1
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2024; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
2
|
Li JH, Yan XN, Fu JY, Hu HY. Impact of urinary PAHs on psoriasis risk in U.S. adults: Insights from NHANES. PLoS One 2024; 19:e0314964. [PMID: 39636940 PMCID: PMC11620647 DOI: 10.1371/journal.pone.0314964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE Exposure to environmental pollutants is increasingly recognized as a risk factor for the development of psoriasis. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the air and might induce reactions such as oxidative stress. Nevertheless, it is still unclear if PAHs have any influence on the prevalence of psoriasis over the entire population of the United States. The objective of this study was to assess the association between urine PAHs and psoriasis. METHODS The research included 3,673 individuals aged 20 years or older who participated in the 2003-2006 and 2009-2012 National Health and Nutrition Examination Surveys (NHANES). We employed logistic regression models to evaluate the relationship between levels of urine PAH metabolites and psoriasis and smoothed curve fitting to illustrate the concentration-response relationship. Additionally, subgroup and interaction analyses were conducted to elucidate these associations. Furthermore, we employed weighted quartile sum (WQS) regressions to examine the distinct effects of individual and mixed urine PAH metabolites on psoriasis. However, it is important to note that the NHANES sample may be subject to selectivity and self-reporting bias, which may influence the data' generalisability. RESULTS We observed that the highest tertiles of 2-NAP and 2-FLU had a 63% (95% CI 1.02, 2.61) and 83% (95% CI 1.14, 2.96) higher odds of association with psoriasis prevalence, respectively. Meanwhile, tertile 2 and tertile 3 of 3-PHE were also significantly associated with psoriasis, with higher odds of 65% (95% CI 1.01, 2.69) and 14% (95% CI 1.17, 3.00), respectively. The subgroup analyses revealed a significant correlation between urine PAH metabolites and the odds of psoriasis in specific groups, including males, aged 40-60 years, with a BMI > 30, and those with hyperlipidemia. In the WQS model, a positive association was found between the combination of urine PAH metabolites and psoriasis (OR 1.43, 95% CI 1.11, 1.84), with 2-FLU being the most prevalent component across all mixtures (0.297). CONCLUSIONS Our findings indicate a significant association between urine PAH metabolites and the odds of psoriasis prevalence in adults. Among these metabolites, 2-FLU demonstrated the most prominent impact. Controlling PAH exposure, as an important strategy for minimizing exposure to environmental contaminants and lowering the risk of psoriasis, is critical for raising public knowledge about environmental health and preserving public health.
Collapse
Affiliation(s)
- Jiang-Hui Li
- The First Clinical Medical college, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiao-Ning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jia-Ying Fu
- The First Clinical Medical college, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hao-Yuan Hu
- The First Clinical Medical college, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Ahmad Jamil H, Abdul Karim N. Unraveling Mitochondrial Reactive Oxygen Species Involvement in Psoriasis: The Promise of Antioxidant Therapies. Antioxidants (Basel) 2024; 13:1222. [PMID: 39456475 PMCID: PMC11505169 DOI: 10.3390/antiox13101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by immune dysregulation and aberrant keratinocyte proliferation. Despite tremendous advances in understanding its etiology, effective therapies that target its fundamental mechanisms remain necessary. Recent research highlights the role of reactive oxygen species dysregulation and mitochondrial dysfunction in psoriasis pathogenesis. Mitochondrial reactive oxygen species mediate cellular signaling pathways involved in psoriasis, such as proliferation, apoptosis, and inflammation, leading to oxidative stress, exacerbating inflammation and tissue damage if dysregulated. This review explores oxidative stress biomarkers and parameters in psoriasis, including myeloperoxidase, paraoxonase, sirtuins, superoxide dismutase, catalase, malondialdehyde, oxidative stress index, total oxidant status, and total antioxidant status. These markers provide insights into disease mechanisms and potential diagnostic and therapeutic targets. Modulating mitochondrial reactive oxygen species levels and enhancing antioxidant defenses can alleviate inflammation and oxidative damage, improving patient outcomes. Natural antioxidants like quercetin, curcumin, gingerol, resveratrol, and other antioxidants show promise as complementary treatments targeting oxidative stress and mitochondrial dysfunction. This review aims to guide the development of personalized therapeutic methods and diagnostic techniques, emphasizing the importance of comprehensive clinical studies to validate the efficacy and safety of these interventions, paving the way for more effective and holistic psoriasis care.
