1
|
Galli G, Leleu D, Depaire A, Blanco P, Contin-Bordes C, Truchetet ME. Crystalline silica on the lung-environment interface: Impact on immunity, epithelial cells, and therapeutic perspectives for autoimmunity. Autoimmun Rev 2025; 24:103730. [PMID: 39701338 DOI: 10.1016/j.autrev.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Crystalline silica (the most abundant form of silicon dioxide) is a natural element that is ubiquitous in the Earth's crust. Chronic personal or professional exposure has been implicated in various pathologies, including silicosis and autoimmune diseases since the early 20th century. More recently, a specific pathogenic role for crystalline silica has been identified through its impact on lung epithelial cells as well as immune cells present at this organism barrier. This review summarizes the current in vitro and in vivo knowledge regarding the physiopathology of crystalline silica at the lung-environment interface, discusses its effects on innate and adaptive immune cells and epithelial cells, and reviews current therapeutic perspectives explored in mouse models to alleviate its impact, especially on autoimmune phenotypes.
Collapse
Affiliation(s)
- Gaël Galli
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service de Médecine Interne, Immunologie Clinique et Maladies Infectieuses, UMR 5164, F-33000 Bordeaux, France.
| | - Damien Leleu
- Univ. Bourgogne Franche-Comté, INSERM, LNC UMR1231, LabEx LipSTIC, F-21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, F-21000 Dijon, France
| | - Agathe Depaire
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Patrick Blanco
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service d'Immunologie, UMR 5164, F-33000 Bordeaux, France
| | - Cécile Contin-Bordes
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service d'Immunologie, UMR 5164, F-33000 Bordeaux, France
| | - Marie-Elise Truchetet
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service de Rhumatologie, UMR 5164, F-33000 Bordeaux, France
| |
Collapse
|
2
|
Parks CG, Wilkerson J, Rose KM, Faiq A, Farhadi PN, Bayat N, Schiffenbauer A, Brunner HI, Goldberg B, Sandler DP, Miller FW, Rider LG. Occupational and Hobby Exposures Associated With Myositis Phenotypes in a National Myositis Patient Registry. Arthritis Care Res (Hoboken) 2025; 77:104-115. [PMID: 39530281 DOI: 10.1002/acr.25461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The objective of this study was to investigate occupational and hobby exposures to silica, solvents, and heavy metals and the odds of having the idiopathic inflammatory myopathy (IIM) phenotypes dermatomyositis (DM) and polymyositis (PM) versus inclusion body myositis (IBM), lung disease plus fever or arthritis (LD+), and systemic autoimmune rheumatic disease-associated overlap myositis (OM). METHODS The sample included 1,390 patients (598 with DM, 409 with PM, and 383 with IBM) aged ≥18 years from a national registry. Of these, 218 (16%) were identified with LD+, and 166 (12%) with OM. Of these, 218 (16%) were identified with LD+, and 166 (12%) with OM. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) and explored joint effects with smoking. RESULTS High silica exposure was associated with increased odds of having DM (OR 2.02, 95% CI 1.18-3.46, compared to no exposure; P trend = 0.004), LD+ (OR 1.75, 95% CI 1.10-2.78, vs no LD; P trend = 0.005), and OM (OR 2.07, 95% CI 1.19-3.61, P trend = 0.020). Moderate to high heavy metals exposure was associated with greater odds of having LD+ (OR 1.49, 95% CI 1.00-2.14, P trend = 0.026) and OM (OR 1.59, 95% CI 0.99-2.55, P trend = 0.051). Greater odds of having LD+ were seen among smokers with moderate to high silica exposure versus nonsmokers with low or no exposure (high-certainty assessment OR 2.53, 95% CI 1.31-4.90, P interaction = 0.061). CONCLUSION These findings, based on a systematic exposure assessment, suggest that occupational and hobby exposures to silica and heavy metals contribute to adult IIM phenotypes, including DM, OM, and LD+, a possible marker for antisynthetase syndrome or other autoantibody-associated lung diseases.
