1
|
Bucciol G, Meyts I. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. J Allergy Clin Immunol 2023; 151:832-840. [PMID: 36841740 PMCID: PMC9951110 DOI: 10.1016/j.jaci.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic, global sequencing efforts have led in the field of inborn errors of immunity, and inspired particularly by previous research on life-threatening influenza, they have revealed that known and novel inborn errors affecting type I interferon immunity underlie critical COVID-19 in up to 5% of cases. In addition, neutralizing autoantibodies against type I interferons have been identified in up to 20% of patients with critical COVID-19 who are older than 80 years and 20% of fatal cases, with a higher prevalence in men and individuals older than 70 years. Also, inborn errors impairing regulation of type I interferon responses and RNA degradation have been found as causes of multisystem inflammatory syndrome in children, a life-threatening hyperinflammatory condition complicating otherwise mild initial SARS-CoV-2 infection in children and young adults. Better understanding of these immunologic mechanisms can aid in designing treatments for severe COVID-19, multisystem inflammatory syndrome in children, long COVID, and neuro-COVID.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium.
| |
Collapse
|
2
|
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, Focosi D, Casadevall A, Joyner MJ. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw Open 2023; 6:e2250647. [PMID: 36633846 PMCID: PMC9857047 DOI: 10.1001/jamanetworkopen.2022.50647] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023] Open
Abstract
Importance Patients who are immunocompromised have increased risk for morbidity and mortality associated with coronavirus disease 2019 (COVID-19) because they less frequently mount antibody responses to vaccines. Although neutralizing anti-spike monoclonal-antibody treatment has been widely used to treat COVID-19, evolutions of SARS-CoV-2 have been associated with monoclonal antibody-resistant SARS-CoV-2 variants and greater virulence and transmissibility of SARS-CoV-2. Thus, the therapeutic use of COVID-19 convalescent plasma has increased on the presumption that such plasma contains potentially therapeutic antibodies to SARS-CoV-2 that can be passively transferred to the plasma recipient. Objective To assess the growing number of reports of clinical experiences of patients with COVID-19 who are immunocompromised and treated with specific neutralizing antibodies via COVID-19 convalescent plasma transfusion. Data Sources On August 12, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma use in patients who are immunocompromised. Study Selection Randomized clinical trials, matched cohort studies, and case report or series on COVID-19 convalescent plasma use in patients who are immunocompromised were included. The electronic search yielded 462 unique records, of which 199 were considered for full-text screening. Data Extraction and Synthesis The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 3 independent reviewers in duplicate and pooled. Main Outcomes and Meaures The prespecified end point was all-cause mortality after COVID-19 convalescent plasma transfusion; exploratory subgroup analyses were performed based on putative factors associated with the potential mortality benefit of convalescent plasma. Results This systematic review and meta-analysis included 3 randomized clinical trials enrolling 1487 participants and 5 controlled studies. Additionally, 125 case series or reports enrolling 265 participants and 13 uncontrolled large case series enrolling 358 participants were included. Separate meta-analyses, using models both stratified and pooled by study type (ie, randomized clinical trials and matched cohort studies), demonstrated that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for the amalgam of both randomized clinical trials and matched cohort studies (risk ratio [RR], 0.63 [95% CI, 0.50-0.79]). Conclusions and Relevance These findings suggest that transfusion of COVID-19 convalescent plasma is associated with mortality benefit for patients who are immunocompromised and have COVID-19.