1
|
Zhu M, Yea JH, Li Z, Qin Q, Xu M, Xing X, Negri S, Archer M, Mittal M, Levi B, James AW. Pharmacologic or genetic targeting of peripheral nerves prevents peri-articular traumatic heterotopic ossification. Bone Res 2024; 12:54. [PMID: 39327413 PMCID: PMC11427465 DOI: 10.1038/s41413-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ji-Hye Yea
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopedic Unit, University of Verona, Verona, Italy
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monisha Mittal
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Wang H, Wang X, Zhang Q, Liang Y, Wu H. Matrine reduces traumatic heterotopic ossification in mice by inhibiting M2 macrophage polarization through the MAPK pathway. Biomed Pharmacother 2024; 177:117130. [PMID: 39018873 DOI: 10.1016/j.biopha.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
In this study, the role of matrine, a component derived from traditional Chinese medicine, in modulating macrophage polarization and its effects on traumatic heterotopic ossification (HO) in mice was investigated. Traumatic HO is a pathological condition characterized by abnormal bone formation in nonskeletal tissues, often following severe trauma or surgery. The mechanisms underlying HO involve an enhanced inflammatory response and abnormal bone formation, with macrophages playing a crucial role. Our study demonstrated that matrine effectively inhibits the polarization of bone marrow-derived macrophages (BMDMs) toward the M2 phenotype, a subtype associated with anti-inflammatory processes and implicated in the progression of HO. Using in vitro assays, we showed that matrine suppresses key M2 markers and inhibits the MAPK signaling pathway in BMDMs. Furthermore, in vivo experiments revealed that matrine treatment significantly reduced HO formation in the Achilles tendons of mice and downregulated the expression of markers associated with M2 macrophages and the MAPK pathway. Our findings suggest that the ability of matrine to modulate macrophage polarization and inhibit the MAPK pathway has therapeutic potential for treating traumatic HO, providing a novel approach to managing this complex condition.
Collapse
Affiliation(s)
- Hui Wang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China
| | - Xiaofei Wang
- Pediatric Surgery department, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 271100, China
| | - Qingkun Zhang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China
| | - Yanchen Liang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China.
| | - Hong Wu
- Department of Radiation Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China.
| |
Collapse
|
3
|
Shu LZ, Zhang XL, Ding YD, Lin H. From inflammation to bone formation: the intricate role of neutrophils in skeletal muscle injury and traumatic heterotopic ossification. Exp Mol Med 2024; 56:1523-1530. [PMID: 38945957 PMCID: PMC11297321 DOI: 10.1038/s12276-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neutrophils are emerging as an important player in skeletal muscle injury and repair. Neutrophils accumulate in injured tissue, thus releasing inflammatory factors, proteases and neutrophil extracellular traps (NETs) to clear muscle debris and pathogens when skeletal muscle is damaged. During the process of muscle repair, neutrophils can promote self-renewal and angiogenesis in satellite cells. When neutrophils are abnormally overactivated, neutrophils cause collagen deposition, functional impairment of satellite cells, and damage to the skeletal muscle vascular endothelium. Heterotopic ossification (HO) refers to abnormal bone formation in soft tissue. Skeletal muscle injury is one of the main causes of traumatic HO (tHO). Neutrophils play a pivotal role in activating BMPs and TGF-β signals, thus promoting the differentiation of mesenchymal stem cells and progenitor cells into osteoblasts or osteoclasts to facilitate HO. Furthermore, NETs are specifically localized at the site of HO, thereby accelerating the formation of HO. Additionally, the overactivation of neutrophils contributes to the disruption of immune homeostasis to trigger HO. An understanding of the diverse roles of neutrophils will not only provide more information on the pathogenesis of skeletal muscle injury for repair and HO but also provides a foundation for the development of more efficacious treatment modalities for HO.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Xian-Lei Zhang