Collapse
Affiliation(s)
- Christine G Parks
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina
| | | | | | - Abdullah Faiq
- National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland
| | | | - Nastaran Bayat
- National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland
| | - Adam Schiffenbauer
- National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland
| | | | | | - Dale P Sandler
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina
| | - Frederick W Miller
- National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland
| | - Lisa G Rider
- National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Pavan C, Leinardi R, Benhida A, Ibouraadaten S, Yakoub Y, Brule SVD, Lison D, Turci F, Huaux F. Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing. Part Fibre Toxicol 2024; 21:52. [PMID: 39633374 PMCID: PMC11619699 DOI: 10.1186/s12989-024-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Inhalation of respirable crystalline silica particles, including quartz, is associated with an increased risk of developing pathologies, including persistent lung inflammation, fibrosis, cancer, and systemic autoimmunity. We demonstrated that the nearly free silanols (NFS) generated upon quartz fracturing trigger the early molecular events determining quartz toxicity. Here, we address the involvement of NFS in driving short- and long-term pathogenic responses, including lung inflammation, fibrosis, cancer, and autoimmunity in multiple mouse models. RESULTS In vivo pulmonary responses to as-grown NFS-poor quartz (gQ) and fractured NFS-rich quartz (gQ-f) of synthetic origin were compared to two NFS-rich reference quartz dusts (Min-U-Sil 5, mQ-f). Acute and persistent inflammation, as well as fibrosis, were assessed 3 and 60 days, respectively, after administering one dose of particles (2 mg) via oropharyngeal aspiration (o.p.a.) to C57BL/6 mice. The carcinogenic potential was assessed in a co-carcinogenicity study using A/J mice, which were pre-treated with 3-methylcholanthrene (3-MC) and administered four doses of quartz particles (4 × 1 mg, o.p.a.), then sacrificed after 10 months. Autoimmunity was evaluated in autoimmune-prone 129/Sv mice 4 months after particle administration (2 × 1.25 mg, o.p.a). Mice exposed to NFS-rich quartz exhibited a strong acute lung inflammatory response, characterized by pro-inflammatory cytokine release and leukocyte accumulation, which persisted for up to 60 days. No inflammatory effect was observed in mice treated with NFS-poor gQ. Fibrosis onset (i.e., increased levels of pro-fibrotic factors, hydroxyproline, and collagen) was prominent in mice exposed to NFS-rich but not to NFS-poor quartz. Additionally, lung cancer development (tumour numbers) and autoimmune responses (elevated IgG and anti-dsDNA autoantibody levels) were only observed after exposure to NFS-rich quartz. CONCLUSIONS Collectively, the results indicate that NFS, which occur upon fracturing of quartz particles, play a crucial role in the short- and long-term local and systemic responses to quartz. The assessment of NFS on amorphous or crystalline silica particles may help create a predictive model of silica pathogenicity.
Collapse
Affiliation(s)
- Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
- Department of Chemistry, University of Turin, Turin, Italy.
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anissa Benhida
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sybille van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Francesco Turci
- Department of Chemistry, University of Turin, Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
4
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024; 36:442-460. [PMID: 39418113 PMCID: PMC11606782 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F. McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K. Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R. Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Pfau JC, McLaurin B, Buck BJ, Miller FW. Amphibole asbestos as an environmental trigger for systemic autoimmune diseases. Autoimmun Rev 2024; 23:103603. [PMID: 39154740 PMCID: PMC11438489 DOI: 10.1016/j.autrev.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
A growing body of evidence supports an association between systemic autoimmune disease and exposure to amphibole asbestos, a form of asbestos typically with straight, stiff, needle-like fibers that are easily inhaled. While the bulk of this evidence comes from the population exposed occupationally and environmentally to Libby Amphibole (LA) due to the mining of contaminated vermiculite in Montana, studies from Italy and Australia are broadening the evidence to other sites of amphibole exposures. What these investigations have done, that most historical studies have not, is to evaluate amphibole asbestos separately from chrysotile, the most common commercial asbestos in the United States. Here we review the current and historical evidence summarizing amphibole asbestos exposure as a risk factor for autoimmune disease. In both mice and humans, amphibole asbestos, but not chrysotile, drives production of both antinuclear autoantibodies (ANA) associated with lupus-like pathologies and pathogenic autoantibodies against mesothelial cells that appear to contribute to a severe and progressive pleural fibrosis. A growing public health concern has emerged with revelations that a) unregulated asbestos minerals can be just as pathogenic as commercial (regulated) asbestos, and b) bedrock and soil occurrences of asbestos are far more widespread than previously thought. While occupational exposures may be decreasing, environmental exposures are on the rise for many reasons, including those due to the creation of windborne asbestos-containing dusts from urban development and climate change, making this topic an urgent challenge for public and heath provider education, health screening and environmental regulations.
