1
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2024:1-17. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
3
|
Pitea M, Canale FA, Porto G, Verduci C, Utano G, Policastro G, Alati C, Santoro L, Imbalzano L, Martino M. The Role of MicroRNA in Graft-Versus-Host-Disease: A Review. Genes (Basel) 2023; 14:1796. [PMID: 37761936 PMCID: PMC10530280 DOI: 10.3390/genes14091796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a clinically challenging modality for the treatment of many hematologic diseases such as leukemia, lymphoma, and myeloma. Graft-versus-host disease (GVHD) is a common complication after allo-HSCT and remains a major cause of morbidity and mortality, limiting the success of a potentially curative transplant. Several microRNAs (miRNAs) have recently been shown to impact the biology of GVHD. They are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation, and contribute to the pathological function of T-cells during GvHD. Here, we review the key role of miRNAs contributing to the GvHD; their detection might be an interesting possibility in the early diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Martina Pitea
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Filippo Antonio Canale
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Gaetana Porto
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Chiara Verduci
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giovanna Utano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giorgia Policastro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Caterina Alati
- Hematology Unit, Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Ludovica Santoro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Lucrezia Imbalzano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Massimo Martino
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| |
Collapse
|
4
|
Chen J, Wang M, Zhang Y, Zhu F, Xu Y, Yi G, Zheng R, Wu B. Platelet extracellular vesicles: Darkness and light of autoimmune diseases. Int Rev Immunol 2023; 43:63-73. [PMID: 37350464 DOI: 10.1080/08830185.2023.2225551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune diseases are characterized by a breakdown of immune tolerance, leading to inflammation and irreversible end-organ tissue damage. Platelet extracellular vesicles are cellular elements that are important in blood circulation and actively participate in inflammatory and immune responses through intercellular communication and interactions between inflammatory cells, immune cells, and their secreted factors. Therefore, platelet extracellular vesicles are the "accelerator" in the pathological process of autoimmune diseases; however, this robust set of functions of platelet extracellular vesicles has also prompted new advances in therapeutic strategies for autoimmune diseases. In this review, we update fundamental mechanisms based on platelet extracellular vesicles communication function in autoimmune diseases. We also focus on the potential role of platelet extracellular vesicles for the treatment of autoimmune diseases. Some recent studies have found that antiplatelet aggregation drugs, specific biological agents can reduce the release of platelet extracellular vesicles. Platelet extracellular vesicles can also serve as vehicles to deliver drugs to targeted cells. It seems that we can try to silence or inhibit microRNA carried by platelet extracellular vesicles transcription and regulate the target cells to treat autoimmune diseases as platelet extracellular vesicles can transfer microRNA to other cells to regulate immune-inflammatory responses. Hopefully, the information presented here will provide hope for patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jingru Chen
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Ying Zhang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Fenglin Zhu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Yanqiu Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Guoxiang Yi
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Runxiu Zheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Kargutkar N, Hariharan P, Nadkarni A. Dynamic interplay of microRNA in diseases and therapeutic. Clin Genet 2023; 103:268-276. [PMID: 36310341 PMCID: PMC9874567 DOI: 10.1111/cge.14256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs are the major class of small non-coding RNAs, evolutionary conserved post-transcriptional regulators of gene expression. Since their discovery in 1993, they have been implicated as master regulators in numerous cellular processes. MicroRNA (miRNA)s regulate gene expression by attenuation and/or mRNA degradation and are commonly associated with cell development, differentiation, and homeostasis. Extensive research in past two decades has provided new insights into the potential implications of miRNA in the onset, progression, and therapeutic nature of miRNAs in disease manifestation. Owing to the novel discoveries, "miRNAs" would probably pave a new direction in therapeutic research. However, "micro" in length miRNAs have attracted considerable attention in numerous other fields. Understanding the functionality of miRNAs, in this review article, we discussed the mechanistic role of miRNAs in human diseases and have outlined most of the recent published work in clinical therapeutics. We have constructed different network models for miRNA and its targets which made us understand their interrelationship and association with diseases. Future research would surely overcome challenges and would introduce new strategies for the utility of miRNAs in a broader setting.