Collapse
Affiliation(s)
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
4
|
Liu Z, Fu Q, Shao Y, Duan X. The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study. Front Immunol 2024; 15:1409969. [PMID: 39464879 PMCID: PMC11502960 DOI: 10.3389/fimmu.2024.1409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) plays an important role in autoimmune diseases (AD), yet the relationship between mitochondria and autoimmune disease is controversial. This study employed bidirectional Mendelian randomization (MR) to explore the causal relationship between mtDNA copy number and 13 ADs (including ankylosing spondylitis [AS], Crohn's disease [CD], juvenile rheumatoid arthritis [JRA], polymyalgia rheumatica [PMR], psoriasis [PSO], rheumatoid arthritis [RA], Sjogren's syndrome [SS], systemic lupus erythematosus [SLE], thyrotoxicosis, type 1 diabetes mellitus [T1DM], ulcerative colitis [UC], and vitiligo). Methods A two-sample MR analysis was performed to assess the causal relationship between mtDNA copy number and AD. Genome-wide association study (GWAS) for mtDNA copy number were obtained from the UK Biobank (UKBB), while those associated with AD were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was the primary analysis method, complemented by three sensitivity analyses (MR-Egger, weighted median, weighted mode) to validate the results. Results IVW MR analysis identified significant associations between mtDNA copy number and CD (OR=2.51, 95% CI 1.56-4.22, P<0.001), JRA (OR=1.87, 95% CI 1.17-7.65, P=0.022), RA (OR=1.71, 95%CI 1.18-2.47, P=0.004), thyrotoxicosis (OR=0.51, 95% CI0.27-0.96, P=0.038), and T1DM (OR=0.51, 95% CI 0.27-0.96, P=0.038). Sensitivity analyses indicated no horizontal pleiotropy. Conclusions Our study revealed a potential causal relationship between mtDNA copy number and ADs, indicating that these markers may be relevant in exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yijia Shao
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Gu Y, Ye X, Zhao W, He S, Zhang W, Zeng X. The circadian syndrome is a better predictor for psoriasis than the metabolic syndrome via an explainable machine learning method - the NHANES survey during 2005-2006 and 2009-2014. Front Endocrinol (Lausanne) 2024; 15:1379130. [PMID: 38988999 PMCID: PMC11233539 DOI: 10.3389/fendo.2024.1379130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Objective To explore the association between circadian syndrome (CircS) and Metabolic Syndrome (MetS) with psoriasis. Compare the performance of MetS and CircS in predicting psoriasis. Methods An observational study used data from the NHANES surveys conducted in 2005-2006 and 2009-2014. We constructed three multiple logistic regression models to investigate the relationship between MetS, CircS, and their components with psoriasis. The performance of MetS and CircS in predicting psoriasis was compared using five machine-learning algorithms, and the best-performing model was explained via SHAP. Then, bidirectional Mendelian randomization analyses with the inverse variance weighted (IVW) as the primary method were employed to determine the causal effects of each component. Result A total of 9,531 participants were eligible for the study. Both the MetS (OR = 1.53, 95%CI: 1.07-2.17, P = 0.02) and CircS (OR = 1.40, 95%CI: 1.02-1.91, P = 0.039) positively correlated with psoriasis. Each CircS algorithmic model performs better than MetS, with Categorical Features+Gradient Boosting for CircS (the area under the precision-recall curve = 0.969) having the best prediction effect on psoriasis. Among the components of CircS, elevated blood pressure, depression symptoms, elevated waist circumference (WC), and short sleep contributed more to predicting psoriasis. Under the IVW methods, there were significant causal relationships between WC (OR = 1.52, 95%CI: 1.34-1.73, P = 1.35e-10), hypertension (OR = 1.68, 95%CI: 1.19-2.37, P = 0.003), depression symptoms (OR = 1.39, 95%CI: 1.17-1.65, P = 1.51e-4), and short sleep (OR = 2.03, 95%CI: 1.21-3.39, p = 0.007) with psoriasis risk. Conclusion CircS demonstrated superior predictive ability for prevalent psoriasis compared to MetS, with elevated blood pressure, depression symptoms, and elevated WC contributing more to the prediction.