Collapse
Affiliation(s)
| | - Brett McLaurin
- Commonwealth University of Pennsylvania - Bloomsburg, Bloomsburg, PA, USA
| | | | - Frederick W Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
8
|
Du YJ, Lu ZW, Li KD, Wang YY, Wu H, Huang RG, Jin X, Wang YY, Wang J, Geng AY, Li BZ. No causal association between pneumoconiosis and three inflammatory immune diseases: a Mendelian randomization study. Front Public Health 2024; 12:1373044. [PMID: 38601492 PMCID: PMC11004292 DOI: 10.3389/fpubh.2024.1373044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Objectives To investigate the causal relationships between pneumoconiosis and rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and gout. Methods The random-effects inverse variance weighted (IVW) approach was utilized to explore the causal effects of the instrumental variables (IVs). Sensitivity analyses using the MR-Egger and weighted median (WM) methods were did to investigate horizontal pleiotropy. A leave-one-out analysis was used to avoid the bias resulting from single-nucleotide polymorphisms (SNPs). Results There was no causal association between pneumoconiosis and SLE, RA or gout in the European population [OR = 1.01, 95% CI: 0.94-1.10, p = 0.74; OR = 1.00, 95% CI: 0.999-1.000, p = 0.50; OR = 1.00, 95% CI: 1.000-1.001, p = 0.55]. Causal relationships were also not found in pneumoconiosis due to asbestos and other mineral fibers and SLE, RA and gout [OR = 1.01, 95% CI: 0.96-1.07, p = 0.66; OR = 1.00, 95% CI: 1.00-1.00, p = 0.68; OR = 1.00, 95% CI: 1.00-1.00, p = 0.20]. Conclusion Our study suggests that pneumoconiosis may have no causal relationship with the three inflammatory immune diseases.
Collapse
Affiliation(s)
- Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Zhang-Wei Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Yi-Yuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - An-Yi Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Zhou S, Li Y, Sun W, Ma D, Liu Y, Cheng D, Li G, Ni C. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis. J Biomed Res 2024; 38:163-174. [PMID: 38529638 PMCID: PMC11001589 DOI: 10.7555/jbr.37.20220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 03/27/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Biomedical Publications Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Morin L, Lecureur V, Lescoat A. Results from omic approaches in rat or mouse models exposed to inhaled crystalline silica: a systematic review. Part Fibre Toxicol 2024; 21:10. [PMID: 38429797 PMCID: PMC10905840 DOI: 10.1186/s12989-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
- Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| |
Collapse
|
11
|
Chauhan PS, Benninghoff AD, Favor OK, Wagner JG, Lewandowski RP, Rajasinghe LD, Li QZ, Harkema JR, Pestka JJ. Dietary docosahexaenoic acid supplementation inhibits acute pulmonary transcriptional and autoantibody responses to a single crystalline silica exposure in lupus-prone mice. Front Immunol 2024; 15:1275265. [PMID: 38361937 PMCID: PMC10867581 DOI: 10.3389/fimmu.2024.1275265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Workplace exposure to respirable crystalline silica (cSiO2) has been epidemiologically linked to lupus. Consistent with this, repeated subchronic intranasal cSiO2 instillation in lupus-prone NZBWF1 mice induces inflammation-/autoimmune-related gene expression, ectopic lymphoid tissue (ELT), autoantibody (AAb) production in the lung within 5 to 13 wk followed systemic AAb increases and accelerated onset and progression of glomerulonephritis within 13 to 17 wk. Interestingly, dietary docosahexaenoic acid (DHA) supplementation suppresses these pathologic effects, but the underlying molecular mechanisms remain unclear. Methods This study aimed to test the hypothesis that dietary DHA supplementation impacts acute transcriptional and autoantibody responses in the lungs of female NZBWF1 mice 1 and 4 wk after a single high-dose cSiO2 challenge. Groups of mice were initially fed a control (Con) diet or a DHA-containing diet (10 g/kg). Cohorts of Con- and DHA-fed were subjected to a single intranasal instillation of 2.5 mg cSiO2 in a saline vehicle (Veh), while a Con-fed cohort was instilled with Veh only. At 1 and 4 wk post-instillation (PI), we compared cSiO2's effects on innate-/autoimmune-related gene expression and autoantibody (AAb) in lavage fluid/lungs of Con- and DHA-fed mice and related these findings to inflammatory cell profiles, histopathology, cell death, and cytokine/chemokine production. Results DHA partially alleviated cSiO2-induced alterations in total immune cell and lymphocyte counts in lung lavage fluid. cSiO2-triggered dead cell accumulation and levels of inflammation-associated cytokines and IFN-stimulated chemokines were more pronounced in Con-fed mice than DHA-fed mice. Targeted multiplex transcriptome analysis revealed substantial upregulation of genes associated with autoimmune pathways in Con-fed mice in response to cSiO2 that were suppressed in DHA-fed mice. Pathway analysis indicated that DHA inhibited cSiO2 induction of proinflammatory and IFN-regulated gene networks, affecting key upstream regulators (e.g., TNFα, IL-1β, IFNAR, and IFNγ). Finally, cSiO2-triggered AAb responses were suppressed in DHA-fed mice. Discussion Taken together, DHA mitigated cSiO2-induced upregulation of pathways associated with proinflammatory and IFN-regulated gene responses within 1 wk and reduced AAb responses by 4 wk. These findings suggest that the acute short-term model employed here holds substantial promise for efficient elucidation of the molecular mechanisms through which omega-3 PUFAs exert protective effects against cSiO2-induced autoimmunity.
