte recruitment but not bacterial persistence during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2024; 21:179. [PMID: 39044282 PMCID: PMC11264501 DOI: 10.1186/s12974-024-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
5
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
6
|
Peng Q, Wang L, Yu C, Chu X, Zhu B. Diagnostic value of serum NLRP3, metalloproteinase-9 and interferon-γ for postoperative hydrocephalus and intracranial infection in patients with severe craniocerebral trauma. Exp Physiol 2024; 109:956-965. [PMID: 38643470 PMCID: PMC11140164 DOI: 10.1113/ep091463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality globally. We unveiled the diagnostic value of serum NLRP3, metalloproteinase-9 (MMP-9) and interferon-γ (IFN-γ) levels in post-craniotomy intracranial infections and hydrocephalus in patients with severe craniocerebral trauma to investigate the high risk factors for these in patients with TBI, and the serological factors predicting prognosis, which had a certain clinical predictive value. Study subjects underwent bone flap resection surgery and were categorized into the intracranial infection/hydrocephalus/control (without postoperative hydrocephalus or intracranial infection) groups, with their clinical data documented. Serum levels of NLRP3, MMP-9 and IFN-γ were determined using ELISA kits, with their diagnostic efficacy on intracranial infections and hydrocephalus evaluated by receiver operating characteristic curve analysis. The independent risk factors affecting postoperative intracranial infections and hydrocephalus were analysed by logistic multifactorial regression. The remission after postoperative symptomatic treatment was counted. The intracranial infection/control groups had significant differences in Glasgow Coma Scale (GCS) scores, opened injury, surgical time and cerebrospinal fluid leakage, whereas the hydrocephalus and control groups had marked differences in GCS scores, cerebrospinal fluid leakage and subdural effusion. Serum NLRP3, MMP-9 and IFN-γ levels were elevated in patients with post-craniotomy intracranial infections/hydrocephalus. The area under the curve values of independent serum NLRP3, MMP-9, IFN-γ and their combination for diagnosing postoperative intracranial infection were 0.822, 0.722, 0.734 and 0.925, respectively, and for diagnosing hydrocephalus were 0.865, 0.828, 0.782 and 0.957, respectively. Serum NLRP3, MMP-9 and IFN-γ levels and serum NLRP3 and MMP-9 levels were independent risk factors influencing postoperative intracranial infection and postoperative hydrocephalus, respectively. Patients with hydrocephalus had a high remission rate after postoperative symptomatic treatment. Serum NLRP3, MMP-9 and IFN-γ levels had high diagnostic efficacy in patients with postoperative intracranial infection and hydrocephalus, among which serum NLRP3 level played a major role.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Emergency CenterThe Second Affiliated Hospital of Nantong University (Nantong First People's Hospital)NantongJiangsuChina
| | - Lei Wang
- Department of Emergency CenterThe Second Affiliated Hospital of Nantong University (Nantong First People's Hospital)NantongJiangsuChina
| | - Chun‐Mei Yu
- Department of Emergency CenterThe Second Affiliated Hospital of Nantong University (Nantong First People's Hospital)NantongJiangsuChina
| | - Xin Chu
- Department of Emergency CenterThe Second Affiliated Hospital of Nantong University (Nantong First People's Hospital)NantongJiangsuChina
| | - Bao‐Feng Zhu
- Department of Emergency CenterThe Second Affiliated Hospital of Nantong University (Nantong First People's Hospital)NantongJiangsuChina
| |
Collapse
|
7
|
Zhang R, Niu J. Early Identification of Correlated Risk Factors can Improve the Prognosis of Patients with Postoperative Intracranial Infection. J Neurol Surg A Cent Eur Neurosurg 2024; 85:233-239. [PMID: 36070791 DOI: 10.1055/a-1938-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND In this retrospective study, we explore the clinical risk factors correlated to the prognosis of patients who suffered from central nervous system infection after a neurosurgical procedure. METHODS The study included 113 patients diagnosed with a postoperative intracranial infection. Several factors with clinical relevance were identified and analyzed by univariate analyses. The risk factors that showed any significant difference between the cases were analyzed by multivariate logistic regression analyses. RESULTS Here we show that the duration of the drainage before infection (measured in days; Beta [B]: -0.113; odds ratio [OR]: 0.893; 95% confidence interval [CI]: 0.805-0.991; p = 0.033), the number of antibiotics used for the treatment (B: -1.470; OR: 0.230; 95% CI: 0.072-0.738; p = 0.013), and the number of leucocytes in the cerebrospinal fluid (CSF; B: -0.016; OR: 0.984; 95% CI: 0.970-0.998; p = 0.027) are risk factors for the prognosis of patients with an intracranial infection. In contrast, the duration of antibiotic treatment (measured in days; B: 0.176; OR: 1.193; 95% CI: 1.063-1.339; p = 0.003) turned out to be a positive factor for recovery from infection. CONCLUSIONS Our results suggest that early identification of the correlated risk factors can improve the prognosis of patients with intracranial infection after neurosurgery.
