1
|
Gold S, Shilatifard A. Epigenetic therapies targeting histone lysine methylation: complex mechanisms and clinical challenges. J Clin Invest 2024; 134:e183391. [PMID: 39403928 PMCID: PMC11473148 DOI: 10.1172/jci183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases. They additionally include the H3K4/9-preferential demethylase LSD1 and the H3K4-, H3K27-, and H3K36-preferential KDM5, KDM6, and KDM2 demethylase subfamilies, respectively. This Review discusses the results of recent clinical and preclinical studies relevant to all of these existing and potential therapies. It provides an update on advancements in therapeutic development, as well as more basic molecular understanding, within the past 5 years approximately. It also offers a perspective on histone lysine methylation that departs from the long-predominant "histone code" metaphor, emphasizing complex-disrupting inhibitors and proximity-based approaches rather than catalytic domain inhibitors in the outlook for future therapeutic development.
Collapse
|
2
|
Liu FQ, Qu QY, Lei Y, Chen Q, Chen YX, Li ML, Sun XY, Wu YJ, Huang QS, Fu HX, Kong Y, Li YY, Wang QF, Huang XJ, Zhang XH. High dimensional proteomic mapping of bone marrow immune characteristics in immune thrombocytopenia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1635-1647. [PMID: 38644444 DOI: 10.1007/s11427-023-2520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
To investigate the role of co-stimulatory and co-inhibitory molecules on immune tolerance in immune thrombocytopenia (ITP), this study mapped the immune cell heterogeneity in the bone marrow of ITP at the single-cell level using Cytometry by Time of Flight (CyTOF). Thirty-six patients with ITP and nine healthy volunteers were enrolled in the study. As soluble immunomodulatory molecules, more sCD25 and sGalectin-9 were detected in ITP patients. On the cell surface, co-stimulatory molecules like ICOS and HVEM were observed to be upregulated in mainly central memory and effector T cells. In contrast, co-inhibitory molecules such as CTLA-4 were significantly reduced in Th1 and Th17 cell subsets. Taking a platelet count of 30×109 L-1 as the cutoff value, ITP patients with high and low platelet counts showed different T cell immune profiles. Antigen-presenting cells such as monocytes and B cells may regulate the activation of T cells through CTLA-4/CD86 and HVEM/BTLA interactions, respectively, and participate in the pathogenesis of ITP. In conclusion, the proteomic and soluble molecular profiles brought insight into the interaction and modulation of immune cells in the bone marrow of ITP. They may offer novel targets to develop personalized immunotherapies.
Collapse
Affiliation(s)
- Feng-Qi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qing-Yuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yu-Xiu Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Meng-Lin Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Xue-Yan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ye-Jun Wu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qiu-Sha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yue-Ying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
3
|
Gold S, Shilatifard A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr Opin Genet Dev 2024; 86:102181. [PMID: 38564841 DOI: 10.1016/j.gde.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.
Collapse
Affiliation(s)
- Sarah Gold
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/@rwx_life
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Ye Q, Ying Q, Chen Y, Liao C, Li A. HLA-DRB5 promotes immune thrombocytopenia via activating CD8 + T cells. Open Med (Wars) 2024; 19:20240955. [PMID: 38799252 PMCID: PMC11117455 DOI: 10.1515/med-2024-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet (PLT) count and a high risk of bleeding, the clinical treatment for which still needs to be upgraded. Based on the critical role of human leukocyte antigen class II heterodimer β5 (HLA-DRB5) in immune system, we herein investigated its effect on ITP. ITP murine models were established by the injection of guinea pig anti-mouse platelet serum (GP-APS), and the PLT of mouse peripheral blood was counted during the modeling. Quantitative real-time reverse transcription polymerase chain reaction, western blot and immunofluorescence assay was performed to quantify expressions of HLA-DRB5, major histocompatibility complex II (MHC-II) and co-stimulatory molecules (CD80, CD86). Flow cytometry was conducted to analyze the percentage of CD8+ T cells. As a result, the PLT count was decreased in mouse peripheral blood. Expressions of HLA-DRB5, MHC-II and co-stimulatory molecules, as well as the percentage of CD8+ T cells were elevated in peripheral blood of ITP mice. HLA-DRB5 knockdown mitigated ITP by increasing peripheral PLT level, downregulating expressions of MHC-II and co-stimulatory molecules and inactivating CD8+ T cells. Collectively, the downregulation of HLA-DRB5 restores the peripheral PLT count in ITP mice by reducing MHC-II-mediated antigen presentation of macrophages to inhibit the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Qianqian Ying