Collapse
Affiliation(s)
- Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Olivia K. Favor
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Jack R. Harkema
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Wang M, Rajkumar S, Lai Y, Liu X, He J, Ishikawa T, Nallapothula D, Singh RR. Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis. Front Immunol 2023; 14:1204777. [PMID: 38022566 PMCID: PMC10644380 DOI: 10.3389/fimmu.2023.1204777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP(β-), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Peking University Shenzhen Hosiptal, Shenzhen, China
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Snehin Rajkumar
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
13
|
Xu W, Ma R, Wang J, Sun D, Yu S, Ye Q. Pneumoconiosis combined with connective tissue disease in China: a cross-sectional study. BMJ Open 2023; 13:e068628. [PMID: 37012009 PMCID: PMC10083820 DOI: 10.1136/bmjopen-2022-068628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
OBJECTIVE To describe the prevalence, clinical features and potential risk factors of pneumoconiosis in combination with connective tissue disease (CTD) or positive autoantibodies. DESIGN Cross-sectional study. SETTING A retrospective study of adults recruited in China between December 2016 and November 2021. PARTICIPANTS A total of 931 patients with pneumoconiosis at Beijing Chao-Yang Hospital were enrolled in this study; of these, 580 patients were included in the final analysis. MAIN OUTCOME MEASURES Pneumoconiosis combined with CTD or positive autoantibodies was a major adverse outcome. RESULTS In total, 13.8% (80/580) of the patients had combined pneumoconiosis with CTD, among whom the prevalence of CTD was 18.3% (46/251) in asbestosis and 11.4% (34/298) in silicosis/coal mine workers' pneumoconiosis. In comparison to the general Chinese adult population, the relative risk of various CTD in pneumoconiosis, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary Sjögren's syndrome, idiopathic inflammatory myopathy and antineutrophil cytoplasmic antibodies-associated vasculitis, were 11.85, 12.12, 127.40, 4.23, 9.94 and 644.66, respectively. Multivariate analysis revealed that female sex (OR 2.55, 95% CI 1.56 to 4.17) and a later stage of pneumoconiosis (OR 2.04, 95% CI 1.24 to 3.34) were the independent risk factors for CTD in patients with pneumoconiosis (all p<0.050). CONCLUSION CTD is highly prevalent in patients with pneumoconiosis, especially in patients of asbestosis, and silicosis/coal mine workers' pneumoconiosis. Female sex and later stages of pneumoconiosis are associated with an increased risk of combined with CTD.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Wuhan Pulmonary Hospital, Wuhan, China
| | - Ruimin Ma
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jingwei Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Di Sun
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiwen Yu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Leinardi R, Pochet A, Uwambayinema F, Yakoub Y, Quesniaux V, Ryffel B, Broz P, Pavan C, Huaux F. Gasdermin D membrane pores orchestrate IL-1α secretion from necrotic macrophages after NFS-rich silica exposure. Arch Toxicol 2023; 97:1001-1015. [PMID: 36840754 PMCID: PMC10025216 DOI: 10.1007/s00204-023-03463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
IL-1α is an intracellular danger signal (DAMP) released by macrophages contributing to the development of silica-induced lung inflammation. The exact molecular mechanism orchestrating IL-1α extracellular release from particle-exposed macrophages is still unclear. To delineate this process, murine J774 and bone-marrow derived macrophages were exposed to increasing concentrations (1-40 cm2/ml) of a set of amorphous and crystalline silica particles with different surface chemical features. In particular, these characteristics include the content of nearly free silanols (NFS), a silanol population responsible for silica cytotoxicity recently identified. We first observed de novo stocks of IL-1α in macrophages after silica internalization regardless of particle physico-chemical characteristics and cell stress. IL-1α intracellular production and accumulation were observed by exposing macrophages to biologically-inert or cytotoxic crystalline and amorphous silicas. In contrast, only NFS-rich reactive silica particles triggered IL-1α release into the extracellular milieu from necrotic macrophages. We demonstrate that IL-1α is actively secreted through the formation of gasdermin D (GSDMD) pores in the plasma membrane and not passively released after macrophage plasma membrane lysis. Our findings indicate that the GSDMD pore-dependent secretion of IL-1α stock from macrophages solely depends on cytotoxicity induced by NFS-rich silica. This new regulated process represents a key first event in the mechanism of silica toxicity, suitable to refine the existing adverse outcome pathway (AOP) for predicting the inflammatory activity of silicas.