Collapse
Affiliation(s)
- Yunfan Gu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Dermatology, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xinglan Ye
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Zhao
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Shiwei He
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Weiming Zhang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianyu Zeng
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wang Q, Wu Y, Wang X, Zhang J, Li L, Wu J, Lu Y, Han L. Genomic correlation, shared loci, and causal relationship between insomnia and psoriasis: a large-scale genome-wide cross-trait analysis. Arch Dermatol Res 2024; 316:425. [PMID: 38904754 DOI: 10.1007/s00403-024-03178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Psoriasis and insomnia have co-morbidities, however, their common genetic basis is still unclear. We analyzed psoriasis and insomnia with summary statistics from genome-wide association studies. We first quantified overall genetic correlations, then ascertained multiple effector loci and expression-trait associations, and lastly, we analyzed the causal effects between psoriasis and insomnia. A prevalent genetic link between psoriasis and insomnia was found, four pleiotropic loci affecting psoriasis and insomnia were identified, and 154 genes were shared, indicating a genetic link between psoriasis and insomnia. Yet, there is no causal relationship between psoriasis and insomnia by two-sample Mendelian randomization. We discovered a genetic connection between insomnia and psoriasis driven by biological pleiotropy and unrelated to causation. Cross-trait analysis indicates a common genetic basis for psoriasis and insomnia. The results of this study highlight the importance of sleep management in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Qing Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuehua Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhong Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Li Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Makuch S, Kupczyk P, Woźniak M, Makarec A, Lipińska M, Klyta M, Sulecka-Zadka J, Szeja W, Gani M, Rapozzi V, Ziółkowski P, Smoleński P. In Vitro and In Vivo Antipsoriatic Efficacy of Protected and Unprotected Sugar-Zinc Phthalocyanine Conjugates. Pharmaceutics 2024; 16:838. [PMID: 38931958 PMCID: PMC11207564 DOI: 10.3390/pharmaceutics16060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Psoriasis, a chronic immune-mediated skin disorder affecting over 125 million people globally, is characterized by abnormal keratinocyte proliferation and immune cell infiltration. Photodynamic therapy (PDT) remains underutilized in the treatment of psoriasis despite its potential as a promising and effective therapeutic approach. This study aimed to explore the efficacy of zinc phthalocyanine (ZnPc) and its sugar conjugates as potential antipsoriatic agents. We successfully synthesized protected and unprotected sugar-conjugated zinc phthalocyanines and evaluated their potential against cytokine-stimulated HaCaT keratinocytes, as well as an established IMQ psoriasis-like in vivo model. Tetrasubstituted protected glucose-ZnPc (Glu-4-ZnPc-P) demonstrated superior phototoxicity (IC50 = 2.55 µM) compared to unprotected glucose conjugate (IC50 = 22.7 µM), protected galactose-ZnPc (IC50 = 7.13 µM), and free ZnPc in cytokine-stimulated HaCaT cells (IC50 = 5.84 µM). Cellular uptake analysis revealed that IL-17A, a cytokine that plays a central role in the pathogenesis of psoriasis, enhanced unprotected Glu-4-ZnPc uptake by 56.3%, while GLUT1 inhibitor BAY-876 reduced its accumulation by 23.8%. Intracellular ROS generation following Glu-4-ZnPc-P-PDT was significantly increased after stimulation with IL-17A, correlating with in vitro photocytotoxicity. In vivo PDT using Glu-4-ZnPc-P exhibited significant improvement in Psoriasis Area and Severity Index (PASI), inhibiting splenomegaly and restoring normal skin morphology. This study highlights sugar-conjugated zinc phthalocyanines as potential candidates for targeted PDT in psoriasis, providing a basis for further clinical investigations.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Piotr Kupczyk
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Alicja Makarec
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Maja Lipińska
- Experimental Animal Facility, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.L.); (M.K.)
| | - Magdalena Klyta
- Experimental Animal Facility, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.L.); (M.K.)
| | - Joanna Sulecka-Zadka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Wiesław Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Mariachiara Gani
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy; (M.G.); (V.R.)
