1
|
Islam MZ, Jozipovic D, Lopez PA, Krych L, Correia BSB, Bertram HC, Hansen AK, Hansen CHF. Wild-Mouse-Derived Gut Microbiome Transplantation in Laboratory Mice Partly Alleviates House-Dust-Mite-Induced Allergic Airway Inflammation. Microorganisms 2024; 12:2499. [PMID: 39770703 PMCID: PMC11728220 DOI: 10.3390/microorganisms12122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Laboratory mice are instrumental for preclinical research but there are serious concerns that the use of a clean standardized environment for specific-pathogen-free (SPF) mice results in poor bench-to-bedside translation due to their immature immune system. The aim of the present study was to test the importance of the gut microbiota in wild vs. SPF mice for evaluating host immune responses in a house-dust-mite-induced allergic airway inflammation model without the influence of pathogens. The wild mouse microbiome reduced histopathological changes and TNF-α in the lungs and serum when transplanted to microbiota-depleted mice compared to mice transplanted with the microbiome from SPF mice. Moreover, the colonic gene expression of Gata3 was significantly lower in the wild microbiome-associated mice, whereas Muc1 was more highly expressed in both the ileum and colon. Intestinal microbiome and metabolomic analyses revealed distinct profiles associated with the wild-derived microbiome. The wild-mouse microbiome thus partly reduced sensitivity to house-dust-mite-induced allergic airway inflammation compared to the SPF mouse microbiome, and preclinical studies using this model should consider using both 'dirty' rewilded and SPF mice for testing new therapeutic compounds due to the significant effects of their respective microbiomes and derived metabolites on host immune responses.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| | - Pablo Atienza Lopez
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | | | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| |
Collapse
|
2
|
Kobaek‐Larsen M, Maschek S, Kolstrup SH, Højlund K, Nielsen DS, Hansen AK, Christensen LP. Effect of carrot intake on glucose tolerance, microbiota, and gene expression in a type 2 diabetes mouse model. Clin Transl Sci 2024; 17:e70090. [PMID: 39625861 PMCID: PMC11613996 DOI: 10.1111/cts.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Type 2 diabetes (T2D) pathophysiology involves insulin resistance (IR) and inadequate insulin secretion. Current T2D management includes dietary adjustments and/or oral medications such as thiazolidinediones (TZDs). Carrots have shown to contain bioactive acetylenic oxylipins that are partial agonists of the peroxisome proliferator-activated receptor γ (Pparg) that mimic the antidiabetic effect of TZDs without any adverse effects. TZDs exert hypoglycemic effects through activation of Pparg and through the regulation of the gut microbiota (GM) producing short-chain fatty acids (SCFAs), which impact glucose and energy homeostasis, promote intestinal gluconeogenesis, and influence insulin signaling pathways. This study investigated the metabolic effects of carrot intake in a T2D mouse model, elucidating underlying mechanisms. Mice were fed a low-fat diet (LFD), high-fat diet (HFD), or adjusted HFD supplemented with 10% carrot powder for 16 weeks. Oral glucose tolerance tests were conducted at weeks 0 and 16. Fecal, cecum, and colon samples, as well as tissue samples, were collected at week 16 during the autopsy. Results showed improved oral glucose tolerance in the HFD carrot group compared to HFD alone after 16 weeks. GM analysis demonstrated increased diversity and compositional changes in the cecum of mice fed HFD with carrot relative to HFD. These findings suggest the potential effect of carrots in T2D management, possibly through modulation of GM. Gene expression analysis revealed no significant alterations in adipose or muscle tissue between diet groups. Further research into carrot-derived bioactive compounds and their mechanisms of action is warranted for developing effective dietary strategies against T2D.