Collapse
Affiliation(s)
- Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Amandine Pochet
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Francine Uwambayinema
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans and Artimmune, Orléans, France
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans and Artimmune, Orléans, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Chemistry, “G. Scansetti” Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Sun Q, Tao X, Li B, Cao H, Chen H, Zou Y, Tao H, Mu M, Wang W, Xu K. C-X-C-Chemokine-Receptor-Type-4 Inhibitor AMD3100 Attenuates Pulmonary Inflammation and Fibrosis in Silicotic Mice. J Inflamm Res 2022; 15:5827-5843. [PMID: 36238768 PMCID: PMC9553317 DOI: 10.2147/jir.s372751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Silicosis is a severe pulmonary disease caused by inhaling dust containing crystalline silica. The progression of silicosis to pulmonary fibrosis is usually unavoidable. Recent studies have revealed positivity for the overexpression of C-X-C chemokine receptor type 4 (CXCR4) in pulmonary fibrosis and shown that the CXCR4 inhibitor AMD3100 attenuated pulmonary fibrosis after bleomycin challenge and paraquat exposure. However, it is unclear whether AMD3100 reduces crystalline silica-induced pulmonary fibrosis. Methods C57BL/6 male mice were instilled intranasally with a single dose of crystalline silica (12 mg/60 μL) to establish an acute silicosis mouse model. Twelve hours later, the mice were injected intraperitoneally with 5 mg/kg AMD3100 or control solution. Then, the mice were weighed daily and sacrificed on day 7, 14, or 28 to collect lung tissue and peripheral blood. Western blotting was also applied to determine the level of CXCR4, while different histological techniques were used to assess pulmonary inflammation and fibrosis. In addition, the level of B cells in peripheral blood was measured by flow cytometry. Results CXCR4 and its ligand CXCL12 were upregulated in the lung tissues of crystalline silica-exposed mice. Blocking CXCR4 with AMD3100 suppressed the upregulation of CXCR4/CXCL12, reduced the severity of lung injury, and prevented weight loss. It also inhibited neutrophil infiltration at inflammatory sites and neutrophil extracellular trap formation, as well as reduced B-lymphocyte aggregates in the lung. Additionally, it decreased the recruitment of circulating fibrocytes (CD45+collagen I+CXCR4+) to the lung and the deposition of collagen I and α-smooth muscle actin in lung tissue. AMD3100 also increased the level of B cells in peripheral blood, preventing circulating B cells from migrating to the injured lungs. Conclusion Blocking CXCR4 with AMD3100 delays pulmonary inflammation and fibrosis in a silicosis mouse model, suggesting the potential of AMD3100 as a drug for treating silicosis.
