1
|
Ahmed F, Samantasinghar A, Ali W, Choi KH. Network-based drug repurposing identifies small molecule drugs as immune checkpoint inhibitors for endometrial cancer. Mol Divers 2024; 28:3879-3895. [PMID: 38227161 DOI: 10.1007/s11030-023-10784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Endometrial cancer (EC) is the 6th most common cancer in women around the world. Alone in the United States (US), 66,200 new cases and 13,030 deaths are expected to occur in 2023 which needs the rapid development of potential therapies against EC. Here, a network-based drug-repurposing strategy is developed which led to the identification of 16 FDA-approved drugs potentially repurposable for EC as potential immune checkpoint inhibitors (ICIs). A network of EC-associated immune checkpoint proteins (ICPs)-induced protein interactions (P-ICP) was constructed. As a result of network analysis of P-ICP, top key target genes closely interacting with ICPs were shortlisted followed by network proximity analysis in drug-target interaction (DTI) network and pathway cross-examination which identified 115 distinct pathways of approved drugs as potential immune checkpoint inhibitors. The presented approach predicted 16 drugs to target EC-associated ICPs-induced pathways, three of which have already been used for EC and six of them possess immunomodulatory properties providing evidence of the validity of the strategy. Classification of the predicted pathways indicated that 15 drugs can be divided into two distinct pathway groups, containing 17 immune pathways and 98 metabolic pathways. In addition, drug-drug correlation analysis provided insight into finding useful drug combinations. This fair and verified analysis creates new opportunities for the quick repurposing of FDA-approved medications in clinical trials.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Wajid Ali
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
2
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
3
|
Kamali C, Brunnbauer P, Kamali K, Saqr AHA, Arnold A, Harman Kamali G, Babigian J, Keshi E, Mohr R, Felsenstein M, Moosburner S, Hillebrandt KH, Bartels J, Sauer IM, Tacke F, Schmelzle M, Pratschke J, Krenzien F. Extracellular NAD + response to post-hepatectomy liver failure: bridging preclinical and clinical findings. Commun Biol 2024; 7:991. [PMID: 39143151 PMCID: PMC11324947 DOI: 10.1038/s42003-024-06661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study focuses on the role of extracellular nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing liver disease patients undergoing surgery. Additionally, we explore NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids. eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Concordantly, post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Post-operative eNAD+ levels decreased significantly (p < 0.05), but in advanced stages of liver fibrosis or cirrhosis, this decline not only diminished but actually showed a trend towards an increase. The expression of NAD+ biosynthesis rate-limiting enzymes, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), were upregulated significantly in the liver tissue of patients with higher liver fibrosis stages (p < 0.0001). Finally, the administration of NAD+ in a 3D hepatocyte spheroid model rescued hepatocytes from TNFalpha-induced cell death and improved viability (p < 0.0001). In a mouse model of extended liver resection, NAD+ treatment significantly improved survival (p = 0.0158) and liver regeneration (p = 0.0186). Our findings reveal that eNAD+ was upregulated in PHLF, and rate-limiting enzymes of NAD+ biosynthesis demonstrated higher expressions under liver fibrosis. Further, eNAD+ administration improved survival after extended liver resection in mice and enhanced hepatocyte viability in vitro. These insights may offer a potential target for future therapies.
Collapse
Affiliation(s)
- Can Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Brunnbauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kaan Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Al-Hussein Ahmed Saqr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexander Arnold
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Gulcin Harman Kamali
- University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Department of Pathology, Istanbul, Turkey
| | - Julia Babigian
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Raphael Mohr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthäus Felsenstein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Jasmin Bartels
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor Maximilian Sauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Hannover Medical School, Department of General, Visceral and Transplant Surgery, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felix Krenzien
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5
|
Ferrario E, Kallio JP, Emdadi M, Strømland Ø, Rack JGM, Ziegler M. Evolution of fungal tuberculosis necrotizing toxin (TNT) domain-containing enzymes reveals divergent adaptations to enhance NAD cleavage. Protein Sci 2024; 33:e5071. [PMID: 38895984 PMCID: PMC11187862 DOI: 10.1002/pro.5071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.