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy; (M.G.); (V.R.)
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
8
|
Nazimek K, Bryniarski K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int J Mol Sci 2024; 25:5306. [PMID: 38791342 PMCID: PMC11121292 DOI: 10.3390/ijms25105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a systemic autoimmune/autoinflammatory disease that can be well studied in established mouse models. Skin-resident macrophages are classified into epidermal Langerhans cells and dermal macrophages and are involved in innate immunity, orchestration of adaptive immunity, and maintenance of tissue homeostasis due to their ability to constantly shift their phenotype and adapt to the current microenvironment. Consequently, both macrophage populations play dual roles in psoriasis. In some circumstances, pro-inflammatory activated macrophages and Langerhans cells trigger psoriatic inflammation, while in other cases their anti-inflammatory stimulation results in amelioration of the disease. These features make macrophages interesting candidates for modern therapeutic strategies. Owing to the significant progress in knowledge, our review article summarizes current achievements and indicates future research directions to better understand the function of macrophages in psoriasis.
Collapse
Affiliation(s)
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
9
|
Yao L, Tian F, Meng Q, Guo L, Ma Z, Hu T, Liang Q, Li Z. Reactive oxygen species-responsive supramolecular deucravacitinib self-assembly polymer micelles alleviate psoriatic skin inflammation by reducing mitochondrial oxidative stress. Front Immunol 2024; 15:1407782. [PMID: 38799436 PMCID: PMC11116664 DOI: 10.3389/fimmu.2024.1407782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.
Collapse
Affiliation(s)
- Leiqing Yao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinqin Meng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lu Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhimiao Ma
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiongwen Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Lu B, Zhong Y, Zhang J, Zhang J. Curcumin-Based Ionic Liquid Hydrogel for Topical Transdermal Delivery of Curcumin To Improve Its Therapeutic Effect on the Psoriasis Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17080-17091. [PMID: 38557004 DOI: 10.1021/acsami.3c17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Psoriasis is a systemic, recurrent, chronic autoimmune skin disease. However, psoriasis drugs have poor skin permeability and high toxicity, resulting in low bioavailability and affecting their clinical application. In this study, we propose a curcumin-based ionic liquid hydrogel loaded with ilomastat (Cur-Car-IL@Ilo hydrogel), which can effectively maintain the sustained release of drugs and improve the skin permeability of drugs. We used a model of imiquimod-induced psoriasis and demonstrated that local application of Cur-Car-IL@Ilo hydrogel can improve skin lesions in mice with significantly reduced expression levels of inflammatory factors, matrix metalloproteinase 8, and collagen-I. The expressions of iron death-related proteins SLC7A11 and ASL4 were significantly decreased after treatment with Cur-Car-IL@Ilo hydrogel. Flora analysis showed that the content of anaerotruncus, proteus, and UCG-009 bacteria in the gut of psoriatic mice increased. The levels of paludicola, parabacteroides, prevotellaceae_UCG-001, escherichia-shigella, and aerococcus decreased, and the levels of some of the above bacteria tended to be normal after treatment. Therefore, the curcumin-based ionic liquid hydrogel can be used as a multifunctional, nonirritating, noninvasive, and highly effective percutaneous treatment of psoriasis.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong 518020, China
- Department of Shenzhen, People's Hospital Geriatrics Center, Shenzhen, Guangdong 518020, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Yixiu Zhong
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong 518020, China
- Department of Shenzhen, People's Hospital Geriatrics Center, Shenzhen, Guangdong 518020, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong 518020, China
- Department of Shenzhen, People's Hospital Geriatrics Center, Shenzhen, Guangdong 518020, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
11
|