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Ying Chen
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Cong Liao
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Anrong Li
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
5
|
Liu L, Xiang Y, Shao L, Yuan C, Song X, Sun M, Liu Y, Zhang X, Du S, Hou M, Peng J, Shi Y. E3 ubiquitin ligase casitas B-lineage lymphoma-b modulates T-cell anergic resistance via phosphoinositide 3-kinase signaling in patients with immune thrombocytopenia. J Thromb Haemost 2024; 22:1202-1214. [PMID: 38184203 DOI: 10.1016/j.jtha.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianlei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, Shandong, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Delshad M, Davoodi-Moghaddam Z, Pourbagheri-Sigaroodi A, Faranoush M, Abolghasemi H, Bashash D. Translating mechanisms into therapeutic strategies for immune thrombocytopenia (ITP): Lessons from clinical trials. Thromb Res 2024; 235:125-147. [PMID: 38335568 DOI: 10.1016/j.thromres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cines DB. Pathogenesis of refractory ITP: Overview. Br J Haematol 2023; 203:10-16. [PMID: 37735546 PMCID: PMC10539016 DOI: 10.1111/bjh.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
A subset of individuals with 'primary' or 'idiopathic' immune thrombocytopenia (ITP) who fail to respond to conventional first- and second-line agents or who lose responsiveness are considered to have 'refractory' disease (rITP), placing them at increased risk of bleeding and complications of intensive treatment. However, the criteria used to define the refractory state vary among studies, which complicates research and clinical investigation. Moreover, it is unclear whether rITP is simply 'more severe' ITP, or if there are specific pathogenic pathways that are more likely to result in refractory disease, and whether the presence or development of rITP can be established or anticipated based on these differences. This paper reviews potential biological features that may be associated with rITP, including genetic and epigenetic risk factors, dysregulation of T cells and cytokine networks, antibody affinity and specificity, activation of complement, impaired platelet production and alterations in platelet viability and clearance. These findings indicate the need for longitudinal studies using novel clinically available methodologies to identify and monitor pathogenic T cells, platelet antibodies and other clues to the development of refractory disease.
Collapse
Affiliation(s)
- Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
9
|
Yang JH, Xue MJ, Zhang XL, Wei ZC, Shao LL, Shi Y, Hou M. [Efficacy of decitabine in patients with glucocorticoid-resistant primary immune thrombocytopenia: factors influencing treatment responses]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:567-571. [PMID: 37749037 PMCID: PMC10509621 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 09/27/2023]
Abstract
Objective: This study aimed to evaluate the efficacy of decitabine (DAC) and identify factors influencing treatment responses in patients with primary immune thrombocytopenia (ITP) who had failed glucocorticoid therapy. Methods: Clinical data of 61 patients with glucocorticoid-resistant ITP who received DAC therapy (5 mg·m(-2)·d(-1)×3 d via intravenous infusion) for at least three cycles with 3-4-week intervals at the Department of Hematology, Qilu Hospital of Shandong University, from November 2015 to June 2021 were analyzed retrospectively. Results: The 61 patients comprised 20 males and 41 females, with a median age of 45 years (range: 15-81 years). Among them, 43 patients were glucocorticoid-dependent (glucocorticoid-dependent group), while 18 patients were glucocorticoid-resistant (glucocorticoid-resistant group). Following DAC treatment, 12 patients (19.67% ) achieved complete response (CR), and 16 patients (26.23% ) exhibited response (R), resulting in an overall response (OR) rate of 45.90% (28/61). Comparison between the OR group (n=28) and the non-response (NR) group (n=33) revealed significant differences in responses to glucocorticoids (dependent or resistant) and platelet counts before treatment (χ(2)=8.789, P=0.003; z=-2.416, P=0.016). The glucocorticoid-dependent group showed higher platelet counts than the glucocorticoid-resistant group after the second and third cycles of DAC treatment (P=0.032, 0.024). Moreover, the OR rates after the first, second, and third cycles of DAC treatment in the glucocorticoid-dependent group were all higher than those in the glucocorticoid-resistant group (P=0.042, P=0.012, P=0.029). A significant correlation was observed between glucocorticoid dependence and responses to DAC treatment (OR=9.213, 95% CI 1.937-43.820, P=0.005) . Conclusion: DAC demonstrates definitive efficacy with mild adverse effects in a subset of patients with glucocorticoid-resistant primary ITP. Glucocorticoid dependence and higher platelet counts before treatment are associated with a favorable response to DAC therapy.