Collapse
Affiliation(s)
| | | | - Mahdi Emdadi
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | | | | |
Collapse
|
6
|
Zeng X, Zhang K, Liang M, Yu B, Zhang P, Mehmood A, Zhang H. NAD + affects differentially expressed genes- MBOAT2- SLC25A21- SOX6 in experimental autoimmune encephalomyelitis model. Int J Neurosci 2024:1-8. [PMID: 38315116 DOI: 10.1080/00207454.2024.2313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) plays a key role in neuroinflammation and neurodegeneration and provides anti-inflammatory and neuroprotective effects in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). AIM In this study, we aimed to investigate whether NAD+ affects differentially expressed genes (DEGs) in splenocytes of EAE mice to reveal candidate genes for the pathogenesis of MS. METHODS The EAE model was used to perform an intervention on NAD+ to investigate its potential as a protective agent in inflammation and demyelination. Transcriptome analysis of nerve tissue was carried out to gain better insights into NAD+ function. Effects of NAD+ on DEGs in the splenocytes of EAE mice were investigated to determine its anti-inflammatory effect. RESULTS NAD+ in EAE mice showed the clinical score was significantly improved (EAE 3.190 ± 0.473 vs. NAD+ 2.049 ± 0.715). DEGs (MBOAT2, SLC25A21, and SOX6) between the EAE and the EAE + NAD+ groups showed that SOX6 was significantly improved after NAD+ treatment compared with the EAE group, and other indicators were improved but did not reach statistical significance. NAD+ exhibited clinical scores in EAE mice, and key inflammation was ameliorated in EAE mice spleen after NAD+ intervention, while transcriptome analysis between EAE and EAE + NAD+ groups showed several DEGs in the underlying mechanism. CONCLUSION NAD+ on DEGs attenuates disease severity in EAE. Transcriptome analysis on nerve tissue reveals several protein targets in the underlying mechanisms. However, NAD+ does not significantly improve DEGs in the splenocytes of the EAE model.
Collapse
Affiliation(s)
- Xu Zeng
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Kexue Zhang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ming Liang
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Bin Yu
- Senior Department of Pediatric, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Hongtian Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
8
|
Saqr AHA, Kamali C, Brunnbauer P, Haep N, Koch P, Hillebrandt KH, Keshi E, Moosburner S, Mohr R, Raschzok N, Pratschke J, Krenzien F. Optimized protocol for quantification of extracellular nicotinamide adenine dinucleotide: evaluating clinical parameters and pre-analytical factors for translational research. Front Med (Lausanne) 2024; 10:1278641. [PMID: 38259852 PMCID: PMC10800990 DOI: 10.3389/fmed.2023.1278641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme for more than 500 enzymes, plays a central role in energy production, metabolism, cellular signaling, and DNA repair. Until recently, NAD+ was primarily considered to be an intracellular molecule (iNAD+), however, its extracellular species (eNAD+) has recently been discovered and has since been associated with a multitude of pathological conditions. Therefore, accurate quantification of eNAD+ in bodily fluids such as plasma is paramount to answer important research questions. In order to create a clinically meaningful and reliable quantitation method, we analyzed the relationship of cell lysis, routine clinical laboratory parameters, blood collection techniques, and pre-analytical processing steps with measured plasma eNAD+ concentrations. Initially, NAD+ levels were assessed both intracellularly and extracellularly. Intriguingly, the