Collapse
MESH Headings
- Animals
- Daucus carota
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/drug therapy
- Mice
- Gastrointestinal Microbiome/drug effects
- Male
- Diet, High-Fat/adverse effects
- Glucose Tolerance Test
- Disease Models, Animal
- Mice, Inbred C57BL
- Insulin Resistance
- Blood Glucose/metabolism
- Gene Expression Regulation/drug effects
- Diet, Fat-Restricted
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/blood
Collapse
Affiliation(s)
| | - Sina Maschek
- Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | | | - Kurt Højlund
- Department of Clinical ResearchUniversity of Southern DenmarkOdense MDenmark
- Steno Diabetes Center OdenseOdense University HospitalOdense CDenmark
| | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | | |
Collapse
|
3
|
Wu M, Chen X, Lu Q, Yao X. Fecal microbiota transplantation for the treatment of chronic inflammatory skin diseases. Heliyon 2024; 10:e37432. [PMID: 39309854 PMCID: PMC11416527 DOI: 10.1016/j.heliyon.2024.e37432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of immune functions and the maintenance of homeostasis in the internal environment are both integral to human gut microbiota (GM). If GM is disturbed, it can result in a range of autoimmune diseases, including chronic inflammatory skin conditions. Chronic inflammatory skin diseases driven by T or B-cell-mediated immune reactions are complex, including the most prevalent diseases and some rare diseases. Expanding knowledge of GM dysbiosis in chronic inflammatory skin diseases has emerged. The GM has some causal roles in the pathogenesis of these skin conditions. Targeting microbiota treatment, particularly fecal microbiota transplantation (FMT), is considered to be a promising strategy. FMT was commonly used in intestinal diseases by reshaping and balancing GM, serving as a reasonable administration in these skin inflammatory diseases. This paper summarizes the existing knowledge of GM dysbiosis in chronic inflammatory skin diseases and the research data on FMT treatment for such conditions.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
4
|
Ebert MBB, Mentzel CMJ, Brunse A, Krych L, Hansen CHF. Delayed Gut Colonization Changes Future Insulin Resistance and Hepatic Gene Expression but Not Adiposity in Obese Mice. J Obes 2024; 2024:5846674. [PMID: 39360185 PMCID: PMC11446614 DOI: 10.1155/2024/5846674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The importance of early microbial dysbiosis in later development of obesity and metabolic disorders has been a subject of debate. Here we tested cause and effect in mice. Methods Germ-free male Swiss Webster mice were colonized in a specific-pathogen-free (SPF) facility at 1 week (1W) and 3 weeks (3W) of age. They were challenged with a high-fat diet and their responses were compared with SPF mice. Gut microbiota was analyzed by 16S rRNA gene sequencing. Moreover, RNA sequencing of the liver was performed on additional 3W and SPF mice on a regular chow diet. Results There were no significant differences in weight, food consumption, epididymal fat weight, HbA1c levels, and serum insulin and leptin, whereas the early germ-free period resulted in mice with impaired glucose tolerance. Both the 1W and 3W group peaked 56% (p < 0.05) and 66% (p < 0.01) higher in blood glucose than the SPF control group, respectively. This was accompanied by a 45% reduction in the level of the anti-inflammatory cytokine IL-10 in the 1W mice (p < 0.05). There were no differences in the gut microbiota between the groups, indicating that all mice colonized fully after the germ-free period. Marked effects on hepatic gene expression (728 differentially expressed genes with adjusted p < 0.05 and a fold change ± 1.5) suggested a potential predisposition to a higher risk of developing insulin resistance in the 3W group. Conclusions Lack of microbes early in life had no impact on adiposity but led to insulin resistance and altered liver gene expression related to glucose metabolism in mice. The study strongly supports the notion that microbial signaling to the liver in the beginning of life can alter the host's risk of developing metabolic disorder later in life.