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Kuznetsova AB, Kolesova EP, Parodi A, Zamyatnin AA, Egorova VS. Reprogramming Tumor-Associated Macrophage Using Nanocarriers: New Perspectives to Halt Cancer Progression. Pharmaceutics 2024; 16:636. [PMID: 38794298 PMCID: PMC11124960 DOI: 10.3390/pharmaceutics16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains a significant challenge for public healthcare systems worldwide. Within the realm of cancer treatment, considerable attention is focused on understanding the tumor microenvironment (TME)-the complex network of non-cancerous elements surrounding the tumor. Among the cells in TME, tumor-associated macrophages (TAMs) play a central role, traditionally categorized as pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Within the TME, M2-like TAMs can create a protective environment conducive to tumor growth and progression. These TAMs secrete a range of factors and molecules that facilitate tumor angiogenesis, increased vascular permeability, chemoresistance, and metastasis. In response to this challenge, efforts are underway to develop adjuvant therapy options aimed at reprogramming TAMs from the M2 to the anti-tumor M1 phenotype. Such reprogramming holds promise for suppressing tumor growth, alleviating chemoresistance, and impeding metastasis. Nanotechnology has enabled the development of nanoformulations that may soon offer healthcare providers the tools to achieve targeted drug delivery, controlled drug release within the TME for TAM reprogramming and reduce drug-related adverse events. In this review, we have synthesized the latest data on TAM polarization in response to TME factors, highlighted the pathological effects of TAMs, and provided insights into existing nanotechnologies aimed at TAM reprogramming and depletion.
Collapse
Affiliation(s)
- Alyona B. Kuznetsova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Ekaterina P. Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vera S. Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.B.K.); (E.P.K.); (A.P.)
| |
Collapse
|
5
|
Rowe CJ, Nwaolu U, Salinas D, Lansford JL, McCarthy CF, Anderson JA, Valerio MS, Potter BK, Spreadborough PJ, Davis TA. Cutaneous burn injury represents a major risk factor for the development of traumatic ectopic bone formation following blast-related extremity injury. Bone 2024; 181:117029. [PMID: 38331307 DOI: 10.1016/j.bone.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Blast-related traumatic heterotopic ossification (tHO) impacts clinical outcomes in combat-injured patients, leading to delayed wound healing, inflammatory complications, and reduced quality of life. Blast injured patients often have significant burns. This study investigated whether a partial thickness thermal burn injury exacerbates blast-related tHO in a clinically relevant polytrauma animal model. Adult male Sprague Dawley rats were subjected to an established model involving a whole-body blast overpressure exposure (BOP), complex extremity trauma followed by hind limb amputation (CET) followed by the addition of a 10 % total body surface area (TBSA) second degree thermal burn (BU). Micro-CT scans on post-operative day 56 showed a significant increase in HO volume in the CET + BU as compared to the CET alone injury group (p < .0001; 22.83 ± 3.41 mm3 vs 4.84 ± 5.77 mm3). Additionally, CET + BU concomitant with BOP significantly increased HO (p < .0001; 34.95 ± 7.71 mm3) as compared to CET + BU alone, confirming BOP has a further synergistic effect. No HO was detectable in rats in the absence of CET. Serum analysis revealed similar significant elevated (p < .0001) levels of pro-inflammatory markers (Cxcl1 and Il6) at 6 h post-injury (hpi) in the CET + BU and BOP + CET + BU injury groups as compared to naïve baseline values. Real-time qPCR demonstrated similar levels of chondrogenic and osteogenic gene expression in muscle tissue at the site of injury at 168 hpi in both the CET + BU and BOP+CET + BU injury groups. These results support the hypothesis that a 10 % TBSA thermal burn markedly enhances tHO following acute musculoskeletal extremity injury in the presence and absence of blast overpressure. Furthermore, the influence of BOP on tHO cannot be accounted for either in regards to systemic inflammation induced from remote injury or inflammatory-osteo-chondrogenic expression changes local to the musculoskeletal trauma, suggesting that another mechanism beyond BOP and BU synergistic effects are at play. Therefore, these findings warrant future investigations to explore other mechanisms by which blast and burn influence tHO, and testing prophylactic measures to mitigate the local and systemic inflammatory effects of these injuries on development of HO.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Conor F McCarthy