concentration of eNAD+ in plasma was found to be approximately 500 times lower than iNAD+ in peripheral blood mononuclear cells (0.253 ± 0.02 μM vs. 131.8 ± 27.4 μM, p = 0.007, respectively). This stark contrast suggests that cellular damage or cell lysis could potentially affect the levels of eNAD+ in plasma. However, systemic lactate dehydrogenase in patient plasma, a marker of cell damage, did not significantly correlate with eNAD+ (n = 33; r = -0.397; p = 0.102). Furthermore, eNAD+ was negatively correlated with increasing c-reactive protein (CRP, n = 33; r = -0.451; p = 0.020), while eNAD+ was positively correlated with increasing hemoglobin (n = 33; r = 0.482; p = 0.005). Next, variations in blood drawing, sample handling and pre-analytical processes were examined. Sample storage durations at 4°C (0-120 min), temperature (0° to 25°C), cannula sizes for blood collection and tourniquet times (0 - 120 s) had no statistically significant effect on eNAD+ (p > 0.05). On the other hand, prolonged centrifugation (> 5 min) and a faster braking mode of the centrifuge rotor (< 4 min) resulted in a significant decrease in eNAD+ levels (p < 0.05). Taken together, CRP and hemoglobin appeared to be mildly correlated with eNAD+ levels whereas cell damage was not correlated significantly to eNAD+ levels. The blood drawing trial did not show any influence on eNAD+, in contrast, the preanalytical steps need to be standardized for accurate eNAD+ measurement. This work paves the way towards robust eNAD+ measurements, for use in future clinical and translational research, and provides an optimized hands-on protocol for reliable eNAD+ quantification in plasma.
Collapse
Affiliation(s)
- Al-Hussein Ahmed Saqr
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Brunnbauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pia Koch
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
9
|
Bu F, Huang S, Yang X, Wei L, Zhang D, Zhang Z, Tian D. Damage-induced NAD release activates intestinal CD4+ and CD8+ T cell via P2X7R signaling. Cell Immunol 2023; 385:104677. [PMID: 36746070 DOI: 10.1016/j.cellimm.2023.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is characterized by the activation of inflammation triggered by tissue damage. Damage-associated molecular patterns (DAMPs) reportedly induce local inflammation after injury. However, the impact of DAMPs on intestinal resident lymphocytes during POI remains poorly elucidated. METHODS POI in mice was induced via intestinal manipulation (IM). The concentration of nicotinamide adenine dinucleotide (NAD) was detected after IM. The gastrointestinal motility of the mice was assessed after IM or NAD injection. Cytokine production and calcium influx in T cells were investigated after NAD stimulation using flow cytometry. RESULTS The concentration of extracellular NAD significantly increased after IM administration, and NAD directly impaired gastrointestinal motility. Intraperitoneal injection of NAD promoted the expression of TNF-α in intestinal CD8+ and CD4+ T cells, but only IFN-γ production by CD8+ T cells was significantly promoted by NAD injection. Granzyme B production in CD8+ and CD4+ T cells decreased after administration. Concordantly, the same results were observed in NAD stimulation of intestinal CD3+ T cells in vitro. Blocking the P2X7R-related membrane enzyme ART2.2 significantly diminished the pro-inflammatory effect of NAD. CONCLUSION IM includes the release of NAD derived from damaged tissues, consequently promoting pro-inflammatory cytokine production in intestinal CD4+ and CD8+ T lymphocytes. NAD-induced intestinal T cells activation may be associated with POI progression in the mouse.
