1
|
Piatek P, Namiecinska M, Lewkowicz N, Kulińska-Michalska M, Jabłonowski Z, Matysiak M, Michlewska S, Wieczorek M, Lewkowicz P. Histone H3 posttranslational modified enzymes defined neutrophil plasticity and their vulnerability to IL-10 in the course of the inflammation. J Inflamm (Lond) 2024; 21:16. [PMID: 38745328 PMCID: PMC11095086 DOI: 10.1186/s12950-024-00389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neutrophils are a heterogeneous population capable of antimicrobial functions associated with pre-activation/activation and tissue regeneration. The specific polarisation of immune cells is mediated by the modification of 'chromatin landscapes', which enables differentiated access and activity of regulatory elements that guarantee their plasticity during inflammation No specific pattern within histone posttranslational modifications (PTMs) controlling this plasticity has been identified. METHODS Using the in vitro model of inflammation, reflecting different states of neutrophils from resting, pre-activated cells to activated and reducing tissue regeneration, we have analysed 11 different histone posttranslational modifications (PTMs), PTM enzymes associated with remodelling neutrophil chromatin, and H3K4me3 ChIP-Seq Gene Ontology analysis focusing on the processes related to histone PTMs. These findings were verified by extrapolation to adequate clinical status, using neutrophils derived from the patients with sepsis (systemic septic inflammation with LPS-stimulated neutrophils), neuromyelitis optical spectrum disorders (aseptic inflammation with pre-activated neutrophils) and periodontitis (local self-limiting septic inflammation with IL-10-positive neutrophils). RESULTS Physiological activation of neutrophils comprises a pre-activation characterised by histone H3K27ac and H3K4me1, which position enhancers; direct LPS exposure is induced explicitly by H3K4me3 which marked Transcription Start Site (TSS) regions and low-level of H3K9me3, H3K79me2 and H3K27me3 which, in turn, marked repressed genes. Contrary to antimicrobial action, IL-10 positively induced levels of H3S10p and negatively H3K9me3, which characterised processes related to the activation of genes within heterochromatin mediated by CHD1 and H3K9me3 specific demethylase JMJD2A. IL-10 protects changes within histone PTMs induced by TNF or LPS that affected H3K4me3-specific methyltransferase SETD1A and MLL1. Neutrophils previously exposed to inflammatory factors become unvulnerable to IL-10 because previous LPS stimulation interrupts TSS regions marked by H3K4me3 of CHD1 and JMJD2A genes. Therefore, LPS-activated neutrophils are disabled to induce CHD1/JMJD2A enzymes by IL-10, making this process irreversible. Because transcription of JMJD2A and CHD1 also depends on TSS positioning by H3K4me3, neutrophils before LPS stimulation become insensitive to IL-10. CONCLUSION Neutrophils, once pre-activated by TNF or directly stimulated by LPS, become insensitive to the anti-inflammatory effects of IL-10, and vice versa; IL-10 protects neutrophils against these proinflammatory stimuli. This phenomenon is responsible for disturbing the natural process of resolving inflammation and tissue regeneration.
Collapse
Affiliation(s)
- Paweł Piatek
- Department of Immunogenetics, Medical University of Lodz, ul. Pomorska 251/A4, 92- 213, Lodz, Poland
| | - Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, ul. Pomorska 251/A4, 92- 213, Lodz, Poland
| | - Natalia Lewkowicz
- Department of Periodontology and Oral Mucosal Diseases, Medical University of Lodz, 90-419, Lodz, Poland
| | | | | | - Mariola Matysiak
- Department of Neurology, Medical University of Lodz, 90-153, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Przemysław Lewkowicz
- Department of Immunogenetics, Medical University of Lodz, ul. Pomorska 251/A4, 92- 213, Lodz, Poland.
| |
Collapse
|
2
|
Lian X, Li Y, Wang W, Zuo J, Yu T, Wang L, Song L. The Modification of H3K4me3 Enhanced the Expression of CgTLR3 in Hemocytes to Increase CgIL17-1 Production in the Immune Priming of Crassostrea gigas. Int J Mol Sci 2024; 25:1036. [PMID: 38256110 PMCID: PMC10816183 DOI: 10.3390/ijms25021036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.