Collapse
Affiliation(s)
- J H Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - M J Xue
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - X L Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Z C Wei
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - L L Shao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Y Shi
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - M Hou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Malik A, Sayed AA, Han P, Tan MMH, Watt E, Constantinescu-Bercu A, Cocker ATH, Khoder A, Saputil RC, Thorley E, Teklemichael A, Ding Y, Hart ACJ, Zhang H, Mitchell WA, Imami N, Crawley JTB, Salles-Crawley II, Bussel JB, Zehnder JL, Adams S, Zhang BM, Cooper N. The role of CD8+ T-cell clones in immune thrombocytopenia. Blood 2023; 141:2417-2429. [PMID: 36749920 PMCID: PMC10329190 DOI: 10.1182/blood.2022018380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Immune thrombocytopenia (ITP) is traditionally considered an antibody-mediated disease. However, a number of features suggest alternative mechanisms of platelet destruction. In this study, we use a multidimensional approach to explore the role of cytotoxic CD8+ T cells in ITP. We characterized patients with ITP and compared them with age-matched controls using immunophenotyping, next-generation sequencing of T-cell receptor (TCR) genes, single-cell RNA sequencing, and functional T-cell and platelet assays. We found that adults with chronic ITP have increased polyfunctional, terminally differentiated effector memory CD8+ T cells (CD45RA+CD62L-) expressing intracellular interferon gamma, tumor necrosis factor α, and granzyme B, defining them as TEMRA cells. These TEMRA cells expand when the platelet count falls and show no evidence of physiological exhaustion. Deep sequencing of the TCR showed expanded T-cell clones in patients with ITP. T-cell clones persisted over many years, were more prominent in patients with refractory disease, and expanded when the platelet count was low. Combined single-cell RNA and TCR sequencing of CD8+ T cells confirmed that the expanded clones are TEMRA cells. Using in vitro model systems, we show that CD8+ T cells from patients with ITP form aggregates with autologous platelets, release interferon gamma, and trigger platelet activation and apoptosis via the TCR-mediated release of cytotoxic granules. These findings of clonally expanded CD8+ T cells causing platelet activation and apoptosis provide an antibody-independent mechanism of platelet destruction, indicating that targeting specific T-cell clones could be a novel therapeutic approach for patients with refractory ITP.
Collapse
Affiliation(s)
- Amna Malik
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Anwar A. Sayed
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Department of Medical Microbiology and Immunology, Taibah University, Medina, Saudi Arabia
| | - Panpan Han
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Department of Hematology, Shandong Province Hospital, Shandong First Medical University, Jinan, China
| | - Michelle M. H. Tan
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Eleanor Watt
- Specialist Integrated Haematology and Malignancy Diagnostic Service–Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Ahmad Khoder
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Rocel C. Saputil
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Emma Thorley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Ariam Teklemichael
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yunchuan Ding
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice C. J. Hart
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Wayne A. Mitchell
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - James T. B. Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Isabelle I. Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, United Kingdom
| | - James B. Bussel
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Stuart Adams
- Specialist Integrated Haematology and Malignancy Diagnostic Service–Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Bing M. Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Nichola Cooper
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Babar Q, Saeed A, Murugappan S, Dhumal D, Tabish T, Thorat ND. Promise of dostarlimab in cancer therapy: Advancements and cross-talk considerations. Drug Discov Today 2023; 28:103577. [PMID: 37004983 DOI: 10.1016/j.drudis.2023.103577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
In recent years, immunotherapy for cancer treatment using monoclonal antibodies has shown clinical success, particularly with programmed cell death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1). Dostarlimab, an immune checkpoint inhibitor, interacts with adaptive immunity by binding to human PD-1, inhibiting PD-L1 and PD-L2 interactions, and cross-talk with adaptive immunity. Recent clinical trials have shown that dostarlimab is effective in treating mismatch repair deficiency (dMMR) in endometrial cancer patients, leading to its approval in the United States and the European Union in 2021. This article provides a comprehensive overview of dostarlimab, its therapeutic ability, and the different indications for which it is being used. Dostarlimab could serve as a potential alternative to many cancer treatments that frequently have severe consequences on patients' quality of life. Teaser The comprehensive story behind dostarlimab is how it cured all 18 cancer patients who took part in the experimental clinical trial, ultimately leading to its approval by the US FDA.