Collapse
Affiliation(s)
- Fandi Bu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyang Huang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Dan Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
10
|
Raines NH, Leone DA, O’Callaghan-Gordo C, Ramirez-Rubio O, Amador JJ, Lopez Pilarte D, Delgado IS, Leibler JH, Embade N, Gil-Redondo R, Bruzzone C, Bizkarguenaga M, Scammell MK, Parikh SM, Millet O, Brooks DR, Friedman DJ. Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy. Metabolites 2023; 13:325. [PMID: 36984765 PMCID: PMC10058628 DOI: 10.3390/metabo13030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Mesoamerican nephropathy (MeN) is a form of chronic kidney disease found predominantly in young men in Mesoamerica. Strenuous agricultural labor is a consistent risk factor for MeN, but the pathophysiologic mechanism leading to disease is poorly understood. We compared the urine metabolome among men in Nicaragua engaged in sugarcane harvest and seed cutting (n = 117), a group at high risk for MeN, against three referents: Nicaraguans working less strenuous jobs at the same sugarcane plantations (n = 78); Nicaraguans performing non-agricultural work (n = 102); and agricultural workers in Spain (n = 78). Using proton nuclear magnetic resonance, we identified 136 metabolites among participants. Our non-hypothesis-based approach identified distinguishing urine metabolic features in the high-risk group, revealing increased levels of hippurate and other gut-derived metabolites and decreased metabolites related to central energy metabolism when compared to referent groups. Our complementary hypothesis-based approach, focused on nicotinamide adenine dinucleotide (NAD+) related metabolites, and revealed a higher kynurenate/tryptophan ratio in the high-risk group (p = 0.001), consistent with a heightened inflammatory state. Workers in high-risk occupations are distinguishable by urinary metabolic features that suggest increased gut permeability, inflammation, and altered energy metabolism. Further study is needed to explore the pathophysiologic implications of these findings.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dominick A. Leone
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Cristina O’Callaghan-Gordo
- Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Oriana Ramirez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain
| | - Juan José Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Damaris Lopez Pilarte
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Iris S. Delgado
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Chiara Bruzzone
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Madeleine K. Scammell
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel R. Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
11
|
The Predictive Role of Extracellular NAPRT for the Detection of Advanced Fibrosis in Biopsy-Proven Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24021172. [PMID: 36674688 PMCID: PMC9861383 DOI: 10.3390/ijms24021172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Intrahepatic oxidative stress is a key driver of inflammation and fibrogenesis in non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of extracellular Nicotinamide phosphoribosyltransferase (eNAMPT) and extracellular nicotinic acid phosphoribosyltransferase (eNAPRT) for the detection of advanced fibrosis. eNAMPT and eNAPRT were tested in 180 consecutive biopsy-proven NAFLD patients and compared with liver stiffness (LS) and the FIB-4 score. eNAMPT was similarly distributed across fibrosis stages, whereas eNAPRT was increased in patients with advanced fibrosis (p = 0.036) and was associated with advanced fibrosis (OR 1.08, p = 0.016). A multiple stepwise logistic regression model containing significant variables for advanced fibrosis (eNAPRT, type 2 diabetes, age, male sex, ALT) had an area under the curve (AUC) of 0.82 (Se 89.6%, Sp 67.3%, PPV 46.7%, NPV 93.8%) when compared to that of LS (0.79; Se 63.5%, Sp 86.2%, PPV 66.0%, NPV 84.8%) and to that of the FIB-4 score (0.73; Se 80.0%, Sp 56.8%, PPV 44.9%, NPV 86.6%). The use of eNAPRT in clinical practice might allow for the better characterization of NAFLD patients at higher risk of disease progression.