Natarelli N, Gahoonia N, Aflatooni S, Bhatia S, Sivamani RK. Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature. Int J Mol Sci 2024; 25:3303. [PMID: 38542277 PMCID: PMC10970650 DOI: 10.3390/ijms25063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Nimrit Gahoonia
- College of Osteopathic Medicine, Touro University, 1310 Club Dr, Vallejo, CA 94592, USA;
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Sahibjot Bhatia
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
| | - Raja K. Sivamani
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
- Integrative Skin Science and Research, 1495 River Park Drive, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Dr Suite 200, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
12
|
Liu L, Liu M, Xiu J, Zhang B, Hu H, Qiao M, Chen D, Zhang J, Zhao X. Stimuli-responsive nanoparticles delivered by a nasal-brain pathway alleviate depression-like behavior through extensively scavenging ROS. Acta Biomater 2023; 171:451-465. [PMID: 37778483 DOI: 10.1016/j.actbio.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Depression is one of the most common mental diseases, which seriously affects patients' physical and mental health. Emerging evidence has indicated that oxidative stress (OS) is a major cause of neurodegeneration involved in the pathogenesis of depression. Consequently, targeted reactive oxygen species (ROS) elimination is regarded as a promising strategy for efficient depression therapy. In addition, insufficient brain drug delivery is the main obstacle to depression therapy owing to the presence of the blood-brain barrier (BBB). To achieve the goals of bypassing the BBB and promoting antioxidant therapy for depression, a broad-spectrum ROS scavenging NPs was rationally designed through a nasal-brain pathway developed for combined ROS scavenging and brain drug delivery. A hexa-arginine (R6) modified ROS-responsive dextran (DEX) derivate was synthesized for antidepressant olanzapine (Olz) and H2 donor amino borane (AB) loading to prepare Olz/RDPA nanoparticles (NPs). Subsequently, the NPs were dispersed into a thermoresponsive hydrogel system based on poloxamer. In vitro and in vivo results demonstrated that Olz/RDPA in situ thermoresponsive hydrogel system could effectively deliver NPs to the brain via the nasal-brain pathway and alleviate depression-like behaviors through combined ROS depletion and inhibition of 5-HT dysfunction of the oxidative stress-induced. The proposed ROS-scavenging nanotherapeutic would open a new window for depression treatment. STATEMENT OF SIGNIFICANCE: ROS is an innovative therapeutic target involving the pathology of depression whereas targeted delivery of ROS scavenging has not been achieved yet. In the current study, ROS-responsive nanoparticles (Olz/RDPA NPs) were prepared and dispersed in a thermosensitive hydrogel for delivery through the nasal-brain pathway for the treatment of depression. Sufficient ROS depletion and improvement of delivery capacity by the nasal-brain pathway effectively could reverse oxidative stress and alleviate depressive-like behavior. Collectively, these nanoparticles may represent a promising strategy for the treatment of depression.
Collapse
Affiliation(s)
- Lin Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haiyang Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingxi Qiao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dawei Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
13
|
Alwehaidah MS, Alsabbagh M, Al-Kafaji G. Comprehensive analysis of mitochondrial DNA variants, mitochondrial DNA copy number and oxidative damage in psoriatic arthritis. Biomed Rep 2023; 19:85. [PMID: 37881602 PMCID: PMC10594069 DOI: 10.3892/br.2023.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Growing evidence suggests that abnormalities in mitochondrial DNA (mtDNA) are involved in the pathogenesis of various inflammatory and immuno-mediated diseases. The present study analysed the entire mitochondrial genome by next-generation sequencing (NGS) in 23 patients with psoriatic arthritis (PsA) and 20 healthy controls to identify PsA-related variants. Changes in mtDNA copy number (mtDNAcn) were also evaluated by quantitative polymerase chain reaction (qPCR) and mtDNA oxidative damage was measured using an 8-hydroxy-2'-deoxyguanosine assay. NGS analysis revealed a total of 435 variants including 187 in patients with PsA only and 122 in controls only. Additionally, 126 common variants were found, of which 2 variants differed