Collapse
Affiliation(s)
- Rongfang Zhang
- Nursing Department, Henan Vocational College of Nursing, Anyang, Henan, China
| | - Jiangtao Niu
- Neurosurgery Department, Anyang People's Hospital, Anyang, China
| |
Collapse
|
8
|
Dechaene V, Gallet C, Soueges S, Liu L, Delabar V, Adélaïde L, Jarraud S, Dauwalder O, Jouanneau E, Wan M, Jacquesson T, Guyotat J, Conrad A, Triffault-Fillit C, Ferry T, Valour F. Diagnostic, clinical management, and outcome of bone flap-related osteomyelitis after cranioplasty. Int J Infect Dis 2023; 137:48-54. [PMID: 37839505 DOI: 10.1016/j.ijid.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVES We aimed to describe diagnostic, management, and outcome of bone flap-related osteomyelitis after cranioplasty. METHODS Patients followed up in our tertiary care hospital for bone flap-related osteomyelitis after cranioplasty were included in a retrospective cohort (2008-2021). Determinants of treatment failure were assessed using logistic regression and Kaplan-Meier curves analysis. RESULTS The 144 included patients (81 [56.3%] males; median age 53.4 [interquartile range [IQR], 42.6-62.5] years) mostly presented wound abnormalities (n = 115, 79.9%). All infections were documented, the main pathogens being Staphylococcus aureus (n = 64, 44.4%), Cutibacterium acnes (n = 57, 39.6%), gram-negative bacilli (n = 40, 27.8%) and/or non-aureus staphylococci (n = 34, 23.6%). Surgery was performed in 140 (97.2%) cases, for bone flap removal (n = 102, 72.9%) or debridement with flap retention (n = 31, 22.1%), along with 12.7 (IQR, 8.0-14.0) weeks of antimicrobial therapy. After a follow-up of 117.1 (IQR, 62.5-235.5) weeks, 37 (26.1%) failures were observed: 16 (43.2%) infection persistence, three (8.1%) relapses, 22 (59.5%) superinfections and/or two (1.7%) infection-related deaths. Excluding superinfections, determinants of the 19 (13.4%) specific failures were an index craniectomy for brain tumor (odds ratio = 4.038, P = 0.033) and curettage of bone edges (odds ratio = 0.342, P = 0.048). CONCLUSION Post-craniectomy bone flap osteomyelitis are difficult-to-treat infection, necessitating prolonged antimicrobial therapy with appropriate surgical debridement, and advocating for multidisciplinary management in dedicated reference centers.