Collapse
Affiliation(s)
- Qixian Sun
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Xinrong Tao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China,Correspondence: Xinrong Tao, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China, Email
| | - Bing Li
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Hangbing Cao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Haoming Chen
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Yuanjie Zou
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Huihui Tao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Min Mu
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Wenyang Wang
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Keyi Xu
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| |
Collapse
|
16
|
Fee L, Kumar A, Tighe RM, Foster MH. Autoreactive B cells recruited to lungs by silica exposure contribute to local autoantibody production in autoimmune-prone BXSB and B cell receptor transgenic mice. Front Immunol 2022; 13:933360. [PMID: 35983030 PMCID: PMC9378786 DOI: 10.3389/fimmu.2022.933360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Occupational exposure to inhaled crystalline silica dust (cSiO2) is linked to systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and anti-neutrophil cytoplasmic autoantibody vasculitis. Each disease has a characteristic autoantibody profile used in diagnosis and implicated in pathogenesis. A role for cSiO2 in modulating humoral autoimmunity in vivo is supported by findings in mice, where respirable cSiO2 induces ectopic lymphoid structures as well as inflammation in exposed lungs across genetically diverse backgrounds. In lupus-prone mice cSiO2 exposure also leads to early onset autoantibody production and accelerated disease. Elevated autoantibody levels in bronchoalveolar lavage fluid (BALF) and lung transcriptome analysis suggest that the lung is a hub of cSiO2-evoked autoimmune activity. However, mechanisms by which cSiO2 and lung microenvironments interact to promote autoantibody production remain unclear. We previously demonstrated elevated anti-DNA Ig in BALF but not in lung cell cultures from cSiO2-exposed C57BL/6 mice, suggesting that BALF autoantibodies did not arise locally in this non-autoimmune strain. Autoantibodies were also elevated in BALF of cSiO2-exposed lupus-prone BXSB mice. In this report we test the hypothesis that dysregulated autoreactive B cells recruited to cSiO2-exposed lungs in the context of autoimmune predisposition contribute to local autoantibody production. We found that anti-DNA and anti-myeloperoxidase (MPO) Ig were significantly elevated in cultures of TLR ligand-stimulated lung cells from cSiO2-exposed BXSB mice. To further explore the impact of strain genetic susceptibility versus B cell intrinsic dysfunction on cSiO2-recruited B cell fate, we used an anti-basement membrane autoantibody transgenic (autoAb Tg) mouse line termed M7. In M7 mice, autoAb Tg B cells are aberrantly regulated and escape from tolerance on the C57BL/6 background. Exposure to cSiO2 elicited prominent pulmonary B cell and T cell aggregates and autoAb Tg Ig were readily detected in lung cell culture supernatants. Taken together, diverse disease-relevant autoreactive B cells, including cells specific for DNA, MPO, and basement membrane, are recruited to lung ectopic lymphoid aggregates in response to cSiO2 instillation. B cells that escape tolerance can contribute to local autoantibody production. Our demonstration of significantly enhanced autoantibody induction by TLR ligands further suggests that a coordinated environmental co-exposure can magnify autoimmune vulnerability.
Collapse
Affiliation(s)
- Lanette Fee
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| | - Advika Kumar
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Robert M. Tighe
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| | - Mary H. Foster
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| |
Collapse
|
17
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
18
|
Leinardi R, Longo Sanchez-Calero C, Huaux F. Think Beyond Particle Cytotoxicity: When Self-Cellular Components Released After Immunogenic Cell Death Explain Chronic Disease Development. FRONTIERS IN TOXICOLOGY 2022; 4:887228. [PMID: 35846433 PMCID: PMC9284505 DOI: 10.3389/ftox.2022.887228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged perturbation of the immune system following the release of a plethora of self-molecules (known as damage-associated molecular patterns, DAMPs) by stressed or dying cells triggers acute and chronic pathological responses. DAMPs are commonly released after plasma membrane damage or complete rupture due to immunogenic cell death (ICD), upon numerous stressors including infectious and toxic agents. The set of DAMPs released after ICD include mature proinflammatory cytokines and alarmins, but also polymeric macromolecules. These self-intracellular components are recognized by injured and healthy surrounding cells via innate receptors, and induce upregulation of stress-response mechanisms, including inflammation. In this review, by overstepping the simple toxicological evaluation, we apply ICD and DAMP concepts to silica cytotoxicity, providing new insights on the mechanisms driving the progress and/or the exacerbation of certain SiO2–related pathologies. Finally, by proposing self-DNA as new crucial DAMP, we aim to pave the way for the development of innovative and easy-to-perform predictive tests to better identify the hazard of fine and ultrafine silica particles. Importantly, such mechanisms could be extended to nano/micro plastics and diesel particles, providing strategic advice and reports on their health issues.