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Mario Cruciani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Matteo Zani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Freise NF, Gliga S, Fischer J, Lübke N, Lutterbeck M, Schöler M, Bölke E, Orth HM, Feldt T, Roemmele C, Wilke D, Schneider J, Wille K, Hohmann C, Strauss R, Hower M, Ruf A, Schubert J, Isberner N, Stecher M, Pilgram L, Vehreschild JJ, Hanses F, Luedde T, Jensen B, Jung N, Göpel S, Westhoff T, Hohenstein B, Rothfuss K, Rieg S, Ruethrich MM, Rupp J, Hanses F, Luedde T, Jensen B. Convalescent plasma treatment for SARS-CoV-2 infected high-risk patients: a matched pair analysis to the LEOSS cohort. Sci Rep 2022; 12:19035. [PMID: 36351986 PMCID: PMC9643921 DOI: 10.1038/s41598-022-23200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Establishing the optimal treatment for COVID-19 patients remains challenging. Specifically, immunocompromised and pre-diseased patients are at high risk for severe disease course and face limited therapeutic options. Convalescent plasma (CP) has been considered as therapeutic approach, but reliable data are lacking, especially for high-risk patients. We performed a retrospective analysis of 55 hospitalized COVID-19 patients from University Hospital Duesseldorf (UKD) at high risk for disease progression, in a substantial proportion due to immunosuppression from cancer, solid organ transplantation, autoimmune disease, dialysis. A matched-pairs analysis (1:4) was performed with 220 patients from the Lean European Open Survey on SARS-CoV-2-infected Patients (LEOSS) who were treated or not treated with CP. Both cohorts had high mortality (UKD 41.8%, LEOSS 34.1%). A matched-pairs analysis showed no significant effect on mortality. CP administration before the formation of pulmonary infiltrates showed the lowest mortality in both cohorts (10%), whereas mortality in the complicated phase was 27.8%. CP administration during the critical phase revealed the highest mortality: UKD 60.9%, LEOSS 48.3%. In our cohort of COVID-19 patients with severe comorbidities CP did not significantly reduce mortality in a retrospective matched-pairs analysis. However, our data supports the concept that a reduction in mortality is achievable by early CP administration.
Collapse
Affiliation(s)
- Noemi F. Freise
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Smaranda Gliga
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Johannes Fischer
- grid.411327.20000 0001 2176 9917Department for Transfusion Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Nadine Lübke
- grid.411327.20000 0001 2176 9917Institute of Virology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias Lutterbeck
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Miriam Schöler
- grid.411327.20000 0001 2176 9917Heinrich Heine University, Duesseldorf, Germany
| | - Edwin Bölke
- grid.411327.20000 0001 2176 9917Department of Radiotherapy and Radio Oncology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Hans Martin Orth
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Torsten Feldt
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Roemmele
- grid.419801.50000 0000 9312 0220Department of Internal Medicine III, Gastroenterology and Infectious Diseases, University Hospital Augsburg, Augsburg, Germany
| | - Dominik Wilke
- grid.412282.f0000 0001 1091 2917University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jochen Schneider
- grid.6936.a0000000123222966Technical University of Munich, Munich, Germany
| | - Kai Wille
- grid.5570.70000 0004 0490 981XJohannes Wesling Klinikum Minden, Ruhr-University Bochum, Bochum, Germany
| | - Christian Hohmann
- grid.419807.30000 0004 0636 7065Department of Oncology and Infectious Diseases, Klinikum Bremen-Mitte, Bremen, Germany
| | - Richard Strauss
- grid.411668.c0000 0000 9935 6525University Hospital Erlangen, Erlangen, Germany
| | - Martin Hower
- grid.473616.10000 0001 2200 2697Department of Internal Medicine, Klinikum Dortmund gGmbH, Dortmund, Germany
| | - Andreas Ruf
- grid.419594.40000 0004 0391 0800Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Nora Isberner
- grid.411760.50000 0001 1378 7891Department of Internal Medicine II, Division of Infectious Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Melanie Stecher
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lisa Pilgram
- grid.6363.00000 0001 2218 4662Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | - Jörg J. Vehreschild
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | | | - Frank Hanses
- grid.411941.80000 0000 9194 7179Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Tom Luedde
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Björn Jensen
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders affecting immune host defense and immunoregulation. Considering the predisposition to develop severe and chronic infections, it is crucial to understand the clinical evolution of COVID-19 in IEI patients. This review analyzes clinical outcomes following SARS-CoV-2 infection, as well as response to COVID-19 vaccines in patients with IEI.