Collapse
Affiliation(s)
- Maria B B Ebert
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Caroline M J Mentzel
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science Faculty of Science University of Copenhagen, Frederiksberg, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Hansen CHF, Jozipovic D, Zachariassen LF, Nielsen DS, Hansen AK, Buschard K. Probiotic treatment with viable α-galactosylceramide-producing Bacteroides fragilis reduces diabetes incidence in female nonobese diabetic mice. J Diabetes 2024; 16:e13593. [PMID: 39136533 PMCID: PMC11320754 DOI: 10.1111/1753-0407.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND We aimed to investigate whether alpha-galactosylceramide (α-GalCer)-producing Bacteroides fragilis could induce natural killer T (NKT) cells in nonobese diabetic (NOD) mice and reduce their diabetes incidence. METHODS Five-week-old female NOD mice were treated orally with B. fragilis, and islet pathology and diabetes onset were monitored. Immune responses were analyzed by flow cytometry and multiplex technology. Effects of ultraviolet (UV)-killed α-GalCer-producing B. fragilis and their culture medium on invariant NKT (iNKT) cells were tested ex vivo on murine splenocytes, and the immunosuppressive capacity of splenocytes from B. fragilis-treated NOD mice were tested by adoptive transfer to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. RESULTS B. fragilis reduced the diabetes incidence from 69% to 33% and the percent of islets with insulitis from 40% to 7%, which doubled the serum insulin level compared with the vehicle-treated control mice. Furthermore, the early treatment reduced proinflammatory mediators in the serum, whereas the proportion of CD4+ NKT cell population was increased by 33%. B. fragilis growth media stimulated iNKT cells and anti-inflammatory M2 macrophages ex vivo in contrast to UV-killed bacteria, which had no effect, strongly indicating an α-GalCer-mediated effect. Adoptive transfer of splenocytes from B. fragilis-treated NOD mice induced a similar diabetes incidence as splenocytes from untreated NOD mice. CONCLUSIONS B. fragilis induced iNKT cells and M2 macrophages and reduced type 1 diabetes in NOD mice. The protective effect seemed to be more centered on gut-pancreas interactions rather than a systemic immunosuppression. B. fragilis should be considered for probiotic use in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Camilla H. F. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Line F. Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | - Axel K. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Karsten Buschard
- Department of PathologyThe Bartholin Institute, RigshospitaletCopenhagenDenmark
| |
Collapse
|
6
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
7
|
Oldereid TS, Jiang X, Øgaard J, Schrumpf E, Bjørnholt JV, Rasmussen H, Melum E. Microbial exposure during early life regulates development of bile duct inflammation. Scand J Gastroenterol 2024; 59:192-201. [PMID: 37997753 DOI: 10.1080/00365521.2023.2278423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES The early life microbiome has been linked to inflammatory diseases in adulthood and a role for the microbiome in bile duct inflammation is supported by both human and murine studies. We utilized the NOD.c3c4 mouse model that develops a spontaneous immune-driven biliary disease with a known contribution of the microbiome to evaluate the temporal effects of the early life microbiome. MATERIALS AND METHODS Germ-free (GF) NOD.c3c4 mice were conventionalized into a specific pathogen free environment at birth (conventionally raised, CONV-R) or at weaning (germ-free raised, GF-R) and compared with age and gender-matched GF and conventional (CONV) NOD.c3c4 mice. At 9 weeks of age, liver pathology was assessed by conventional histology and flow cytometry immunophenotyping. RESULTS Neonatal exposure to microbes (CONV-R) increased biliary inflammation to similar levels as regular conventional NOD.c3c4 mice, while delayed exposure to microbes (GF-R) restrained the biliary inflammation. Neutrophil infiltration was increased in all conventionalized mice compared to GF. An immunophenotype in the liver similar to CONV was restored in both CONV-R and GF-R compared to GF mice displaying a proportional increase of B cells and reduction of T cells in the liver. CONCLUSIONS Microbial exposure during early life has a temporal impact on biliary tract inflammation in the NOD.c3c4 mouse model suggesting that age-sensitive interaction with commensal microbes have long-lasting effects on biliary immunity that can be of importance for human cholangiopathies.