Collapse
Affiliation(s)
- Victor Dechaene
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France
| | - Clémentine Gallet
- Department of Neurosurgery D, Tumoral and Vascular Malformation Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Sarah Soueges
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France
| | - Lannie Liu
- Department of Neurosurgery B, Skull Base Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Violaine Delabar
- Department of Neurosurgery B, Skull Base Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Léopold Adélaïde
- Department of Infectious Diseases, Lucien Husset Hospital, Vienne, France
| | - Sophie Jarraud
- 24/24 Microbiology Plateforme, Infectious Agent Institute, Centre de Biologie et Pathologie Nord, Hospices Civils de Lyon, Lyon, France; CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Olivier Dauwalder
- 24/24 Microbiology Plateforme, Infectious Agent Institute, Centre de Biologie et Pathologie Nord, Hospices Civils de Lyon, Lyon, France; CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Emmanuel Jouanneau
- Department of Neurosurgery B, Skull Base Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Marie Wan
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France
| | - Timothée Jacquesson
- Department of Neurosurgery B, Skull Base Surgery Unit, Hospices Civils de Lyon, Lyon, France; Department of Anatomy, University of Lyon 1, Lyon, France; CREATIS Laboratory, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Lyon, France
| | - Jacques Guyotat
- Department of Neurosurgery D, Tumoral and Vascular Malformation Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Anne Conrad
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France; CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Claire Triffault-Fillit
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France; CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Florent Valour
- Department of Infectious Diseases, Reference Center for the Management of Complex Bone and Joint Infections (CRIOAc, Lyon), Hospices Civils de Lyon, Lyon, France; CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.
| |
Collapse
|
9
|
Kozioł A, Pupek M, Lewandowski Ł. Application of metabolomics in diagnostics and differentiation of meningitis: A narrative review with a critical approach to the literature. Biomed Pharmacother 2023; 168:115685. [PMID: 37837878 DOI: 10.1016/j.biopha.2023.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Due to its high mortality rate associated with various life-threatening sequelae, meningitis poses a vital problem in contemporary medicine. Numerous algorithms, many of which were derived with the aid of artificial intelligence, were brought up in a strive for perfection in predicting the status of sepsis-related survival or exacerbation. This review aims to provide key insights on the contextual utilization of metabolomics. The aim of this the metabolomic approach set of methods can be used to investigate both bacterial and host metabolite sets from both the host and its microbes in several types of specimens - even in one's breath, mainly with use of two methods - Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR). Metabolomics, and has been used to elucidate the mechanisms underlying disease development and metabolic identification changes in a wide range of metabolite contents, leading to improved methods of diagnosis, treatment, and prognosis of meningitis. Mass spectrometry (MS) and Nuclear Magnetic Resonance (NMR) are the main analytical platforms used in metabolomics. Its high sensitivity accounts for the usefulness of metabolomics in studies into meningitis, its sequelae, and concomitant comorbidities. Metabolomics approaches are a double-edged sword, due to not only their flexibility, but also - high complexity, as even minor changes in the multi-step methods can have a massive impact on the results. Information on the differential diagnosis of meningitis act as a background in presenting the merits and drawbacks of the use of metabolomics in context of meningeal infections.
Collapse
Affiliation(s)
- Agata Kozioł
- Department of Immunochemistry and Chemistry, Wrocław Medical University, M. Skłodowskiej-Curie Street 48/50, 50-369 Wrocław, Poland
| | - Małgorzata Pupek
- Department of Immunochemistry and Chemistry, Wrocław Medical University, M. Skłodowskiej-Curie Street 48/50, 50-369 Wrocław, Poland.
