1
|
Li M, Ning P, Bai R, Tian Z, Liu S, Li L. DNA Methylation Negatively Regulates Gene Expression of Key Cytokines Secreted by BMMCs Recognizing FMDV-VLPs. Int J Mol Sci 2024; 25:10849. [PMID: 39409178 PMCID: PMC11477203 DOI: 10.3390/ijms251910849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Virus-like particles (VLPs) have been studied and used as vaccines to control foot-and-mouth disease (FMD). Mast cells (MCs) express various pattern recognition receptors that recognize pathogens and secrete numerous cytokines to initiate and modulate immune responses. Our previous study showed that bone marrow-derived mast cells (BMMCs) can recognize foot-and-mouth disease virus-like particles (FMDV-VLPs) to differentially express various cytokines and that histone acetylation can regulate the cytokines secreted during BMMC recognition of FMDV-VLPs. To demonstrate the role of DNA methylation in this response process, BMMCs that recognize FMDV-VLPs were treated with azacytidine (5-AZA), an inhibitor of DNA methylation transferase. We prepared FMDV-VLPs as described previously and cultured the BMMCs. The transcription and expression of key cytokines and transcription factors were determined using real-time quantitative PCR (RT-qPCR) and Western blotting. Results showed that pre-treatment with AZA resulted in the increased transcription and expression of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-13, and IL-10, while the changes in IL-13 transcription and IL-6 expression were irrelevant to mannose receptors (MRs). Furthermore, analysis of the transcription factors indicated that both the transcription and expression of nuclear factor-kappa B (NF-κB) increased significantly in the AZA pre-treated group, indicating that DNA methylation may also regulate NF-κB expression to modulate TNF-α, IL-13, and IL-6. However, pre-treatment with AZA did not alter the expression of microphthalmia-associated transcription factor (MITF) or GATA-2. All the data demonstrate that DNA methylation negatively regulates the transcription and expression of TNF-α, IL-13, IL-10, and IL-6 secreted by recognizing FMDV-VLPs. These results provide new ideas for the mast cell-based design of more effective vaccine adjuvants and targeted therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.L.); (P.N.); (R.B.); (Z.T.); (S.L.)
| |
Collapse
|
2
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
3
|
Pan L, Gong C, Chen Y, Jiang Y, Sun Y, He B, Duan X, Han Y, Wang Y. Yanghe Pingchuan granules mitigates oxidative stress and inflammation in a bronchial asthma rat model: role of the IKK/IκB/NF-κB signalling pathway. Ann Med Surg (Lond) 2024; 86:212-218. [PMID: 38222706 PMCID: PMC10783385 DOI: 10.1097/ms9.0000000000001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background Bronchial asthma (BA) is a chronic inflammatory airway disease. Previous research has shown that Yanghe Pingchuan granules (YPG), among the granules formulated by the First Affiliated Hospital of the Anhui University of Chinese Medicine, exerts a precise therapeutic effect on BA. We previously showed that YPG improves airway inflammation in BA rats. Other studies have shown that the inhibitor of kappa-B kinase (IKK)/inhibitor of NF-κB (IκB)/nuclear factor kappa-B (NF-κB) signalling pathway plays a key role in inflammation mediation. Therefore, this study explored whether YPG could intervene in BA through the IKK/IκB/NF-κB signalling pathway. Methods Ovalbumin-induced method was used to established BA rat model. After successful modelling, the authors used YPG to intervene the rats in BA rats. Hematoxylin-eosin (HE) staining was used to detect the bronchial pathological changes in BA rats, enzyme-linked immunosorbent assay (ELISA) was used to detect the changes of inflammatory factors (IL-1β and IL-6) and oxidative stress indexes malondialdehyde (MDA), superoxide dismutase (SOD) and nitrogen monoxide (NO), Quantitative real-time polymerase chain reactionCR and western blot were used to detect the expression of IKK/IκB/NF-κB signalling pathway. Results In BA model rats, YPG significantly improved the inflammatory response in bronchial tissues, reduced inflammatory factors IL-1β and IL-6, alleviated oxidative stress, reduced MDA and NO, and increased SOD. Quantitative real-time polymerase chain reaction and western blot results showed that YPG could block the IKK/IκB/NF-κB signalling pathway. Conclusion These findings showed that YPG had a definite therapeutic effect on BA, which may be related to blocking the IKK/IκB/NF-κB signalling pathway and improving inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Chunxia Gong
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yan Chen