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph A Anderson
- Comparative Pathology, Department of Laboratory Animal Resources, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Philip J Spreadborough
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
6
|
Han X, Gao C, Lu W, Yan J, Xu H, Guo Z, Qin W, Lu N, Gao J, Zhu W, Fu Y, Jiao K. Macrophage-Derived Extracellular DNA Initiates Heterotopic Ossification. Inflammation 2023; 46:2225-2240. [PMID: 37458919 DOI: 10.1007/s10753-023-01873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 11/25/2023]
Abstract
Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Zhenxing Guo
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Naining Lu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weiwei Zhu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yutong Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Zhang Y, Wei J, Yu X, Chen L, Ren R, Dong Y, Wang S, Zhu M, Ming N, zhu Z, Gao C, Xiong W. CXCL chemokines-mediated communication between macrophages and BMSCs on titanium surface promotes osteogenesis via the actin cytoskeleton pathway. Mater Today Bio 2023; 23:100816. [PMID: 37859997 PMCID: PMC10582501 DOI: 10.1016/j.mtbio.2023.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The refined functional cell subtypes in the immune microenvironment of specific titanium (Ti) surface and their collaborative role in promoting bone marrow mesenchymal stem cells (BMSCs) driven bone integration need to be comprehensively characterized. This study employed a simplified co-culture system to investigate the dynamic, temporal crosstalk between macrophages and BMSCs on the Ti surface. The M2-like sub-phenotype of macrophages, characterized by secretion of CXCL chemokines, emerges as a crucial mediator for promoting BMSC osteogenic differentiation and bone integration in the Ti surface microenvironment. Importantly, these two cells maintain their distinct functional phenotypes through a mutually regulatory interplay. The secretion of CXCL3, CXCL6, and CXCL14 by M2-like macrophages plays a pivotal role. The process activates CXCR2 and CCR1 receptors, triggering downstream regulatory effects on the actin cytoskeleton pathway within BMSCs, ultimately fostering osteogenic differentiation. Reciprocally, BMSCs secrete pleiotrophin (PTN), a key player in regulating macrophage differentiation. This secretion maintains the M2-like phenotype via the Sdc3 receptor-mediated cell adhesion molecules pathway. Our findings provide a novel insight into the intricate communication and mutual regulatory mechanisms operating between BMSCs and macrophages on the Ti surface, highlight specific molecular events governing cell-cell interactions in the osteointegration, inform the surface design of orthopedic implants, and advance our understanding of osteointegration.
Collapse
Affiliation(s)
- Yayun Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Jiemao Wei
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xingbang Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Liangxi Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ranyue Ren
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Sibo Wang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Nannan Ming
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ziwei zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| |
Collapse
|
8
|
Pappert M, Khosla S, Doolittle M. Influences of Aged Bone Marrow Macrophages on Skeletal Health and Senescence. Curr Osteoporos Rep 2023; 21:771-778. [PMID: 37688671 PMCID: PMC10724341 DOI: 10.1007/s11914-023-00820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the role of macrophages in the regulation of skeletal health with age, particularly in regard to both established and unexplored mechanisms in driving inflammation and senescence. RECENT FINDINGS A multitude of research has uncovered mechanisms of intrinsic aging in macrophages, detrimental factors released by these immune cells, and crosstalk from senescent mesenchymal cell types, which altogether drive age-related bone loss. Furthermore, bone marrow macrophages were recently proposed to be responsible for the megakaryocytic shift during aging and overall maintenance of the hematopoietic niche. Studies on extra-skeletal macrophages have shed light on possible conserved mechanisms within bone and highlight the importance of these cells in systemic aging. Macrophages are a critically important cell type in maintaining skeletal homeostasis with age. New discoveries in this area are of utmost importance in fully understanding the pathogenesis of osteoporosis in aged individuals.