Collapse
|
12
|
Bustamante S, Yau Y, Boys V, Chang J, Paramsothy S, Pudipeddi A, Leong RW, Wasinger VC. Tryptophan Metabolism 'Hub' Gene Expression Associates with Increased Inflammation and Severe Disease Outcomes in COVID-19 Infection and Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:14776. [PMID: 36499104 PMCID: PMC9737535 DOI: 10.3390/ijms232314776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The epithelial barrier's primary role is to protect against entry of foreign and pathogenic elements. Both COVID-19 and Inflammatory Bowel Disease (IBD) show commonalities in symptoms and treatment with sensitization of the epithelial barrier inviting an immune response. In this study we use a multi-omics strategy to identify a common signature of immune disease that may be able to predict for more severe patient outcomes. Global proteomic approaches were applied to transcriptome and proteome. Further semi- and relative- quantitative targeted mass spectrometry methods were developed to substantiate the proteomic and metabolomics changes in nasal swabs from healthy, COVID-19 (24 h and 3 weeks post infection); serums from Crohn's disease patients (scored for epithelial leak), terminal ileum tissue biopsies (patient matched inflamed and non-inflamed regions, and controls). We found that the tryptophan/kynurenine metabolism pathway is a 'hub' regulator of canonical and non-canonical transcription, macrophage release of cytokines and significant changes in the immune and metabolic status with increasing severity and disease course. Significantly modified pathways include stress response regulator EIF2 signaling (p = 1 × 10-3); energy metabolism, KYNU (p = 4 × 10-4), WARS (p = 1 × 10-7); inflammation, and IDO activity (p = 1 × 10-6). Heightened levels of PARP1, WARS and KYNU are predictive at the acute stage of infection for resilience, while in contrast, levels remained high and are predictive of persistent and more severe outcomes in COVID disease. Generation of a targeted marker profile showed these changes in immune disease underlay resolution of epithelial barrier function and have the potential to define disease trajectory and more severe patient outcomes.
Collapse
Affiliation(s)
- Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunki Yau
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Victoria Boys
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jeff Chang
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Sudarshan Paramsothy
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Aviv Pudipeddi
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Rupert W. Leong
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
14
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
15
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
16
|
Chini CCS, Peclat TR, Gomez LS, Zeidler JD, Warner GM, Kashyap S, Mazdeh DZ, Hayat F, Migaud ME, Paulus A, Chanan-Khan AA, Chini EN. Dihydronicotinamide Riboside Is a Potent NAD+ Precursor Promoting a Pro-Inflammatory Phenotype in Macrophages. Front Immunol 2022; 13:840246. [PMID: 35281060 PMCID: PMC8913500 DOI: 10.3389/fimmu.2022.840246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB
kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.
Collapse
Affiliation(s)
- Claudia C. S. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lilian S. Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Delaram Z. Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Aneel Paulus
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Asher A. Chanan-Khan
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- *Correspondence: Eduardo N. Chini,
| |
Collapse
|
17
|
Chu X, Raju RP. Regulation of NAD + metabolism in aging and disease. Metabolism 2022; 126:154923. [PMID: 34743990 PMCID: PMC8649045 DOI: 10.1016/j.metabol.2021.154923] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
More than a century after discovering NAD+, information is still evolving on the role of this molecule in health and diseases. The biological functions of NAD+ and NAD+ precursors encompass pathways in cellular energetics, inflammation, metabolism, and cell survival. Several metabolic and neurological diseases exhibit reduced tissue NAD+ levels. Significantly reduced levels of NAD+ are also associated with aging, and enhancing NAD+ levels improved healthspan and lifespan in animal models. Recent studies suggest a causal link between senescence, age-associated reduction in tissue NAD+ and enzymatic degradation of NAD+. Furthermore, the discovery of transporters and receptors involved in NAD+ precursor (nicotinic acid, or niacin, nicotinamide, and nicotinamide riboside) metabolism allowed for a better understanding of their role in cellular homeostasis including signaling functions that are independent of their functions in redox reactions. We also review studies that demonstrate that the functional effect of niacin is partially due to the activation of its cell surface receptor, GPR109a. Based on the recent progress in understanding the mechanism and function of NAD+ and NAD+ precursors in cell metabolism, new strategies are evolving to exploit these molecules' pharmacological potential in the maintenance of metabolic balance.