Collapse
|
12
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Ou Y, Zhan Y, Zhuang X, Shao X, Xu P, Li F, Chen H, Ji L, Cheng Y. A bibliometric analysis of primary immune thrombocytopenia from 2011 to 2021. Br J Haematol 2023; 201:954-970. [PMID: 36807900 DOI: 10.1111/bjh.18692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by isolated thrombocytopenia. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers of ITP over the past 10 years. We retrieved publications from 2011 to 2021 from the Web of Science Core Collection (WoSCC). Bibliometrix package, VOSviewer, and Citespace were used to analyse and visualize the trend, distribution, and hotspots of research on ITP. Altogether, there were 2084 papers, written by 9080 authors from 410 organizations in 70 countries/regions, published in 456 journals with 37 160 co-cited references. In the last decades, the most productive journal was British Journal of Haematology, China was the most productive country. and the most cited journal was Blood. Shandong University was the most productive institution in the field of ITP. NEUNERT C, 2011, BLOOD, CHENG G, 2011, LANCET, and PATEL VL, 2012, BLOOD were the top three most cited documents. "Thrombopoietin receptor agonist", "regulatory T cell" and "sialic acid" were three hotspots of the last decade. And "immature platelet fraction", "Th17", and "fostamatinib" would be research frontiers in the feature. The present study provided a novel insight for future research directions and scientific decision-making.
Collapse
Affiliation(s)
- Yang Ou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcheng Xu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China
| | - Hao Chen
- Zhongshan Hospital Xuhui Branch, Department of Thoracic Surgery, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Low-dose decitabine modulates myeloid-derived suppressor cell fitness via LKB1 in immune thrombocytopenia. Blood 2022; 140:2818-2834. [PMID: 36037415 DOI: 10.1182/blood.2022016029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. Metabolic fitness of MDSCs is fundamental for its suppressive activity toward effector T cells. Our previous studies showed that the number and inhibitory function of MDSCs were impaired in patients with immune thrombocytopenia (ITP) compared with healthy controls. In this study, we analyzed the effects of decitabine on MDSCs from patients with ITP, both in vitro and in vivo. We found that low-dose decitabine promoted the generation of MDSCs and enhanced their aerobic metabolism and immunosuppressive functions. Lower expression of liver kinase 1 (LKB1) was found in MDSCs from patients with ITP, which was corrected by decitabine therapy. LKB1 short hairpin RNA (shRNA) transfection effectively blocked the function of MDSCs and almost offset the enhanced effect of decitabine on impaired MDSCs. Subsequently, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient (SCID) mice to induce ITP in murine models. Passive transfer of decitabine-modulated MDSCs significantly raised platelet counts compared with that of phosphate buffered saline-modulated MDSCs. However, when LKB1 shRNA-transfected MDSCs were transferred into SCID mice, the therapeutic effect of decitabine in alleviating thrombocytopenia was quenched. In conclusion, our study suggests that the impaired aerobic metabolism of MDSCs is involved in the pathogenesis of ITP, and the modulatory effect of decitabine on MDSC metabolism contributes to the improvement of its immunosuppressive function. This provides a possible mechanism for sustained remission elicited by low-dose decitabine in patients with ITP.