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wrocław Medical University, T. Chałubińskiego Street 10, 50-368 Wrocław, Poland
| |
Collapse
|
10
|
Van Roy Z, Shi W, Kak G, Duan B, Kielian T. Epigenetic Regulation of Leukocyte Inflammatory Mediator Production Dictates Staphylococcus aureus Craniotomy Infection Outcome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:414-428. [PMID: 37314520 PMCID: PMC10524781 DOI: 10.4049/jimmunol.2300050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus is a common cause of surgical-site infections, including those arising after craniotomy, which is performed to access the brain for the treatment of tumors, epilepsy, or hemorrhage. Craniotomy infection is characterized by complex spatial and temporal dynamics of leukocyte recruitment and microglial activation. We recently identified unique transcriptional profiles of these immune populations during S. aureus craniotomy infection. Epigenetic processes allow rapid and reversible control over gene transcription; however, little is known about how epigenetic pathways influence immunity to live S. aureus. An epigenetic compound library screen identified bromodomain and extraterminal domain-containing (BET) proteins and histone deacetylases (HDACs) as critical for regulating TNF, IL-6, IL-10, and CCL2 production by primary mouse microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in response to live S. aureus. Class I HDACs (c1HDACs) were increased in these cell types in vitro and in vivo during acute disease in a mouse model of S. aureus craniotomy infection. However, substantial reductions in c1HDACs were observed during chronic infection, highlighting temporal regulation and the importance of the tissue microenvironment for dictating c1HDAC expression. Microparticle delivery of HDAC and BET inhibitors in vivo caused widespread decreases in inflammatory mediator production, which significantly increased bacterial burden in the brain, galea, and bone flap. These findings identify histone acetylation as an important mechanism for regulating cytokine and chemokine production across diverse immune cell lineages that is critical for bacterial containment. Accordingly, aberrant epigenetic regulation may be important for promoting S. aureus persistence during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
11
|
Kak G, Van Roy Z, Heim CE, Fallet RW, Shi W, Roers A, Duan B, Kielian T. IL-10 production by granulocytes promotes Staphylococcus aureus craniotomy infection. J Neuroinflammation 2023; 20:114. [PMID: 37179295 PMCID: PMC10183138 DOI: 10.1186/s12974-023-02798-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to ~ 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. METHODS A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1CreIL-10 fl/fl) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8CreIL-10 fl/fl), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. RESULTS Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4+ and γδ T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8CreIL-10 fl/fl but not CX3CR1CreIL-10 fl/fl mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. CONCLUSION Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.
Collapse
Affiliation(s)
- Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rachel W Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Wen Shi
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Axel Roers
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
12
|
Menousek J, Horn CM, Heim CE, Van Roy Z, Korshoj LE, Kielian T. Transcriptional Profiling of Phagocytic Leukocytes and Microglia Reveals a Critical Role for Reactive Oxygen Species in Biofilm Containment during Staphylococcus aureus Craniotomy Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1973-1986. [PMID: 36426943 PMCID: PMC9643635 DOI: 10.4049/jimmunol.2200503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Craniotomies are performed to treat a variety of intracranial pathology. Surgical site infection remains a complication of craniotomy despite the use of prophylactic antibiotics and universal sterile precautions. Infections occur in 1-3% of procedures, with approximately half caused by Staphylococcus aureus that forms a biofilm on the bone flap and is recalcitrant to systemic antibiotic therapy. We used an S. aureus-dsRed construct to compare the phagocytic capacity of leukocytes and microglia in vitro and in vivo using a mouse model of craniotomy infection. In addition, single-cell RNA sequencing (scRNA-seq) was applied to determine whether a transcriptional signature could be identified for phagocytic versus nonphagocytic cells in vivo. S. aureus was phagocytosed to equivalent extents in microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in vitro; however, microglial uptake of S. aureus was limited in vivo, whereas the other leukocyte populations exhibited phagocytic activity. scRNA-seq comparing the transcriptional signatures of phagocytic (S. aureus-dsRed+) versus nonphagocytic (S. aureus-dsRed-) leukocytes identified classical pathways enriched in phagocytic cells (i.e., reactive oxygen species [ROS]/reactive nitrogen species, lysosome, iron uptake, and transport), whereas nonphagocytic populations had increased ribosomal, IFN, and hypoxia signatures. scRNA-seq also revealed a robust ROS profile, which led to the exploration of craniotomy infection in NADPH oxidase 2 knockout mice. S. aureus burden, leukocyte recruitment, and intracellular bacterial load were significantly increased in NADPH oxidase 2 KO compared with wild-type animals. Collectively, these results highlight the importance of ROS generation in phagocytes for S. aureus biofilm containment, but not clearance, during craniotomy infection.