Collapse
Affiliation(s)
- Neha Kargutkar
- National Institute of Immunohaematology (ICMR)MumbaiIndia
| | | | - Anita Nadkarni
- National Institute of Immunohaematology (ICMR)MumbaiIndia
| |
Collapse
|
7
|
Balakrishnan B, Kulkarni UP, Pai AA, Illangeswaran RSS, Mohanan E, Mathews V, George B, Balasubramanian P. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol 2023; 14:1100306. [PMID: 36817455 PMCID: PMC9932777 DOI: 10.3389/fimmu.2023.1100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic cell transplantation is an established curative treatment option for various hematological malignant, and non-malignant diseases. However, the success of HCT is still limited by life-threatening early complications post-HCT, such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome (SOS), and transplant-associated microangiopathy, to name a few. A decade of research in the discovery and validation of novel blood-based biomarkers aims to manage these early complications by using them for diagnosis or prognosis. Advances in this field have also led to predictive biomarkers to identify patients' likelihood of response to therapy. Although biomarkers have been extensively evaluated for different complications, these are yet to be used in routine clinical practice. This review provides a detailed summary of various biomarkers for individual early complications post-HCT, their discovery, validation, ongoing clinical trials, and their limitations. Furthermore, this review also provides insights into the biology of biomarkers and the challenge of obtaining a universal cut-off value for biomarkers.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
8
|
Bojanic I, Worel N, Pacini CP, Stary G, Piekarska A, Flinn AM, Schell KJ, Gennery AR, Knobler R, Lacerda JF, Greinix HT, Pulanic D, Crossland RE. Extracorporeal photopheresis as an immunomodulatory treatment modality for chronic GvHD and the importance of emerging biomarkers. Front Immunol 2023; 14:1086006. [PMID: 36875063 PMCID: PMC9981637 DOI: 10.3389/fimmu.2023.1086006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is the treatment of choice for malignant haematological diseases. Despite continuous improvements in pre- and post-transplantation procedures, the applicability of allo-HSCT is limited by life-threatening complications such as graft-versus-host disease (GvHD), engraftment failure, and opportunistic infections. Extracorporeal photopheresis (ECP) is used to treat steroid resistant GvHD with significant success. However, the molecular mechanisms driving its immunomodulatory action, whilst preserving immune function, require further understanding. As ECP is safe to administer with few significant adverse effects, it has the potential for earlier use in the post-HSCT treatment of GvHD. Thus, further understanding the immunomodulatory mechanisms of ECP action may justify more timely use in clinical practice, as well as identify biomarkers for using ECP as first line or pre-emptive GvHD therapy. This review aims to discuss technical aspects and response to ECP, review ECP as an immunomodulatory treatment modality for chronic GvHD including the effect on regulatory T cells and circulating vs. tissue-resident immune cells and consider the importance of emerging biomarkers for ECP response.