Collapse
Affiliation(s)
- Moritz Pappert
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
| | - Madison Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Li M, Li D, Jiang Y, He P, Li Y, Wu Y, Lei W, de Bruijn JD, Cannon RD, Mei L, Zhang H, Ji P, Zhang H, Yuan H. The genetic background determines material-induced bone formation through the macrophage-osteoclast axis. Biomaterials 2023; 302:122356. [PMID: 37898023 DOI: 10.1016/j.biomaterials.2023.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Osteoinductive materials are characterized by their ability to induce bone formation in ectopic sites. Thus, osteoinductive materials hold promising potential for repairing bone defects. However, the mechanism of material-induced bone formation remains unknown, which limits the design of highly potent osteoinductive materials. Here, we demonstrated a genetic background link among macrophage polarization, osteoclastogenesis and material-induced bone formation. The intramuscular implantation of an osteoinductive material in FVB/NCrl (FVB) mice resulted in more M2 macrophages at week 1, more osteoclasts at week 2 and increased bone formation after week 4 compared with the results obtained in C57BL/6JOlaHsd (C57) mice. Similarly, in vitro, with a greater potential to form M2 macrophages, monocytes derived from FVB mice formed more osteoclasts than those derived from C57 mice. A transcriptomic analysis identified Csf1, Cxcr4 and Tgfbr2 as the main genes controlling macrophage-osteoclast coupling, which were further confirmed by related inhibitors. With such coupling, macrophage polarization and osteoclast formation of monocytes in vitro successfully predicted in vivo bone formation in four other mouse strains. Considering material-induced bone formation as an example of acquired heterotopic bone formation, the current findings shed a light on precision medicine for both bone regeneration and the treatment of pathological heterotopic bone formation.
Collapse
Affiliation(s)
- Mingzheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yucan Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yeming Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yan Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wei Lei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Joost D de Bruijn
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, the Netherlands; Queen Mary University of London, London, UK
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Huipin Yuan
- Kuros Biosciences BV, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, the Netherlands; Huipin Yuan's Lab, Chengdu, China.
| |
Collapse
|
10
|
Salga M, Samuel SG, Tseng HW, Gatin L, Girard D, Rival B, Barbier V, Bisht K, Shatunova S, Debaud C, Winkler IG, Paquereau J, Dinh A, Genêt G, Kerever S, Abback PS, Banzet S, Genêt F, Lévesque JP, Alexander KA. Bacterial Lipopolysaccharides Exacerbate Neurogenic Heterotopic Ossification Development. J Bone Miner Res 2023; 38:1700-1717. [PMID: 37602772 DOI: 10.1002/jbmr.4905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-β (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marjorie Salga
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Selwin G Samuel
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, India
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laure Gatin
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
- Department of Orthopedic Surgery, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Valérie Barbier
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kavita Bisht
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Svetlana Shatunova
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Charlotte Debaud
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Ingrid G Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Julie Paquereau
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Aurélien Dinh
- Department of Infectious Diseases, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Guillaume Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Sébastien Kerever
- Department of Anesthesiology and Critical Care, Lariboisière University Hospital, AP-HP, Paris, France
| | - Paer-Sélim Abback
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP, Clichy, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - François Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
11
|
Cao Y, Chen H, Yang J. Neuroanatomy of lymphoid organs: Lessons learned from whole-tissue imaging studies. Eur J Immunol 2023; 53:e2250136. [PMID: 37377338 DOI: 10.1002/eji.202250136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Decades of extensive research have documented the presence of neural innervations of sensory, sympathetic, or parasympathetic origin in primary and secondary lymphoid organs. Such neural inputs can release neurotransmitters and neuropeptides to directly modulate the functions of various immune cells, which represents one of the essential aspects of the body's neuroimmune network. Notably, recent studies empowered by state-of-the-art imaging techniques have comprehensively assessed neural distribution patterns in BM, thymus, spleen, and LNs of rodents and humans, helping clarify several controversies lingering in the field. In addition, it has become evident that neural innervations in lymphoid organs are not static but undergo alterations in pathophysiological contexts. This review aims to update the current information on the neuroanatomy of lymphoid organs obtained through whole-tissue 3D imaging and genetic approaches, focusing on anatomical features that may designate the functional modulation of immune responses. Moreover, we discuss several critical questions that call for future research, which will advance our in-depth understanding of the importance and complexity of neural control of lymphoid organs.