Collapse
Affiliation(s)
- Tine S Oldereid
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaojun Jiang
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Elisabeth Schrumpf
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Dermatology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jørgen V Bjørnholt
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Henrik Rasmussen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Comparative Medicine, Division of Oslo Hospital Services, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Zachariassen LF, Ebert MBB, Mentzel CMJ, Deng L, Krych L, Nielsen DS, Stokholm J, Hansen CHF. Cesarean section induced dysbiosis promotes type 2 immunity but not oxazolone-induced dermatitis in mice. Gut Microbes 2023; 15:2271151. [PMID: 37889696 PMCID: PMC10730161 DOI: 10.1080/19490976.2023.2271151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Delivery by cesarean section (CS) is associated with an altered gut microbiota (GM) colonization and a higher risk of later chronic inflammatory diseases. Studies investigating the association between CS and atopic dermatitis (AD) are contradictive and often biased by confounding factors. The aim of this study was therefore to provide experimental evidence for the association between CS and AD in a mouse model and clarify the role of the GM changes associated with CS. It was hypothesized that CS-delivered mice, and human CS-GM transplanted mice develop severe dermatitis due to early dysbiosis. BALB/c mice delivered by CS or vaginally (VD) as well as BALB/c mice transplanted with GM from CS or VD human donors were challenged with oxazolone on the ear. The severity of dermatitis was evaluated by ear thickness and clinical and histopathological assessment which were similar between all groups. The immune response was assessed by serum IgE concentration, local cytokine response, and presence of immune cells in the draining lymph node. Both CS-delivered mice and mice inoculated with human CS-GM had a higher IgE concentration. A higher proportion of Th2 cells were also found in the CS-GM inoculated mice, but no differences were seen in the cytokine levels in the affected ears. In support of the experimental findings, a human cohort analysis from where the GM samples were obtained found that delivery mode did not affect the children's risk of developing AD. In conclusion, CS-GM enhanced a Th2 biased immune response, but had no effect on oxazolone-induced dermatitis in mice.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Bernadette Bergh Ebert
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Caroline Märta Junker Mentzel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Deng
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob Stokholm
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
9
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Bourkas AN, Lara-Corrales I. The role of nutrition, food allergies, and gut dysbiosis in immune-mediated inflammatory skin disease: a narrative review. Curr Opin Pediatr 2023; 35:452-459. [PMID: 37335275 DOI: 10.1097/mop.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW This review focuses on the emerging roles of nutrition, food allergies, and gut dysbiosis, and their influence on pediatric skin conditions such as psoriasis, hidradenitis suppurativa, and alopecia areata. As the prevalence of these conditions increases, understanding the underlying mechanisms and potential therapeutic targets is crucial for clinical practice and research. RECENT FINDINGS The review covers 32 recent articles that highlight the significance of the gut microbiome, nutrition, and gut dysbiosis in the pathogenesis and progression of inflammatory and immune-related pediatric skin conditions. The data suggest that food allergies and gut dysbiosis play a crucial role in disease pathogenesis. SUMMARY This review emphasizes the need for larger-scale studies to determine the effectiveness of dietary changes in preventing or treating inflammatory and immune-related skin conditions. Clinicians must maintain a balanced approach when implementing dietary changes in children with skin diseases like atopic dermatitis to avoid potential nutritional deficiencies and growth impairments. Further research into the complex interplay between environmental and genetic factors is warranted to develop tailored therapeutic strategies for these skin conditions in children.
Collapse
Affiliation(s)
| | - Irene Lara-Corrales
- Division of Dermatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Mäenpää K, Wang S, Ilves M, El-Nezami H, Alenius H, Sinkko H, Karisola P. Skin microbiota of oxazolone-induced contact hypersensitivity mouse model. PLoS One 2022; 17:e0276071. [PMID: 36264944 PMCID: PMC9584374 DOI: 10.1371/journal.pone.0276071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Contact allergy is a common skin allergy, which can be studied utilising contact hypersensitivity (CHS) animal model. However, it is not clear, whether CHS is a suitable model to investigate skin microbiota interactions. We characterised the effect of contact dermatitis on the skin microbiota and studied the biological effects of oxazolone (OXA) -induced inflammation on skin thickness, immune cell numbers and changes of the microbiota in CHS mouse model (n = 72) for 28 days. Through 16S rRNA gene sequencing we defined the composition of bacterial communities and associations of bacteria with inflammation. We observed that the vehicle solution of acetone and olive oil induced bacterial community changes on day 1, and OXA-induced changes were observed mainly on day 7. Many of the notably enriched bacteria present in the OXA-challenged positive group represented the genus Faecalibaculum which were most likely derived from the cage environment. Additionally, skin inflammation correlated negatively with Streptococcus, which is considered a native skin bacterium, and positively with Muribacter muris, which is typical in oral environment. Skin inflammation favoured colonisation of cage-derived faecal bacteria, and additionally mouse grooming transferred oral bacteria on the skin. Due to the observed changes, we conclude that CHS model could be used for certain skin microbiome-related research set-ups. However, since vehicle exposure can alter the skin microbiome as such, future studies should include considerations such as careful control sampling and statistical tests to account for potential confounding factors.