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yeke Jiang
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yehong Sun
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Bangfu He
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yanquan Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yongzhong Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| |
Collapse
|
4
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Zhang J, Han W, Li M, Bai R, Tian Z, Yuan W, Li L. Histone acetylation regulates BMMCs recognition of foot-and-mouth disease virus-like particles. Int Immunopharmacol 2023; 121:110428. [PMID: 37315372 DOI: 10.1016/j.intimp.2023.110428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Foot-and-mouth disease (FMD) is one of the most economically and socially devastating diseases affecting animal agriculture worldwide. Foot-and-mouth disease virus (FMDV) virus-like particles (VLPs) have been widely studied as a candidate vaccine. Mast cells (MCs) are highly versatile innate immunity cells that perform various functions in regulating innate and adaptive immune responses. Recently, we found that MCs can recognize recombinant FMDV VP1-VP4 protein to produce various cytokines with differential expression, suggesting that this may be epigenetically regulated. In this study, we evaluated the effect of trichostatin A (TSA), a histone deacetylase inhibitor, on bone marrow-derived mast cells (BMMCs) recognition of FMDV-VLPs in vitro. BMMCs can recognize FMDV-VLPs via mannose receptors (MRs) and resulted in enhanced expression and secretion of tumour necrosis factor α (TNF-α) and interleukin (IL)-13. Nevertheless, BMMCs recognition of FMDV-VLPs to secrete IL-6 was irrelevant to MRs, and MRs may play a negative regulation for IL-10 secretion. Pre-treatment with TSA caused decreased expression of IL-6, TNF-α and IL-13, and increased expression of IL-10. Furthermore, the expression of nuclear factor-kappa B (NF-κB) was supressed in TSA treated BMMCs, suggesting histone acetylation may alter NF-κB expression to influence the TNF-α and IL-13 secretion. Pre-treatment with TSA had no influence on the expression of microphthalmia-associated transcription factor (MITF) and GATA-2. These data therefore suggest that altered histone acetylation regulates the immune responses induced by BMMCs recognition of FMDV-VLPs, providing an understanding and theory basis for the prevention and control of FMD based MCs.
Collapse
Affiliation(s)
- Junjuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China.
| | - Weijian Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China.
| | - Mingzhu Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China.
| | - Ruoman Bai
- Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| | - Zhanyun Tian
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China.
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, NO.2596 Lekai South Street, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
6
|
Di Nardo A, Chang YL, Alimohammadi S, Masuda-Kuroki K, Wang Z, Sriram K, Insel PA. Mast cell tolerance in the skin microenvironment to commensal bacteria is controlled by fibroblasts. Cell Rep 2023; 42:112453. [PMID: 37120813 DOI: 10.1016/j.celrep.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Activation and degranulation of mast cells (MCs) is an essential aspect of innate and adaptive immunity. Skin MCs, the most exposed to the external environment, are at risk of quickly degranulating with potentially severe consequences. Here, we define how MCs assume a tolerant phenotype via crosstalk with dermal fibroblasts (dFBs) and how this phenotype reduces unnecessary inflammation when in contact with beneficial commensal bacteria. We explore the interaction of human MCs (HMCs) and dFBs in the human skin microenvironment and test how this interaction controls MC inflammatory response by inhibiting the nuclear factor κB (NF-κB) pathway. We show that the extracellular matrix hyaluronic acid, as the activator of the regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3), is responsible for the reduced HMC response to commensal bacteria. The role of hyaluronic acid as an anti-inflammatory ligand on MCs opens new avenues for the potential treatment of inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Krishna Sriram