Collapse
Affiliation(s)
- Ines Bojanic
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Carolina P Pacini
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kimberly J Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Robert Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - João F Lacerda
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Drazen Pulanic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Rachel E Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Fujii S, Miura Y. Immunomodulatory and Regenerative Effects of MSC-Derived Extracellular Vesicles to Treat Acute GVHD. Stem Cells 2022; 40:977-990. [PMID: 35930478 DOI: 10.1093/stmcls/sxac057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
The development of human mesenchymal stromal/stem cell (MSC)-based therapy has focused on exploring biological nanoparticles secreted from MSCs. There is emerging evidence that the immunomodulatory and regenerative effects of MSCs can be recapitulated by extracellular vesicles released from MSCs (MSC-EVs). Off-the-shelf allogeneic human MSC products are clinically available to treat acute graft-versus-host disease (GVHD), but real-world data have revealed the limitations of these products as well as their feasibility, safety, and efficacy. MSC-EVs may have advantages over parental MSCs as drugs because of their distinguished biodistribution and importantly dose-dependent therapeutic effects. Recent research has shed light on the role of microRNAs in the mode-of-action of MSC-EVs. A group of specific microRNAs alone or in combination with membrane proteins, membrane lipids, and soluble factors present in MSC-EVs play key roles in the regulation of GVHD. In this concise review, we review the regulation of T-cell-mediated adaptive immunity and antigen-presenting cell-mediated innate immunity by MSC-EVs and the direct regenerative effects on damaged cells in association with the immunopathology of GVHD.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuo Miura
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
10
|
Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft-versus-host disease (GVHD). J Cell Physiol 2022; 237:3480-3495. [PMID: 35842836 DOI: 10.1002/jcp.30830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a functional therapy for a plethora of hematologic malignancies and immune disorders. Graft-versus-host disease (GVHD), on the other hand, is one of the major complications ahead of a successful HSCT, contributing to transplant-associated morbidity and mortality. Notably, little is known about the underlying mechanism of this event; therefore, exploring precise biomarkers and uncovering the molecular pathogenesis of GVHD is valuable for early diagnosis and treatment optimization. Thanks to the advances in sequencing techniques, the noncoding sequences of the human genome-formerly considered "junk"-are now identified as functional molecules. Noncoding RNAs (ncRNA) control cellular responses by regulating gene expression, and previous studies have shown that these tiny molecules, especially microRNAs (miRNAs), can affect allogeneic T cell responses in both animal models and clinical experiments. The present study gives an overview of the functions of various miRNAs in regulating T cell responses in GVHD. We also provide an outlook on miRNAs and long noncoding RNAs (lncRNAs) potential role in GVHD with the hope of providing a future research direction for expanding their application as the sensitive and noninvasive diagnostic or prognostic biomarkers and also the promising therapeutic targets for improving outcomes after allogeneic HSCT.
Collapse
Affiliation(s)
- Mahdi K Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mandujano-Tinoco EA, González-García F, Salgado RM, Abarca-Buis RF, Sanchez-Lopez JM, Carranza-Castro PH, Padilla L, Krötzsch E. miR-31, miR-155, and miR-221 expression profiles and their association with graft skin tolerance in a syngeneic vs. allogeneic murine skin transplantation model. J Burn Care Res 2022; 43:1160-1169. [PMID: 35018433 DOI: 10.1093/jbcr/irac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Grafting is the gold standard for the treatment of severe skin burns. Frequently, allogeneic tissue is the only transient option for wound coverage, but their use risks damage to surrounding tissues. MicroRNAs have been associated with acute rejection of different tissues/organs. In this study, we analyzed the expression of miR-31, miR-155, and miR-221 and associate it with graft tolerance or rejection using a murine full-thickness skin transplantation model. Recipient animals for the syngeneic and allogeneic groups were BALB/c and C57BL/6 mice, respectively; donor tissues were obtained from BALB/c mice. After 7 days post-transplantation (DPT), the recipient skin and grafts in the syngeneic group maintained most of their structural characteristics and transforming growth factor (TGF)β1 and TGFβ3 expression. Allografts were rejected early (Banff grades II and IV at 3 and 7 DPT, respectively), showing damage to the skin architecture and alteration of TGFβ3 distribution. miRNAs skin expression changed in both mouse strains; miR-31 expression increased in the recipient skin of syngeneic grafts relative to that of allogeneic grafts at 3 and 7 DPT (p < 0.05 and p < 0.01, respectively); miR-221 expression increased in the same grafts at 7 DPT (p < 0.05). The only significant difference between donor tissues was observed for miR-155 expression at 7 DPT which was associated with necrotic tissue. Only miR-31 and miR-221 levels were increased in the blood of BALB/c mice that received syngeneic grafts after 7 DPT. Our data suggest that local and systemic miR-31 and miR-221 overexpression are associated with graft tolerance.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención a Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Francisco González-García
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención a Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Rosa M Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención a Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención a Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | | | | | - Luis Padilla
- Department of Experimental Surgery, Centro Médico Nacional "20 de Noviembre", ISSSTE, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención a Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| |
Collapse
|