Collapse
Affiliation(s)
- Kuunsäde Mäenpää
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Shuyuan Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Marit Ilves
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Hanna Sinkko
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Piia Karisola
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
12
|
Kloepfer KM, McCauley KE, Kirjavainen PV. The Microbiome as a Gateway to Prevention of Allergic Disease Development. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE 2022; 10:2195-2204. [PMID: 35718258 DOI: 10.1016/j.jaip.2022.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/18/2022]
Abstract
Allergic diseases exclusively affect tissues that face environmental challenges and harbor endogenous bacterial microbiota. The microbes inhabiting the affected tissues may not be mere bystanders in this process but actively affect the risk of allergic sensitization, disease development, and exacerbation or abatement of symptoms. Experimental evidence provides several plausible means by which the human microbiota could influence the development of allergic diseases including, but not limited to, effects on antigen presentation and induction of tolerance and allergen permeation by endorsing or disrupting epithelial barrier integrity. Epidemiological evidence attests to the significance of age-appropriate, nonpathogenic microbiota development in skin, gastrointestinal tract, and airways for protection against allergic disease development. Thus, there exist potential targets for preventive actions either in the prenatal or postnatal period. These could include maternal dietary interventions, antibiotic stewardship for both the mother and infant, reducing elective cesarean deliveries, and understanding barriers to breastfeeding and timing of food diversification. In here, we will review the current understanding and evidence of allergy-associated human microbiota patterns, their role in the development of allergic diseases, and how we could harness these associations to our benefit against allergies.
Collapse
|
13
|
Kim DY, Jung DH, Song EJ, Jang AR, Park JY, Ahn JH, Lee TS, Kim YJ, Lee YJ, Seo IS, Kim HE, Ryu EJ, Sim J, Park JH. D-galactose Intake Alleviates Atopic Dermatitis in Mice by Modulating Intestinal Microbiota. Front Nutr 2022; 9:895837. [PMID: 35799581 PMCID: PMC9254681 DOI: 10.3389/fnut.2022.895837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent, chronic and persistent inflammatory skin diseases closely associated with intestinal microbiota. To evaluate the effect of D-galactose intake on AD, we orally administered D-galactose to BALB/c mice whose ears and skin were treated with 2,4-dinitrochlorobenzene (DNCB). D-galactose alleviated DNCB-induced AD-like phenotypes such as redness, scaling/dryness and excoriation. Ear thickness was also decreased by D-galactose administration. Histopathological analysis revealed decreased epidermal thickening, infiltration of immune cells, especially mast cells, in the dermis. Total levels of serum IgE representing the immunological response of AD were decreased by D-galactose administration. Microbiota analysis showed that D-galactose administration restored gut microbiota profiles, which were altered in AD mice, characterized by increased abundance of Bacteroidetes and decreased abundance of Firmicutes. The increased abundance of Bacteroides and the decreased abundance of Prevotella and Ruminococcus were reversed by D-galactose treatment, following improvement of AD. Our results suggest the possible use of D-galactose as a prebiotic to alleviate AD by altering gut microbiota.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Hye-Eun Kim
- Quorum Bio Co., Ltd., School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eun-Ju Ryu
- Quorum Bio Co., Ltd., School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jaehyun Sim
- Quorum Bio Co., Ltd., School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
- *Correspondence: Jong-Hwan Park
| |
Collapse
|