Collapse
|
19
|
Zhang J, Yuan C, Li E, Guo Y, Cui J, Liu H, Hao X, Guo L. The significance of serum S100 calcium-binding protein A4 in silicosis. BMC Pulm Med 2022; 22:127. [PMID: 35379204 PMCID: PMC8981710 DOI: 10.1186/s12890-022-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Silicosis is a chronic occupational pulmonary disease characterized by persistent inflammation and irreversible fibrosis. Considerable evidences now indicate that S100 calcium-binding protein A4 (S100A4) has been associated with fibrotic diseases. However, the role of S100A4 in silicosis is still unclear. Methods In this study, serum levels of S100A4, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in patients with silicosis (n = 42) and control group (CG, n = 12) were measured by ELISA. S100A4 expression in lung tissues and primary alveolar macrophages (AMs) of mice with and without silicosis was detected by immunohistochemistry (IHC)/real-time PCR. The correlations between S100A4 and cytokines or lung function were assessed by Spearman's rank correlation analyses. Results Compared with CG, the levels of S100A4 were significantly increased in silicosis patients (70.84 (46.22, 102.46) ng/ml vs (49.84 (42.86, 60.02) ng/ml). The secretions of TGF-β1, CTGF, IL-6 and TNF-α in silicosis group were significantly higher than that in control group (p < 0.05). Serum S100A4 levels were positively correlated with TGF-β1 and IL-6, while were negatively correlated with lung function parameters including percentage of predicted forced vital capacity (FVC%pre), maximum vital capacity (Vcmax), deep inspiratory capacity (IC) and peak expiratory flow at 75% of vital capacity (PEF75). In receiver operating characteristic (ROC) analyses, S100A4 > 61.7 ng/ml had 63.4% sensitivity and 83.3% specificity for silicosis, and the area under the curve (AUC) was 0.707. Furthermore, immunostaining of lung tissues showed the accumulation of S100A4-positive cells in the areas of nodules of silicotic mice. The mRNA expression of S100A4 in the lung tissues and AMs of silicotic mice were significantly higher than controls. Conclusion These data suggested that increased S100A4 might contribute to the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Cuifang Yuan
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Enhong Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yiming Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jie Cui
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaohui Hao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lingli Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
20
|
Rajasinghe LD, Bates MA, Benninghoff AD, Wierenga KA, Harkema JR, Pestka JJ. Silica Induction of Diverse Inflammatory Proteome in Lungs of Lupus-Prone Mice Quelled by Dietary Docosahexaenoic Acid Supplementation. Front Immunol 2022; 12:781446. [PMID: 35126352 PMCID: PMC8813772 DOI: 10.3389/fimmu.2021.781446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Repeated short-term intranasal instillation of lupus-prone mice with crystalline silica (cSiO2) induces inflammatory gene expression and ectopic lymphoid neogenesis in the lung, leading to early onset of systemic autoimmunity and rapid progression to glomerulonephritis. These responses are suppressed by dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA). Here, we tested the hypothesis that dietary DHA supplementation suppresses cSiO2-induced inflammatory proteins in bronchoalveolar alveolar lavage fluid (BALF) and plasma of lupus-prone mice. Archived tissue fluid samples were used from a prior investigation in which 6 wk-old lupus-prone female NZBWF1 mice were fed isocaloric diets containing 0 or 10 g/kg DHA for 2 wks and then intranasally instilled with 1 mg cSiO2 or vehicle once weekly for 4 wks. Cohorts were terminated at 1, 5, 9 or 13 wk post-instillation (PI). BALF and plasma from each cohort were analyzed by high density multiplex array profiling of 200 inflammatory proteins. cSiO2 time-dependently induced increases in the BALF protein signatures that were highly reflective of unresolved lung inflammation, although responses in the plasma were much less robust. Induced proteins in BALF included chemokines (e.g., MIP-2, MCP-5), enzymes (e.g., MMP-10, granzyme B), adhesion molecules (e.g., sE-selectin, sVCAM-1), co-stimulatory molecules (e.g., sCD40L, sCD48), TNF superfamily proteins (e.g., sTNFRI, sBAFF-R), growth factors (e.g., IGF-1, IGFBP-3), and signal transduction proteins (e.g., MFG-E8, FcgRIIB), many of which were blocked or delayed by DHA supplementation. The BALF inflammatory proteome correlated positively with prior measurements of gene expression, pulmonary ectopic lymphoid tissue neogenesis, and induction of autoantibodies in the lungs of the control and treatment groups. Ingenuity Pathway Analysis (IPA) revealed that IL-1β, TNF-α, and IL-6 were among the top upstream regulators of the cSiO2-induced protein response. Furthermore, DHA's effects were associated with downregulation of cSiO2-induced pathways involving i) inhibition of ARE-mediated mRNA decay, ii) bacterial and viral pattern recognition receptor activation, or iii) TREM1, STAT3, NF-κB, and VEGF signaling and with upregulation of PPAR, LXR/RXR and PPARα/RXRα signaling. Altogether, these preclinical findings further support the contention that dietary DHA supplementation could be applicable as an intervention against inflammation-driven autoimmune triggering by cSiO2 or potentially other environmental agents.