Collapse
Affiliation(s)
- Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hongjie Chen
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Yang
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| |
Collapse
|
12
|
Islam MR, Patel J, Back PI, Shmeeda H, Kallem RR, Shudde C, Markiewski M, Putnam WC, Gabizon AA, La-Beck NM. Pegylated Liposomal Alendronate Biodistribution, Immune Modulation, and Tumor Growth Inhibition in a Murine Melanoma Model. Biomolecules 2023; 13:1309. [PMID: 37759709 PMCID: PMC10527549 DOI: 10.3390/biom13091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation. Here, we tested liposomal alendronate (PLA) as an immunotherapeutic agent for cancer in comparison with a standard of care immunotherapy, a PD-1 immune checkpoint inhibitor. We showed that the PLA induced bone marrow-derived murine non-activated macrophages and M2-macrophages to polarize towards an M1-functionality, as evidenced by gene expression, cytokine secretion, and lipidomic profiles. Free alendronate had negligible effects, indicating that liposome encapsulation is necessary for the modulation of macrophage activity. In vivo, the PLA showed significant accumulation in tumor and tumor-draining lymph nodes, sites of tumor immunosuppression that are targets of immunotherapy. The PLA remodeled the tumor microenvironment towards a less immunosuppressive milieu, as indicated by a decrease in TAM and helper T cells, and inhibited the growth of established tumors in the B16-OVA melanoma model. The improved bioavailability and the beneficial effects of PLA on macrophages suggest its potential application as immunotherapy that could synergize with T-cell-targeted therapies and chemotherapies to induce immunogenic cell death. PLA warrants further clinical development, and these clinical trials should incorporate tumor and blood biomarkers or immunophenotyping studies to verify the anti-immunosuppressive effect of PLA in humans.
Collapse
Affiliation(s)
- Md. Rakibul Islam
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Jalpa Patel
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Patricia Ines Back
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Hilary Shmeeda
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Raja Reddy Kallem
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | - Claire Shudde
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Maciej Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - William C. Putnam
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
- Department of Pharmaceutical Science, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | - Alberto A. Gabizon
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
| |
Collapse
|
13
|
Zhao J, Li J, Xu A, Xu Y, He F, Mao Y. IRAK4 inhibition: an effective strategy for immunomodulating peri-implant osseointegration via reciprocally-shifted polarization in the monocyte-macrophage lineage cells. BMC Oral Health 2023; 23:265. [PMID: 37158847 PMCID: PMC10169473 DOI: 10.1186/s12903-023-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The biomaterial integration depends on its interaction with the host immune system. Monocyte-macrophage lineage cells are immediately recruited to the implant site, polarized into different phenotypes, and fused into multinucleated cells, thus playing roles in tissue regeneration. IL-1R-associated kinase 4 (IRAK4) inhibition was reported to antagonize inflammatory osteolysis and regulate osteoclasts and foreign body giant cells (FBGCs), which may be a potential target in implant osseointegration. METHODS In in-vitro experiments, we established simulated physiological and inflammatory circumstances in which bone-marrow-derived macrophages were cultured on sand-blasted and acid-etched (SLA) titanium surfaces to evaluate the induced macrophage polarization, multinucleated cells formation, and biological behaviors in the presence or absence of IRAK4i. Then, bone marrow stromal stem cells (BMSCs) were cultured in the conditioned media collected from the aforementioned induced osteoclasts or FBGCs cultures to clarify the indirect coupling effect of multinucleated cells on BMSCs. We further established a rat implantation model, which integrates IRAK4i treatment with implant placement, to verify the positive effect of IRAK4 inhibition on the macrophage polarization, osteoclast differentiation, and ultimately the early peri-implant osseointegration in vivo. RESULTS Under inflammatory conditions, by transforming the monocyte-macrophage lineage cells from M1 to M2, IRAK4i treatment could down-regulate the formation and activity of osteoclast and relieve the inhibition of FBGC generation, thus promoting osteogenic differentiation in BMSCs and improve the osseointegration. CONCLUSION This study may improve our understanding of the function of multinucleated cells and offer IRAK4i as a therapeutic strategy to improve early implant osseointegration and help to eliminate the initial implant failure.