Collapse
|
15
|
Gutierrez WR, Scherer A, Rytlewski JD, Laverty EA, Sheehan AP, McGivney GR, Brockman QR, Knepper-Adrian V, Roughton GA, Quelle DE, Gordon DJ, Monga V, Dodd RD. Augmenting chemotherapy with low-dose decitabine through an immune-independent mechanism. JCI Insight 2022; 7:e159419. [PMID: 36227698 PMCID: PMC9746804 DOI: 10.1172/jci.insight.159419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA methyltransferase inhibitor decitabine has classically been used to reactivate silenced genes and as a pretreatment for anticancer therapies. In a variation of this idea, this study explores the concept of adding low-dose decitabine (DAC) following administration of chemotherapy to bolster therapeutic efficacy. We find that addition of DAC following treatment with the chemotherapy agent gemcitabine improves survival and slows tumor growth in a mouse model of high-grade sarcoma. Unlike prior studies in epithelial tumor models, DAC did not induce a robust antitumor T cell response in sarcoma. Furthermore, DAC synergizes with gemcitabine independently of the immune system. Mechanistic analyses demonstrate that the combination therapy induces biphasic cell cycle arrest and apoptosis. Therapeutic efficacy was sequence dependent, with gemcitabine priming cells for treatment with DAC through inhibition of ribonucleotide reductase. This study identifies an apparently unique application of DAC to augment the cytotoxic effects of conventional chemotherapy in an immune-independent manner. The concepts explored in this study represent a promising paradigm for cancer treatment by augmenting chemotherapy through addition of DAC to increase tolerability and improve patient response. These findings have widespread implications for the treatment of sarcomas and other aggressive malignancies.
Collapse
Affiliation(s)
- Wade R. Gutierrez
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Amanda Scherer
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | | | | | - Alexa P. Sheehan
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | - Gavin R. McGivney
- Cancer Biology Graduate Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Department of Molecular Physiology and Biophysics
| | - Qierra R. Brockman
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | | | | | - Dawn E. Quelle
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Molecular Medicine Graduate Program
- Department of Neuroscience and Pharmacology
- Department of Pathology, and
| | - David J. Gordon
- Holden Comprehensive Cancer Center
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Varun Monga
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Rebecca D. Dodd
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| |
Collapse
|
16
|
Gu Z, Yang J, Yang M, Deng Y, Jiao Y. Immunomodulatory effects of decitabine in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 129:191-198. [PMID: 36029945 DOI: 10.1016/j.fsi.2022.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Decitabine (DAC), an inhibitor of DNA methyltransferase, is typically used to reverse DNA methylation and is considered an epigenetic modifying drug. DNA methylation is crucial to the regulation of gene expression without altering genetic information. Our previous research showed that the DNA methylation levels of many immune-related genes changed after the pre-grafting condition in pearl production. In the present study, we evaluated the DNA methylation level and analyzed transcriptome, enzyme, and antimicrobial activities after DAC treatment to evaluate the effect of DAC on DNA methylation and immune system of pearl oyster Pinctada fucata martensii. Results showed that DAC significantly decreased the level of global DNA methylation in the hemocytes of the pearl oysters. Transcriptome analysis obtained 577 differentially expressed genes (DEGs) between the control and DAC treatment group. The DEGs were mainly enriched in the following pathways: "Relaxin signaling pathway," "Cytosolic DNA-sensing pathway," "Platelet activation," and "Peroxisome," and related genes were overexpressed after DAC treatment. DAC treatment resulted in a substantial increase in the levels of serum superoxide dismutase, interleukin-17, phenol oxidase, tumor necrosis factor, and antimicrobial activity, compared with the control. These results suggested that DAC can alter DNA methylation level, activate immune-related genes, and improve the level of humoral immunity in pearl oysters, thereby increasing our understanding of the mechanism underlying DNA methylation in immune regulation.