Collapse
Affiliation(s)
- Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Janssen LMF, Ghosh M, Lemaire F, Michael Pollard K, Hoet PHM. Exposure to silicates and systemic autoimmune-related outcomes in rodents: a systematic review. Part Fibre Toxicol 2022; 19:4. [PMID: 34996462 PMCID: PMC8739508 DOI: 10.1186/s12989-021-00439-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Autoimmunity can result from the interplay between genetic background and effects of environmental and/or occupational exposure to hazardous materials. Several compounds, including silica dust, have been linked with systemic autoimmunity and systemic autoimmune diseases, based on epidemiological evidence. For asbestos, a strong link with systemic autoimmune diseases does not yet exist, however, several studies have documented features of autoimmunity following asbestos exposure. Even so, human studies are limited in their ability to identify and examine isolated exposures, making it difficult to demonstrate causation or to assess pathogenic mechanisms. Therefore, this systematic review examines the existing animal evidence regarding autoimmunity and exposure to silicates (silica and asbestos). METHODS PubMed and EMBASE were systematically searched for peer-reviewed studies examining systemic autoimmune disease-related outcomes after silicate exposure in rodents. Literature databases were searched up to September 2021 for studies written in English and where the full text was available. Search strings were established based on a PECO (Population, Exposure, Comparator, Outcome) format. After title, abstract, and full-text screening, thirty-four studies were identified for further analysis. Quality assessment through ToxR tool and qualitative analysis of the results was performed. RESULTS Although there was significant heterogeneity in the included studies in terms of exposure protocol and genetic background of the rodent models used, it was noted that both genetic background and exposure to silicates [(crystalline) silica and asbestos] are highly relevant to the development of (sub-) clinical systemic autoimmune disease. CONCLUSION Parallels were observed between the findings from the animal (this review) and human (epidemiological) studies, arguing that experimental animal models are valuable tools for examining exacerbation or development of autoimmune disease after silicate exposure. However, genetic background and synergism between exposures should be considered in future studies.
Collapse
Affiliation(s)
- Lisa M F Janssen
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Frauke Lemaire
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - K Michael Pollard
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - Peter H M Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Li B, Mu M, Sun Q, Cao H, Liu Q, Liu J, Zhang J, Xu K, Hu D, Tao X, Wang J. A suitable silicosis mouse model was constructed by repeated inhalation of silica dust via nose. Toxicol Lett 2021; 353:1-12. [PMID: 34626813 DOI: 10.1016/j.toxlet.2021.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Silicosis as the serious occupational disease is highly necessary to construct a suitable mouse model for disclosing mechanism of occurrence and development in this disease. Here, the volume-effect relationship and volume-based survival curves in mice who inhaled silica suspension intranasally were analyzed. Notable, the optimal volume 80 μl repeated-inhalation by nose to silica suspension in the inbred mouse C57BL/6 J with the highest susceptibility to silicosis led to a great entrance into the lung and a high survival rate after instillation. After repeated-exposure to 20 mg/mL, 80 μl silica for 16 days and then fed without silica exposure until 31 days, weight of mice showed a trend of first decrease and then recover. Moreover, the degree of pulmonary inflammation and fibrosis in mice were analyzed by pathological and immunohistochemistry staining. Transforming growth factor-beta (TGF-β), smooth muscle alpha-actin (α-SMA) and collagen type-I (collagen I, Col-I) were significantly increased in the silica-exposed mouse lung at post-exposure day 16 compared with the controls. Sirius red stain and Micro-CT analysis showed that lung fibrosis formed at post-exposure day 31. This study highlights the critical importance of perfusion volume and repeated nasal drops in inducing inflammatory response and pulmonary fibrosis in silicosis.
Collapse
Affiliation(s)
- Bing Li
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China.
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China.
| | - Qixian Sun
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Hangbing Cao
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Qiang Liu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Jiaxin Liu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Jinfeng Zhang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China
| | - Keyi Xu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China.
| | - Jianhua Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui University of Science and Technology of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|