Collapse
Affiliation(s)
- Juan Zhao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Jia Li
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Antian Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Yangbo Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Fuming He
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| | - Yingjie Mao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| |
Collapse
|
14
|
Alkildani S, Ren Y, Liu L, Rimashevskiy D, Schnettler R, Radenković M, Najman S, Stojanović S, Jung O, Barbeck M. Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects. Int J Mol Sci 2023; 24:ijms24076833. [PMID: 37047808 PMCID: PMC10095555 DOI: 10.3390/ijms24076833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane’s bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a “bony shield” overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials.
Collapse
Affiliation(s)
| | - Yanru Ren
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Sanja Stojanović
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Mike Barbeck
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
15
|
Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact Mater 2023; 22:404-422. [PMID: 36311047 PMCID: PMC9588995 DOI: 10.1016/j.bioactmat.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.
Collapse
Key Words
- BMP2, Bone Morphogenetic Proteins 2
- CXCL12, Chemokine (C-X-C mode) Ligand 12
- CXCR, CXC Chemokine Receptor
- FcgR, Fc Gamma Receptor
- IFN-γ, Interferon-gamma
- IL-1β, Interleukin-1 beta
- Implant
- MHC, Major Histocompatibility Complex
- MIP, Macrophage inflammatory cytokines
- MPO, Myeloperoxidase
- NE, Neutrophil Elastase
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
- NOD, Nucleotide Binding Oligomerization Domain
- Neutrophil
- OPG, Osteoprotegerin
- Osseointegration
- Osteoimmunology
- RANKL, Nuclear Factor B receptor Activator Ligand
- RUNX2, Runt-related Transcription Factor 2
- S100a8, S100 Calcium Binding Protein A8
- SDF-1α, Stromal Cell-derived Factor-1 alpha
- STAT, Signal Transduction and Transcription Activator
- Single-cell transcriptomics
- TLR, Toll Like Receptor
- TNFα, Tumor Necrosis Factor-alpha
- TRAP, Tartrate Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Jia Li
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Congrui Zhao
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lu Song
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanqi Chen
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuzi Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Ma
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Frade BB, Dias RB, Gemini Piperni S, Bonfim DC. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig 2023; 10:4. [PMID: 36817259 PMCID: PMC9936163 DOI: 10.21037/sci-2022-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Objective This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.