significantly in their frequencies among patients and controls (P<0.05), and may be associated with susceptibility to PsA. A total of 33 missense variants in mtDNA-encoded genes for complexes I, III, IV and V were identified only in patients with PsA. Of them, 25 variants were predicted to be deleterious by affecting the functions and structures of encoded proteins, and 13 variants were predicted to affect protein's stability. mtDNAcn analysis revealed decreased mtDNA content in patients with PsA compared with controls (P=0.0001) but the decrease in mtDNAcn was not correlated with patients' age or inflammatory biomarkers (P>0.05). Moreover, a higher level of oxidative damage was observed in patients with PsA compared with controls (P=0.03). The results of the present comprehensive analysis of mtDNA in PsA revealed that certain mtDNA variants may be implicated in the predisposition/pathogenesis of PsA, highlighting the importance of NGS in the identification of mtDNA variants in PsA. The current results also demonstrated that decreased mtDNAcn in PsA may be a consequence of increased oxidative stress. These data provide valuable insights into the contribution of mtDNA defects to the pathogenesis of PsA. Additional studies in larger cohorts are needed to elucidate the role of mtDNA defects in PsA.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, City of Kuwait 31470, State of Kuwait
| | - Manhel Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
14
|
Yonemoto K, Fujii F, Taira R, Ohgidani M, Eguchi K, Okuzono S, Ichimiya Y, Sonoda Y, Chong PF, Goto H, Kanemasa H, Motomura Y, Ishimura M, Koga Y, Tsujimura K, Hashiguchi T, Torisu H, Kira R, Kato TA, Sakai Y, Ohga S. Heterogeneity and mitochondrial vulnerability configurate the divergent immunoreactivity of human induced microglia-like cells. Clin Immunol 2023; 255:109756. [PMID: 37678717 DOI: 10.1016/j.clim.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1β after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1β production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Collapse
Affiliation(s)
- Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Aichi, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Schaller T, Ringen J, Fischer B, Bieler T, Perius K, Knopp T, Kommoss KS, Korn T, Heikenwälder M, Oelze M, Daiber A, Münzel T, Kramer D, Wenzel P, Wild J, Karbach S, Waisman A. Reactive oxygen species produced by myeloid cells in psoriasis as a potential biofactor contributing to the development of vascular inflammation. Biofactors 2023; 49:861-874. [PMID: 37139784 DOI: 10.1002/biof.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/04/2023] [Indexed: 05/05/2023]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease driven by interleukin-17A (IL-17A) and associated with cardiovascular dysfunction. We used a severe psoriasis mouse model of keratinocyte IL-17A overexpression (K14-IL-17Aind/+ , IL-17Aind/+ control mice) to investigate the activity of neutrophils and a potential cellular interconnection between skin and vasculature. Levels of dermal reactive oxygen species (ROS) and their release by neutrophils were measured by lucigenin-/luminol-based assays, respectively. Quantitative RT-PCR determined neutrophilic activity and inflammation-related markers in skin and aorta. To track skin-derived immune cells, we used PhAM-K14-IL-17Aind/+ mice allowing us to mark all cells in the skin by photoconversion of a fluorescent protein to analyze their migration into spleen, aorta, and lymph nodes by flow cytometry. Compared to controls, K14-IL-17Aind/+ mice exhibited elevated ROS levels in the skin and a higher neutrophilic oxidative burst accompanied by the upregulation of several activation markers. In line with these results psoriatic mice displayed elevated expression of genes involved in neutrophil migration (e.g., Cxcl2 and S100a9) in skin and aorta. However, no direct immune cell migration from the psoriatic skin into the aortic vessel wall was observed. Neutrophils of psoriatic mice showed an activated phenotype, but no direct cellular migration from the skin to the vasculature was observed. This suggests that highly active vasculature-invading neutrophils must originate directly from the bone marrow. Hence, the skin-vasculature crosstalk in psoriasis is most likely based on the systemic effects of the autoimmune skin disease, emphasizing the importance of a systemic therapeutic approach for psoriasis patients.