Collapse
Affiliation(s)
- Xingye Lian
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Jiajun Zuo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to plasma viral clonotypes early after antiretroviral therapy interruption in SIV-infected rhesus macaques. Sci Transl Med 2023; 15:eadi9867. [PMID: 38091409 PMCID: PMC11244655 DOI: 10.1126/scitranslmed.adi9867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
The rebound-competent viral reservoir, composed of a virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after ART interruption (ATI), remains the biggest obstacle to treating HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop therapeutic strategies for reducing the rebound-competent viral reservoir. In this study, barcoded simian immunodeficiency virus (SIV), SIVmac239M, was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood and tissues from secondary lymphoid organs (spleen, mesenteric lymph nodes, and inguinal lymph nodes) and from the colon, ileum, lung, liver, and brain were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX and RNAscope in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy, although plasma viral RNA remained below 22 copies per milliliter. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. CD4+ T cells were the main cell type harboring viral RNA after ATI. Furthermore, T cell zones in lymphoid tissues showed higher viral RNA abundance than B cell zones for most animals. These findings are consistent with lymphoid tissues contributing to the virus present in plasma early after ATI.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Nongthombam Boby
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Suvadip Mallick
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yilun Cheng
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Fei Wu
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Grey De La Torre
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Jason Dufour
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - Xavier Alvarez
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Vinay Shivanna
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yaozhong Liu
- Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA 70112, USA
| | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Binhua Ling
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| |
Collapse
|
4
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to viral clonotypes present in plasma at early post-ATI in SIV-infected rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542512. [PMID: 37398418 PMCID: PMC10312542 DOI: 10.1101/2023.05.30.542512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rebound-competent viral reservoir (RCVR), comprised of virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after antiretroviral therapy interruption (ATI), remains the biggest obstacle to the eradication of HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop targeted therapeutic strategies for reducing the RCVR. In this study, barcoded SIVmac239M was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood, lymphoid tissues (LTs, spleen, mesenteric and inguinal lymph nodes), and non-lymphoid tissues (NLTs, colon, ileum, lung, liver, and brain) were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX/RNAscope/ in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy although plasma viral RNA remained < 22 copies/mL. Among the tissues studied, mesenteric and inguinal lymph nodes, and spleen contained viral barcodes detected in plasma, and trended to have higher cell-associated viral loads, higher intact provirus levels, and greater diversity of viral barcodes. CD4+ T cells were the main cell type harboring viral RNA (vRNA) after ATI. Further, T cell zones in LTs showed higher vRNA levels than B cell zones for most animals. These findings are consistent with LTs contributing to virus present in plasma early after ATI. One Sentence Summary The reemerging of SIV clonotypes at early post-ATI are likely from the secondary lymphoid tissues.
Collapse
|
5
|
Piatek P, Namiecinska M, Lewkowicz N, Kulińska-Michalska M, Jabłonowski Z, Matysiak M, Dulska J, Michlewska S, Wieczorek M, Lewkowicz P. Changes Within H3K4me3-Marked Histone Reveal Molecular Background of Neutrophil Functional Plasticity. Front Immunol 2022; 13:906311. [PMID: 35757755 PMCID: PMC9229595 DOI: 10.3389/fimmu.2022.906311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are a heterogenous population capable of both antimicrobial functions and suppressor ones, however, no specific pattern of transcription factors controlling this plasticity has been identified. We observed rapid changes in the neutrophil status after stimulation with LPS, pre-activating concentration of TNF-α, or IL-10. Chromatin immunoprecipitation sequencing (ChIP-Seq) analysis of histone H3K4me3 allowed us to identify various transcriptional start sites (TSSs) associated with plasticity and heterogeneity of human neutrophils. Gene Ontology analysis demonstrated great variation within target genes responsible for neutrophil activation, cytokine production, apoptosis, histone remodelling as well as NF-κB transcription factor pathways. These data allowed us to assign specific target genes positioned by H3K4me3-marked histone with a different pattern of gene expression related to NF-κB pathways, apoptosis, and a specific profile of cytokines/chemokines/growth factors realised by neutrophils stimulated by LPS, IL-10, or TNF-α. We discovered IL-10-induced apoptotic neutrophils being transcriptionally active cells capable of switching the profile of cytokines/chemokines/growth factors desired in resolving inflammation via non-canonical NF-κB pathway with simultaneous inhibition of canonical NF-κB pathway. As apoptotic/suppressive neutrophils induced by IL-10 via positioning genes within H3K4me3-marked histone were transcriptionally active, newly described DNA binding sites can be considered as potential targets for immunotherapy. H3K4me3 histone ChIP-Seq analysis reveals molecular drivers critical for switching neutrophils from their pro- to anti-inflammatory properties.
Collapse
Affiliation(s)
- Paweł Piatek
- Department of Immunogenetics, Medical University of Lodz, Lodz, Poland
| | | | - Natalia Lewkowicz
- Department of Periodontology and Oral Mucosal Diseases, Medical University of Lodz, Lodz, Poland
| | | | | | - Mariola Matysiak
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | |
Collapse
|
6
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|