Collapse
Affiliation(s)
- Bianca Braga Frade
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Biological Sciences-Biophysics, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhayra Braga Dias
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory of Biotechnology, Bioengineering and Nanostructured Biomaterials, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Cabral Bonfim
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling. Inflammation 2023; 46:876-891. [PMID: 36598593 DOI: 10.1007/s10753-022-01777-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Macrophages actively participate in immunomodulatory processes throughout periodontal inflammation. Regulation of M1/M2 polarization affects macrophage chemokine and cytokine secretion, resulting in a distinct immunological status that influences prognosis. Semaphorin 3A (Sema3A), a neurite growth factor, exerts anti-inflammatory effects. In this study, we investigated the immunomodulation of Sema3A on macrophage-related immune responses in vivo and in vitro. Topical medications of Sema3A in mice with periodontitis alleviated inflammatory cell infiltration into gingival tissue and reduced areas with positive IL-6 and TNFα expression. We observed that the positive area with the M2 macrophage marker CD206 increased and that of the M1 macrophage marker iNOS decreased in Sema3A-treated mice. It has been postulated that Sema3A alleviates periodontitis by regulating alternative macrophage activation. To understand the mechanism underlying Sema3A modulation of macrophage polarization, an in vitro macrophage research model was established with RAW264.7 cells, and we demonstrated that Sema3A promotes LPS/IFNγ-induced M1 macrophages to polarize into M2 macrophages and activates the PI3K/AKT/mTOR signaling pathways. Inhibition of the PI3K signaling pathway activation might reduce anti-inflammatory activity and boost the expression of the inflammatory cytokines, iNOS, IL-12, TNFα, and IL-6. This study indicated that Sema3A might be a feasible drug to regulate alternative macrophage activation in the inflammatory response and thus alleviate periodontitis.
Collapse
|
18
|
Burkhardt LM, Bucher CH, Löffler J, Rinne C, Duda GN, Geissler S, Schulz TJ, Schmidt-Bleek K. The benefits of adipocyte metabolism in bone health and regeneration. Front Cell Dev Biol 2023; 11:1104709. [PMID: 36895792 PMCID: PMC9988968 DOI: 10.3389/fcell.2023.1104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
Collapse
Affiliation(s)
- Lisa-Marie Burkhardt
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Löffler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
19
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
20
|
Fetuin-A is an immunomodulator and a potential therapeutic option in BMP4-dependent heterotopic ossification and associated bone mass loss. Bone Res 2022; 10:62. [PMID: 36289197 PMCID: PMC9605967 DOI: 10.1038/s41413-022-00232-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Heterotopic ossification (HO) is the abnormal formation of bone in extraskeletal sites. However, the mechanisms linking HO pathogenesis with bone mass dysfunction remain unclear. Here, we showed that mice harboring injury-induced and BMP4-dependent HO exhibit bone mass loss similar to that presented by patients with HO. Moreover, we found that injury-induced hyperinflammatory responses at the injury site triggered HO initiation but did not result in bone mass loss at 1 day post-injury (dpi). In contrast, a suppressive immune response promoted HO propagation and bone mass loss by 7 dpi. Correcting immune dysregulation by PD1/PDL1 blockade dramatically alleviated HO propagation and bone mass loss. We further demonstrated that fetuin-A (FetA), which has been frequently detected in HO lesions but rarely observed in HO-adjacent normal bone, acts as an immunomodulator to promote PD1 expression and M2 macrophage polarization, leading to immunosuppression. Intervention with recombinant FetA inhibited hyperinflammation and prevented HO and associated bone mass loss. Collectively, our findings provide new insights into the osteoimmunological interactions that occur during HO formation and suggest that FetA is an immunosuppressor and a potential therapeutic option for the treatment of HO.