Collapse
Affiliation(s)
- Theresa Schaller
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Ringen
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Bieler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| | - Katharina Perius
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tanja Knopp
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Katharina S Kommoss
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias Oelze
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Wild
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center of Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
18
|
Wu H, Ou J, Li K, Wang T, Nandakumar KS. Comparative studies on mannan and imiquimod induced experimental plaque psoriasis inflammation in inbred mice. Clin Exp Immunol 2023; 211:288-300. [PMID: 36645209 PMCID: PMC10038325 DOI: 10.1093/cei/uxad004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/22/2022] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a genetically determined, environmentally triggered, immune system-mediated autoimmune disease. Different animal models are needed to investigate the complex pathological mechanisms underlying this disease. Therefore, we established mannan-induced psoriasis model and compared with the most commonly used imiquimod-induced psoriasis in terms of disease, induction of innate immune cells, expression of cytokines, and the effect of dexamethasone treatment. Mannan significantly induced more severe psoriasis with better disease relapsing feature than imiquimod (IMQ). As determined by immunohistochemistry, IMQ induced significantly more infiltration of CD11c+ and F4/80+ cells than mannan in the skin. However, cytometric analysis showed a significant increase in the percentage of Gr-1+ neutrophils in the spleen and lymph nodes as well as F4/80+ macrophages in the spleen after mannan exposure. Variation in the percentage of significantly increased Vγ4 T cells was also found to be dependent on the lymphoid organs tested. However, there is a clear difference between these models in terms of expression of certain cytokine genes: IL-22, IL-23, IL-17E, and IL-17F were expressed more predominantly in mannan-induced inflammation, while IL-6 and IL-17A expressions were significantly higher in IMQ model. Interestingly, dexamethasone treatment strongly reduced epidermal thickness and histological scores induced by mannan than IMQ. Despite inducing psoriasis-like inflammation, certain differences and similarities were observed in the immune responses induced by mannan and IMQ. However, mannan-induced psoriasis model is relatively more simple, economical and less harmful to mice with an increased possibility to develop a chronic psoriasis model by exposing mice to mannan.
Collapse
Affiliation(s)
- Huimei Wu
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- School of medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Ou
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kangxin Li
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Endocrinology, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability (FIH), Halmstad University, Halmstad, Sweden
| |
Collapse
|
19
|
Li Y, Cui H, Li S, Li X, Guo H, Nandakumar KS, Li Z. Kaempferol modulates IFN-γ induced JAK-STAT signaling pathway and ameliorates imiquimod-induced psoriasis-like skin lesions. Int Immunopharmacol 2023; 114:109585. [PMID: 36527884 DOI: 10.1016/j.intimp.2022.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Immune-mediated inflammation contributes to the development of psoriasis. However, long-term treatment with global immunosuppressive agents may cause a variety of side effects including recurrent infections. Kaempferol (KP), a natural flavonol, present in various plants is proposed to be useful for the treatment of psoriasis patients. Nevertheless, an explicit understanding of KP induced mechanisms is a prerequisite for its use in clinics. Therefore, we investigated the therapeutic effects and potential mode of action of KP using IFN-γ induced HaCaT cells and imiquimod-induced psoriasis-like skin lesions in mice. In this study, we found KP reduced intracellular ROS production, inhibited rhIFN-γ-induced IFN-γR1 expression, and up-regulated SOCS1 levels in HaCaT cells. In addition, KP inhibited rhIFN-γ-induced phosphorylation of JAK-STAT signaling molecules in HaCaT cells. Most importantly, KP alleviated imiquimod-induced psoriasis-like skin lesions in mice, histopathology and proportion of DCs in the skin. Besides, it reduced the population of γδT17 cells in the lymph nodes of the psoriatic mice and also decreased the gene expression of many proinflammatory cytokines, including interleukin IL-23, IL-17A, TNF-α, IL-6, and IL-1β in addition to down-regulation of the proinflammatory JAK-STAT signaling pathway. Thus, KP modulated IFN-γ induced JAK-STAT signaling pathway by inducing IFN-γR1 expression and up-regulating SOCS1 expression. In addition, KP also ameliorated imiquimod-induced psoriasis by reducing the dendritic cell numbers, and γδT17 cell population, along with down- modulation of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Haodong Cui
- First Clinical School of Medicine, Inner Mongolia Medical University, 010110 Hohhot, China
| | - Shipeng Li
- School of Medicine, Kunming University of Science and Technology, 650093 Kunming, China
| | - Xingyan Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 211199 Nanjing, China
| | - Hongtao Guo
- Nursing Department, Affiliated Hospital of Inner Mongolia Medical University, 010110 Hohhot, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, 30118 Halmstad, Sweden; School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhilei Li
- Clinical Pharmacy Division of Pharmacy Department, Southern University of Science and Technology Hospital, 518055 Shenzhen, China.