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul A Insel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Mayavannan A, Shantz E, Haidl ID, Wang J, Marshall JS. Mast cells selectively produce inflammatory mediators and impact the early response to Chlamydia reproductive tract infection. Front Immunol 2023; 14:1166068. [PMID: 37138882 PMCID: PMC10150091 DOI: 10.3389/fimmu.2023.1166068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Chlamydia trachomatis (C. trachomatis) is a Gram-negative obligate intracellular bacterium that causes reproductive tract complications in women, including ectopic pregnancies and tubal factor infertility. We hypothesized that mast cells, which are common at mucosal barriers, may contribute to responses to Chlamydia infection and aimed to define human mast cell responses to C. trachomatis. Methods Human cord blood-derived mast cells (CBMCs) were exposed to C. trachomatis to assess bacterial uptake, mast cell degranulation, gene expression, and production of inflammatory mediators. The role of formyl peptide receptors and Toll-like receptor 2 (TLR2) were investigated using pharmacological inhibitors and soluble TLR2. Mast cell-deficient mice and littermate controls were used to examine the in vivo role of mast cells in influencing the immune response to Chlamydia infection in the female reproductive tract. Results C. trachomatis bacteria were taken up by human mast cells but did not replicate efficiently inside CBMCs. C. trachomatis-activated mast cells did not degranulate but maintained viability and exhibited cellular activation with homotypic aggregation and upregulation of ICAM-1. However, they significantly enhanced the gene expression of IL1B, CCL3, NFKB1, CXCL8, and IL6. Inflammatory mediators were produced, including TNF, IL-1β, IL-1RA, IL-6, GM-CSF, IL-23, CCL3, CCL5, and CXCL8. Endocytic blockade resulted in reduced gene expression of IL6, IL1B, and CCL3, suggesting C. trachomatis induced mast cell activation in both extracellular and intracellular locations. The IL-6 response to C. trachomatis was reduced when CBMCs were treated with C. trachomatis coated with soluble TLR2. Mast cells derived from TLR2-deficient mice also demonstrated a reduced IL-6 response to C. muridarum. Five days following C. muridarum infection, mast cell-deficient mice showed attenuated CXCL2 production and significantly reduced numbers of neutrophils, eosinophils, and B cells in the reproductive tract when compared with mast cell-containing littermates. Discussion Taken together, these data demonstrate that mast cells are reactive to Chlamydia spp. through multiple mechanisms that include TLR2-dependent pathways. Mast cells also play an important role in shaping in vivo immune responses in Chlamydia reproductive tract infection through both effector cell recruitment and modification of the chemokine microenvironment.
Collapse
Affiliation(s)
- Animamalar Mayavannan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emily Shantz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian D. Haidl
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall,
| |
Collapse
|
8
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Ibarra-Sánchez A, González-Espinosa C, Pérez-Tapia SM, Flores-Borja F, Estrada-Parra S, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep 2022; 12:15685. [PMID: 36127495 PMCID: PMC9489790 DOI: 10.1038/s41598-022-20054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22. Col. Sección XVI, C.P. 14080, México City, México.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
9
|
Zhou C, Zou Y, Zhang Y, Teng S, Ye K. Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. Int J Mol Sci 2022; 23:ijms23052739. [PMID: 35269881 PMCID: PMC8911323 DOI: 10.3390/ijms23052739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
CCN1 is well studied in terms of its functions in injury repair, cell adhesion survival and apoptosis, bacterial clearance and mediation of inflammation-related pathways, such as the TLR2/4 pathways. However, the role of CCN1 protein and its interaction with TLR2/4 pathways in intestinal epithelial cells was not elucidated after Listeria monocytogenes infection. The results of this study confirm that L. monocytogenes infection induced intestinal inflammation and increased the protein expression of CCN1, TLR2, TLR4 and p38, which followed a similar tendency in the expression of genes related to the TLR2/4 pathways. In addition, organoids infected by L. monocytogenes showed a significant increase in the expression of CCN1 and the activation of TLR2/4 pathways. Furthermore, pre-treatment with CCN1 protein to organoids infected by L. monocytogenes could increase the related genes of TLR2/4 pathways and up-regulate the expression of TNF, and increase the count of pathogens in organoids, which indicates that the interaction between the CCN1 protein and TLR2/4 signaling pathways in intestinal epithelial cells occurred after L. monocytogenes infection. This study will provide a novel insight of the role of CCN1 protein after L. monocytogenes infection in the intestine.
Collapse
|