Collapse
Affiliation(s)
- Joseph Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198
| | - Christopher M. Horn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
13
|
Van Roy Z, Kielian T. Exploring epigenetic reprogramming during central nervous system infection. Immunol Rev 2022; 311:112-129. [PMID: 35481573 PMCID: PMC9790395 DOI: 10.1111/imr.13079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
Epigenetics involves the study of various modes of adaptable transcriptional regulation, contributing to cell identity, characteristics, and function. During central nervous system (CNS) infection, epigenetic mechanisms can exert pronounced control over the maturation and antimicrobial properties of nearly every immune cell type. Epigenetics is a relatively new field, with the first mention of these marks proposed only a half-century ago and a substantial body of immunological epigenetic research emerging only in the last few decades. Here, we review the best-characterized epigenetic marks and their functions as well as illustrate how various immune cell populations responding to CNS infection utilize these marks to organize their activation state and inflammatory processes. We also discuss the metabolic and clinical implications of epigenetic marks and the rapidly expanding set of tools available to researchers that are enabling elucidation of increasingly detailed genetic regulatory pathways. These considerations paint an intricate picture of inflammatory regulation, where epigenetic marks influence genetic, signaling, and environmental elements to orchestrate a tailored immunological response to the threat at hand, cementing epigenetics as an important player in immunity.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Tammy Kielian
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
14
|
Zou J, Shang W, Yang L, Liu T, Wang L, Li X, Zhao J, Rao X, Gao J, Fan X. Microglia activation in the mPFC mediates anxiety-like behaviors caused by Staphylococcus aureus strain USA300. Brain Behav 2022; 12:e2715. [PMID: 35977050 PMCID: PMC9480961 DOI: 10.1002/brb3.2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is considered as one of the major causative agents of serious hospital- and community-acquired infections. Recent studies have reported that S. aureus infection induced neuroinflammation and was linked with some mental disorders. To evaluate the effects of S. aureus infection on abnormal behaviors, we conducted the present study. METHODS A S. aureus USA300-infected mouse model was established using bacterial suspension injection into tail vein. A series of behavioral tests were performed after USA300 infection. The expression of cytokines was detected in serum and mPFC. The number and some morphological parameters of microglia were also evaluated by immunofluorescence staining. RESULTS Anxiety-like behaviors, instead of locomotor activity impairment or depression-like behaviors, were observed in mice infected with S. aureus USA300 compared with control. S. aureus USA300 infection caused overexpression of IL-6, TNF-α, and IL-1β in serum, resulted in microglial over-activation and excessive release of proinflammatory cytokines in the mPFC. In addition, overexpression of TLR2 accompanied by increased GLS1 and p-STAT3 was observed in the mPFC of mice infected with S. aureus USA300. CONCLUSION This study provides evidence that S. aureus USA300 infection can lead to neuroinflammation in the mPFC of mice, which may contribute to the development of anxiety.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Ascorbic acid along with ciprofloxacin regulates S. aureus induced microglial inflammatory responses and oxidative stress through TLR-2 and glucocorticoid receptor modulation. Inflammopharmacology 2022; 30:1303-1322. [PMID: 35704229 DOI: 10.1007/s10787-022-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
Microglial inflammatory responses play a central role in the pathogenesis of S. aureus induced brain infections. Upon activation, microglia produces free radicals (ROS/RNS) and disrupts the cellular antioxidant defense to combat invading microorganisms. Despite conventional antibiotic or steroid therapy, microglial over-activation could not be controlled. So, an attempt had been taken by using a natural antioxidant ascorbic acid along with ciprofloxacin to regulate microglial over-activation by involving TLR-2 and glucocorticoid receptor (GR) in an in-vitro cell culture-based study. Combinatorial treatment during TLR-2 neutralization effectively reduced the bacterial burden at 60 min compared to the GR blocking condition (p < 0.05). Moreover, the infection-induced H2O2, O2.