Collapse
|
21
|
Shi C, Yuan F, Li Z, Zheng Z, Yuan C, Huang Z, Liu J, Lin X, Cai T, Huang G, Ding Z. MSN@IL-4 Sustainingly Mediates Macrophagocyte M2 Polarization and Relieves Osteoblast Damage via NF- κB Pathway-Associated Apoptosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2898729. [PMID: 36225981 PMCID: PMC9550477 DOI: 10.1155/2022/2898729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Background The microenvironment of bone defects displayed that M2 polarization of macrophagocyte could promote the osteoblast growth and benefit the wound healing. Bone scaffold transplantation is considered to be one of the most promising methods for repairing bone defects. The present research was aimed at constructing a kind of novel bone scaffold nanomaterial of MSN@IL-4 for treating bone defects responding to the wound microenvironment of bone defects and elucidating the mechanics of MSN@IL-4 treating bone defect via controlling release of IL-4, inducing M2 polarization and active factor release of macrophagocyte, and eventually relieving osteoblast injury. Methods MSN@IL-4 was firstly fabricated and its release of IL-4 was assessed in vitro. Following, the effects of MSN@IL-4 nanocomplex on the release of active factors of macrophage were examined using Elisa assay and promoting M2 polarization of the macrophage by immunofluorescence staining. And then, the effects of active factors from macrophage supernatant induced by MSN@IL-4 on osteoblast growth were examined by CCK-8, flow cytometry, and western blot assay. Results The release curve of IL-4 in vitro displayed that there was more than 80% release ratio for 30th day with a sustained manner in pH 5.5. Elisa assay data showed that MSN@IL-4 nanocomplex could constantly promote the release of proproliferative cytokine IL-10, SDF-1α, and BMP-2 in macrophagocyte compared to only IL-4 treatment, and immunofluorescent image showed that MSN@IL-4 could promote M2 polarization of macrophagocytes via inducing CD206 expression and suppressing CD86 expression. Osteoblast injury data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could promote the osteoblast proliferation by MTT assay. Flow cytometry data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the osteoblast apoptosis from 22.1% to 14.6%, and apoptosis-related protein expression data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the expression of Bax, cleaved caspase 3, and cleaved caspase 8. Furthermore, the immunofluorescent image showed that the supernatant from macrophagocyte treated by MSN@IL-4 could inhibit nucleus location of p65, and western blot data showed that the supernatant from macrophagocyte treated by MSN@IL-4 could suppress the phosphorylation of IKK and induce the expression of IκB. Conclusion MSN@IL-4 could control the sustaining release of IL-4, and it exerts the protective effect on osteoblast injury via inducing M2 polarization and proproliferative cytokine of macrophagocyte and following inhibiting the apoptosis and NF-κB pathway-associated inflammation of osteoblast.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
- School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen, 361102 Fujian, China
| | - Fei Yuan
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Zhilong Li
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Zhenhua Zheng
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Changliang Yuan
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Ziyang Huang
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Jianping Liu
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Xuping Lin
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Taoyi Cai
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| | - Guofeng Huang
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
- School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen, 361102 Fujian, China
| | - Zhenqi Ding
- Department of Orthopedics, Dongnan Hospital of Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, 363000 Fujian, China
| |
Collapse
|
22
|
Moeda F, Melo X, Hatia M, Pinho S, Calado D, Branco JC, Gonçalves MJ. The Effects of Intra-Articular Platelet-Rich Plasma Injections in Rheumatoid Arthritis: A Narrative Review. Cureus 2022; 14:e28182. [PMID: 36148189 PMCID: PMC9482810 DOI: 10.7759/cureus.28182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Platelet-rich plasma injections have been a therapeutic option with exponential growth in several pathologies in the last decades, particularly musculoskeletal for their effect on improving pain and functionality. Rheumatoid arthritis is a chronic joint disease, which involves inflammation of the synovial membrane with cartilage and juxta-articular bone destruction. Conventional and biological disease-modifying anti-rheumatoid drugs are the cornerstone of the treatment of this disease. However, the use of intra-articular glucocorticoids is often necessary and the role of platelet-rich plasma injections in these patients remains uncertain. A literature review was carried out through the PubMed database, Cochrane and Google Scholar for the search terms “rheumatoid arthritis” and “platelet-rich plasma”. Eleven studies have been included in this review: two of these are in vitro studies, five are animal studies, one case report, two case series and one randomized controlled trial. Most of the studies demonstrated a decrease in pain and inflammatory mediators and improvement of functional outcomes, with no severe adverse effects reported. However, the quantity and quality of literature about the effects and safety of plasma-rich plasma injections in rheumatoid arthritis patients are still scarce. It is essential that well-designed randomized controlled trials are made on this topic to understand if platelet-rich plasma may be useful as a coadjuvant therapy in rheumatoid arthritis.
Collapse
|