Collapse
Affiliation(s)
- Xiaogang Chu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
18
|
Ugamraj HS, Dang K, Ouisse LH, Buelow B, Chini EN, Castello G, Allison J, Clarke SC, Davison LM, Buelow R, Deng R, Iyer S, Schellenberger U, Manika SN, Bijpuria S, Musnier A, Poupon A, Cuturi MC, van Schooten W, Dalvi P. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. MAbs 2022; 14:2095949. [PMID: 35867844 PMCID: PMC9311320 DOI: 10.1080/19420862.2022.2095949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases. Declines in NAD+ levels are associated with metabolic and inflammatory diseases, aging, and neurodegenerative disorders. To inhibit CD38 enzyme activity and boost NAD+ levels, we developed TNB-738, an anti-CD38 biparatopic antibody that pairs two non-competing heavy chain-only antibodies in a bispecific format. By simultaneously binding two distinct epitopes on CD38, TNB-738 potently inhibited its enzymatic activity, which in turn boosted intracellular NAD+ levels and SIRT activities. Due to its silenced IgG4 Fc, TNB-738 did not deplete CD38-expressing cells, in contrast to the clinically available anti-CD38 antibodies, daratumumab, and isatuximab. TNB-738 offers numerous advantages compared to other NAD-boosting therapeutics, including small molecules, and supplements, due to its long half-life, specificity, safety profile, and activity. Overall, TNB-738 represents a novel treatment with broad therapeutic potential for metabolic and inflammatory diseases associated with NAD+ deficiencies.Abbreviations: 7-AAD: 7-aminoactinomycin D; ADCC: antibody dependent cell-mediated cytotoxicity; ADCP: antibody dependent cell-mediated phagocytosis; ADPR: adenosine diphosphate ribose; APC: allophycocyanin; cADPR: cyclic ADP-ribose; cDNA: complementary DNA; BSA: bovine serum albumin; CD38: cluster of differentiation 38; CDC: complement dependent cytotoxicity; CFA: Freund's complete adjuvant; CHO: Chinese hamster ovary; CCP4: collaborative computational project, number 4; COOT: crystallographic object-oriented toolkit; DAPI: 4',6-diamidino-2-phenylindole; DNA: deoxyribonucleic acid; DSC: differential scanning calorimetry; 3D: three dimensional; εNAD+: nicotinamide 1,N6-ethenoadenine dinucleotide; ECD: extracellular domain; EGF: epidermal growth factor; FACS: fluorescence activated cell sorting; FcγR: Fc gamma receptors; FITC: fluorescein isothiocyanate; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IgG: immunoglobulin; IFA: incomplete Freund's adjuvant; IFNγ: Interferon gamma; KB: kinetic buffer; kDa: kilodalton; KEGG: kyoto encyclopedia of genes and genomes; LDH: lactate dehydrogenase; M: molar; mM: millimolar; MFI: mean fluorescent intensity; NA: nicotinic acid; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; NAM: nicotinamide; NGS: next-generation sequencing; NHS/EDC: N-Hydroxysuccinimide/ ethyl (dimethylamino propyl) carbodiimide; Ni-NTA: nickel-nitrilotriacetic acid; nL: nanoliter; NK: natural killer; NMN: nicotinamide mononucleotide; OD: optical density; PARP: poly (adenosine diphosphate-ribose) polymerase; PBS: phosphate-buffered saline; PBMC: peripheral blood mononuclear cell; PDB: protein data bank; PE: phycoerythrin; PISA: protein interfaces, surfaces, and assemblies: PK: pharmacokinetics; mol: picomolar; RNA: ribonucleic acid; RLU: relative luminescence units; rpm: rotations per minute; RU: resonance unit; SEC: size exclusion chromatography; SEM: standard error of the mean; SIRT: sirtuins; SPR: surface plasmon resonance; µg: microgram; µM: micromolar; µL: microliter.
Collapse
Affiliation(s)
| | | | - Laure-Hélène Ouisse
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | - Eduardo N Chini
- Department of Anesthesiology and Perioperative Medicine, Kogod Center on Aging, Mitochondrial Care Center, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | | | | | - Rong Deng
- R&D Q-Pharm consulting LLC, Pleasanton, California, USA
| | | | | | | | | | | | | | - Maria Cristina Cuturi
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | | |
Collapse
|