Collapse
Affiliation(s)
- Zefeng Gu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jingmiao Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Min Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
17
|
Systemic lupus erythematosus-complicating immune thrombocytopenia: From pathogenesis to treatment. J Autoimmun 2022; 132:102887. [PMID: 36030136 DOI: 10.1016/j.jaut.2022.102887] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Immune thrombocytopenia (ITP) is a common hematological manifestation of systemic lupus erythematosus (SLE). The heterogeneity of its clinical characteristics and therapeutic responses reflects a complex pathogenesis. A better understanding of its pathophysiological mechanisms and employing an optimal treatment regimen is therefore important to improve the response rate and prognosis, and avoid unwanted outcomes. Besides glucocorticoids, traditional immunosuppressants (i.e. cyclosporine, mycophenolate mofetil) and intravenous immunoglobulins, new therapies are emerging and promising for the treatment of intractable SLE-ITP, such as thrombopoietin receptor agonists (TPO-RAs), platelet desialylation inhibitors(i.e. oseltamivir), B-cell targeting therapy(i.e. rituximab, belimumab), neonatal Fc receptor(FcRn) inhibitor, spleen tyrosine kinase(Syk) inhibitor and Bruton tyrosine kinase(BTK) inhibitor et al., although more rigorous randomized controlled trials are needed to substantiate their efficacy. In this review, we update our current knowledge on the pathogenesis and treatment of SLE-ITP.
Collapse
|
18
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
19
|
Liu SY, Qu HT, Sun RJ, Yuan D, Sui XH, Shan NN. High-throughput DNA methylation analysis in ITP confirms NOTCH1 hypermethylation through the Th1 and Th2 cell differentiation pathways. Int Immunopharmacol 2022; 111:109105. [PMID: 35930913 DOI: 10.1016/j.intimp.2022.109105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is a prevalent autoimmune disease with a complex aetiology where DNA methylation changes are becoming triggers. METHOD To investigate novel abnormally methylated genes in the pathogenesis of ITP, we performed a high-throughput methylation analysis on 21 ITP patients and 9 normal control samples. We analysed the extent of key methylated genes and their downstream cytokines through Luminex assay or qRT-PCR. Then, bone marrow mononuclear cells were extracted from ITP patients, and decitabine (demethylation drug) was added to the culture medium of cultured cells. qRT-PCR and ELISA were used to detect whether decitabine could effectively affect target genes and related cytokines. RESULTS Through the STRING and Metascape databases, hypermethylated NOTCH1 can be identified and can influence ITP by regulating many downstream cytokines through Th1 and Th2 cell differentiation pathways. Compared with those in the normal control group, the expression levels of NOTCH1 and its downstream Th2 cytokines (IL-4, IL-10, and GATA3) were significantly decreased and those of Th1 cytokines (IFN-γ, IL-12, and TNF-α) were significantly increased in the ITP group. Decitabine exerts its demethylation effect, so the expression of NOTCH1 and its related cytokines in the ITP group treated with 100 nM decitabine were significantly reversed. CONCLUSIONS Our results suggest that the pathogenesis of ITP may exert its influence on epigenetics through alteration of DNA methylation at regulatory regions of the target NOTCH1 gene in the Th1 and Th2 cell differentiation pathways. At the same time, decitabine may achieve a therapeutic effect on ITP by demethylation.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Hui-Ting Qu
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Rui-Jie Sun
- Department of Rheumatology, Peking Union Medical College Hospital, Clinical Immunology Center, Beijing, China
| | - Dai Yuan
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiao-Hui Sui
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
20
|
Gkoutsias A, Makis A. The role of epigenetics in childhood autoimmune diseases with hematological manifestations. Pediatr Investig 2022; 6:36-46. [PMID: 35382418 PMCID: PMC8960932 DOI: 10.1002/ped4.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune diseases with hematological manifestations are often characterized by chronicity and relapses despite treatment, and the underlying pathogenetic mechanisms remain unknown. Epigenetic alterations play a vital role in the deregulation of immune tolerance and the development of autoimmune diseases. In recent years, study of epigenetic mechanisms in both adult and childhood autoimmune disorders has been seeking to explain the pathophysiology of these heterogeneous diseases and to elucidate the interaction between genetic and environmental factors. Various mechanisms, including DNA methylation, histone modifications (chromatin remodeling), and noncoding RNAs (ncRNAs), have been studied extensively in the context of autoimmune diseases. This paper summarizes the epigenetic patterns in some of the most common childhood autoimmune disorders with hematological manifestations, based on epigenetic studies in children with primary immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), and juvenile idiopathic arthritis (JIA). Research findings indicate that methylation changes in genes expressed on T cells, modifications at a variety of histone sites, and alterations in the expression of several ncRNAs are involved in the pathogenesis of these diseases. These mechanisms not only determine the development of these diseases but also affect the severity of the clinical presentation and biochemical markers. Further studies will provide new tools for the prevention and diagnosis of childhood autoimmune disorders, and possible novel treatment options.