-, and NO release in microglial cell culture was diminished possibly by enhancing SOD and catalase activities in the same condition (p < 0.05). The arginase activity was markedly increased after TLR-2 blocking in the combinatorial group compared to single treatments (p < 0.05). Experimental results indicated that combinatorial treatment may act through up-regulating GR expression by augmenting endogenous corticosterone levels. However, better bacterial clearance could further suppress the TLR-2 mediated pro-inflammatory NF-κB signaling. From Western blot analysis, it was concluded that ciprofloxacin-ascorbic acid combination in presence of anti-TLR-2 antibody exhibited 81.25% inhibition of TLR-2 expression while the inhibition for GR was 3.57% with respect to the infected group. Therefore, during TLR-2 blockade ascorbic acid combination might be responsible for the restoration of redox balance in microglia via modulating TLR-2/GR interaction. The combination treatment could play a major role in the neuroendocrine-immune regulation of S. aureus induced microglial activation.
Collapse
|
16
|
Wang Y, Liu Y, Chen R, Qiao L. Metabolomic Characterization of Cerebrospinal Fluid from Intracranial Bacterial Infection Pediatric Patients: A Pilot Study. Molecules 2021; 26:molecules26226871. [PMID: 34833963 PMCID: PMC8622478 DOI: 10.3390/molecules26226871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Intracranial bacterial infection remains a major cause of morbidity and mortality in neurosurgical cases. Metabolomic profiling of cerebrospinal fluid (CSF) holds great promise to gain insights into the pathogenesis of central neural system (CNS) bacterial infections. In this pilot study, we analyzed the metabolites in CSF of CNS infection patients and controls in a pseudo-targeted manner, aiming at elucidating the metabolic dysregulation in response to postoperative intracranial bacterial infection of pediatric cases. Untargeted analysis uncovered 597 metabolites, and screened out 206 differential metabolites in case of infection. Targeted verification and pathway analysis filtered out the glycolysis, amino acids metabolism and purine metabolism pathways as potential pathological pathways. These perturbed pathways are involved in the infection-induced oxidative stress and immune response. Characterization of the infection-induced metabolic changes can provide robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for pathological investigation, and new targets for treatment.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China;
| | - Yu Liu
- Department of Neurosurgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200062, China;
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Correspondence: (R.C.); (L.Q.)
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China;
- Correspondence: (R.C.); (L.Q.)
| |
Collapse
|
17
|
Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021; 12:670931. [PMID: 34248952 PMCID: PMC8260670 DOI: 10.3389/fimmu.2021.670931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral circulation into the central nervous system (CNS) parenchyma. Despite this protective barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of immune deficiencies or complications following neurosurgical procedures. These infections are difficult to treat since many bacteria, such as Staphylococcus aureus, encode a repertoire of virulence factors, can acquire antibiotic resistance, and form biofilm. Additionally, pathogens can leverage virulence factor production to polarize host immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The difficulty of pathogen clearance is magnified by the fact that antibiotics and other treatments cannot easily penetrate the BBB, which requires extended regimens to achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a promising platform to treat a range of CNS disorders. Nanoparticles have several advantages, as they can be engineered to cross the BBB with specific functionality to increase cellular and molecular targeting, have controlled release of therapeutic agents, and superior bioavailability and circulation compared to traditional therapies. Within the CNS environment, therapeutic actions are not limited to directly targeting the pathogen, but can also be tailored to modulate immune cell activation to promote infection resolution. This perspective highlights the factors leading to infection persistence in the CNS and discusses how novel nanoparticle therapies can be engineered to provide enhanced treatment, specifically through modulation of immune cell polarization.
Collapse
Affiliation(s)
- Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|