Collapse
Affiliation(s)
- Ottavia M. Delmonte
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Riccardo Castagnoli
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland,2Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy,3Pediatric Clinic, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luigi D. Notarangelo
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Hettle D, Hutchings S, Muir P, Moran E. Persistent SARS-CoV-2 infection in immunocompromised patients facilitates rapid viral evolution: Retrospective cohort study and literature review. CLINICAL INFECTION IN PRACTICE 2022; 16:100210. [PMID: 36405361 PMCID: PMC9666269 DOI: 10.1016/j.clinpr.2022.100210] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Most patients with SARS-CoV-2 are non-infectious within 2 weeks, though viral RNA may remain detectable for weeks. However there are reports of persistent SARS-CoV-2 infection, with viable virus and ongoing infectivity months after initial detection. Beyond individuals, viral evolution during persistent infections may be accelerated, driving emergence of mutations associated with viral variants of concern. These patients often do not meet inclusion criteria for clinical trials, meaning clinical and virologic characteristics, and optimal management strategies are poorly evidence-based. Methods We analysed cases of SARS-CoV-2 infection from a regional testing laboratory in South-West England between March 2020 and December 2021, with at least two SARS-CoV-2 positive samples separated by ≥ 56 days were identified. Excluding those with confirmed or likely re-infection, we identified patients with persistent infection, characterised by an ongoing clinical syndrome consistent with COVID-19 alongside monophyletic viral lineage of SARS-CoV-2. We examined clinical and virologic characteristics, treatment, and outcome. We further performed a literature review investigating cases of persistent SARS-CoV-2 infection, reviewing patient characteristics and treatment. Results We identified six patients with persistent SARS-CoV-2 infection. All were hypogammaglobulinaemic and had underlying haematological malignancy, with four having received B-cell depleting therapy. Evidence of viral evolution, including accrual of mutations associated with variants of concern, was demonstrated in five cases. Four patients ultimately cleared SARS-CoV-2. In two patients, clearance followed treatment with casirivimab/imdevimab. Both survived beyond thirty days following viral clearance, having experienced infections of 305- and 269-days duration respectively, after failed attempts at clearance with alternative therapies. We found 60 cases of confirmed persistent infection in the literature, with a further 31 probable cases. Of those, 80% of patients treated with monoclonal antibodies cleared SARS-CoV-2, and none died. Conclusion Haematological malignancy and patients receiving B-cell depleting therapies represent key groups at risk of persistent SARS-CoV-2 infection. Throughout persistent infection, SARS-CoV-2 can evolve rapidly, giving rise to significant mutations, including those implicated in variants of concern. Monoclonal antibodies appear to be a promising therapeutic option, potentially in combination with antivirals, crucial for individuals, and for public health.
Collapse
Affiliation(s)
- David Hettle
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Stephanie Hutchings
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- United Kingdom Health Security Agency (UKHSA) South-West Regional Laboratory, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Peter Muir
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- United Kingdom Health Security Agency (UKHSA) South-West Regional Laboratory, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Ed Moran
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| |
Collapse
|
6
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
7
|
Cords L, Knapp M, Woost R, Schulte S, Kummer S, Ackermann C, Beisel C, Peine S, Johansson AM, Kwok WWH, Günther T, Fischer N, Wittner M, Addo MM, Huber S, Schulze zur Wiesch J. High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4 + T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses 2022; 14:1265. [PMID: 35746736 PMCID: PMC9228841 DOI: 10.3390/v14061265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.
Collapse
Affiliation(s)
- Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Robin Woost
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Silke Kummer
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Christin Ackermann
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Claudia Beisel
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | | | - William Wai-Hung Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA; (A.M.J.); (W.W.-H.K.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
| | - Nicole Fischer
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused extreme concern for patients with inborn errors of immunity (IEIs). In the first 6 months of the pandemic, the case fatality rate among patients with IEIs resembled that of the general population (9%). This review aims at summarizing what we have learned about the course and outcome of coronavirus disease 2019 (COVID-19) in patients with different IEIs and what this can potentially teach us about the immune mechanisms that could confer protection or predisposition to severe disease. RECENT FINDINGS A total of 649 patients with IEI and COVID-19 have been reported in the last year and a half, spanning all groups of the International Union of Immunological Societies classification of IEIs. For most patients, the underlying IEI does not represent an independent risk factor for severe COVID-19. In fact, some IEI may even be protective against the severe disease due to impaired inflammation resulting in less immune-mediated collateral tissue damage. SUMMARY We review the characteristics of SARS-CoV-2 infection in a large number of patients with IEI. Overall, we found that combined immunodeficiencies, immune dysregulation disorders, and innate immune defects impairing type I interferon responses are associated with severe disease course.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst
- St Vincent's Clinical School, UNSW Sydney, Randwick, New South Wales, Australia
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|