Collapse
Affiliation(s)
- Athanasios Gkoutsias
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| | - Alexandros Makis
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| |
Collapse
|
21
|
Vrbensky JR, Nazy I, Clare R, Larché M, Arnold DM. T cell-mediated autoimmunity in immune thrombocytopenia. Eur J Haematol 2021; 108:18-27. [PMID: 34487584 DOI: 10.1111/ejh.13705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by a low platelet count and an increased risk of bleeding. In addition to anti-platelet autoantibodies, CD8+ T cells have been implicated as a mechanism of platelet destruction. The current evidence for the existence of platelet-specific CD8+ T cells in ITP is inconclusive. The purpose of this review is to summarize the studies that investigated CD8+ T cells in ITP and to review the methods that have been used to detect autoreactive CD8+ T cells in other autoimmune diseases.
Collapse
Affiliation(s)
- John R Vrbensky
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mark Larché
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Canadian Blood Services, Hamilton, ON, Canada
| |
Collapse
|
22
|
Decitabine revives Treg function in ITP. Blood 2021; 138:591-592. [PMID: 34436532 DOI: 10.1182/blood.2021012108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
|
23
|
Han P, Hou Y, Zhao Y, Liu Y, Yu T, Sun Y, Wang H, Xu P, Li G, Sun T, Hu X, Liu X, Li L, Peng J, Zhou H, Hou M. Low-dose decitabine modulates T-cell homeostasis and restores immune tolerance in immune thrombocytopenia. Blood 2021; 138:674-688. [PMID: 33876188 PMCID: PMC8394906 DOI: 10.1182/blood.2020008477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Our previous clinical study showed that low-dose decitabine exhibited sustained responses in nearly half of patients with refractory immune thrombocytopenia (ITP). The long-term efficacy of decitabine in ITP is not likely due to its simple role in increasing platelet production. Whether decitabine has the potential to restore immune tolerance in ITP is unknown. In this study, we analyzed the effect of decitabine on T-cell subpopulations in ITP in vitro and in vivo. We found that low-dose decitabine promoted the generation and differentiation of regulatory T (Treg) cells and augmented their immunosuppressive function. Splenocytes from CD61 knockout mice immunized with CD61+ platelets were transferred into severe combined immunodeficient mouse recipients to induce a murine model of ITP. Low-dose decitabine alleviated thrombocytopenia and restored the balance between Treg and helper T (Th) cells in active ITP mice. Treg deletion and depletion offset the effect of decitabine in restoring CD4+ T-cell subpopulations in ITP mice. For patients who received low-dose decitabine, the quantity and function of Treg cells were substantially improved, whereas Th1 and Th17 cells were suppressed compared with the pretreatment levels. Next-generation RNA-sequencing and cytokine analysis showed that low-dose decitabine rebalanced T-cell homeostasis, decreased proinflammatory cytokines, and downregulated phosphorylated STAT3 in patients with ITP. STAT3 inhibition analysis suggested that low-dose decitabine might restore Treg cells by inhibiting STAT3 activation. In conclusion, our data indicate that the immunomodulatory effect of decitabine provides one possible mechanistic explanation for the sustained response achieved by low-dose decitabine in ITP.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Blood Platelets/immunology
- Decitabine/administration & dosage
- Immune Tolerance/drug effects
- Immunologic Factors/administration & dosage
- Mice, Knockout
- Mice, SCID
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/pathology
- Recovery of Function/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
| | - Yu Hou
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
| | | | | | | | | | | | | | | | - Tao Sun
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
| | - Xiang Hu
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
| | - Xinguang Liu
- Department of Hematology
- Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lizhen Li
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
| | - Jun Peng
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
- Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
- Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology
- Shangdong Key Laboratory of Immunochematology, and
- Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|