| |
Collapse
|
20
|
Aminoclay Nanoparticles Induce Anti-Inflammatory Dendritic Cells to Attenuate LPS-Elicited Pro-Inflammatory Immune Responses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248743. [PMID: 36557876 PMCID: PMC9787634 DOI: 10.3390/molecules27248743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Although 3-aminopropyl functionalized magnesium phyllosilicate nanoparticles (hereafter aminoclay nanoparticles, ACNs) are well-known nanomaterials employed as drug carriers, their effects on immune cells remain unclear. To address this issue, we explored murine dendritic cells (DCs) as these cells belong to the innate arm of the immune system and function as antigen-presenting cells to elicit adaptive immune responses. We examined the in vitro effects of ACNs on DCs isolated from B6 mice. ACN treatment significantly down-regulated the expression of inflammasome-related markers, including NLRP3, caspase-1, and IL1β. The ACNs-induced anti-inflammatory DC phenotype was further confirmed by down-regulation of the AKT/mTOR/HIF1α signaling pathway. Such anti-inflammatory effects of ACNs on DCs occurred independently of DC subtypes. To document the effects of ACNs on DCs more clearly, we examined their anti-inflammatory effects on lipopolysaccharide (LPS)-activated DCs. As expected, excessive inflammatory responses (increased mitochondrial ROS and Th1-type cytokines such as IL12 and IL1β) of LPS-activated DCs were dramatically attenuated by ACN treatment. Furthermore, ACNs down-regulated IFNγ production by antigen-specific CD4+ T cells, which is consistent with a reduced inflammatory phenotype of DCs. Overall, our results provide support for employing ACNs as drug delivery materials with therapeutic potential to control inflammatory disorders.
Collapse
|
21
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
22
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Zhang Y, Li Y, Zhou L, Yuan X, Wang Y, Deng Q, Deng Z, Xu S, Wang Q, Xie H, Li J. Nav1.8 in keratinocytes contributes to ROS-mediated inflammation in inflammatory skin diseases. Redox Biol 2022; 55:102427. [PMID: 35952475 PMCID: PMC9372634 DOI: 10.1016/j.redox.2022.102427] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS)-activated proinflammatory signals in keratinocytes play a crucial role in the immunoregulation of inflammatory skin diseases, including rosacea and psoriasis. Nav1.8 is a voltage-gated sodium ion channel, and its abnormal expression in the epidermal layer contributes to pain hypersensitivity in the skin. However, whether and how epidermal Nav1.8 is involved in skin immunoregulation remains unclear. This study was performed to identify the therapeutic role of Nav1.8 in inflammatory skin disorders. We found that Nav1.8 expression was significantly upregulated in the epidermis of rosacea and psoriasis skin lesions. Nav1.8 knockdown ameliorated skin inflammation in LL37-and imiquimod-induced inflammation mouse models. Transcriptome sequencing results indicated that Nav1.8 regulated the expression of pro-inflammatory mediators (IL1β and IL6) in keratinocytes, thereby contributing to immune infiltration in inflammatory skin disorders. In vitro, tumor necrosis factor alpha (TNFα), a cytokine that drives the development of various inflammatory skin disorders, increased Nav1.8 expression in keratinocytes. Knockdown of Nav1.8 eliminated excess ROS production, thereby attenuating the TNFα-induced production of inflammatory mediators; however, a Nav1.8 blocker did not have the same effect. Mechanistically, Nav1.8 reduced superoxide dismutase 2 (SOD2) activity by directly binding to SOD2 to prevent its deacetylation and mitochondrial localization, subsequently inducing ROS accumulation. Collectively, our study describes a central role for Nav1.8 in regulating pro-inflammatory responses in the skin and indicates a novel therapeutic strategy for rosacea and psoriasis.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yuan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
24
|
Brożyna AA, Slominski RM, Nedoszytko B, Zmijewski MA, Slominski AT. Vitamin D Signaling in Psoriasis: Pathogenesis and Therapy. Int J Mol Sci 2022; 23:ijms23158575. [PMID: 35955731 PMCID: PMC9369120 DOI: 10.3390/ijms23158575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, chronic, immune-mediated disease that affects approximately 2–3% of the world’s population. The etiology and pathophysiology of psoriasis are still unknown, but the activation of the adaptive immune system with the main role of T-cells is key in psoriasis pathogenesis. The modulation of the local neuroendocrine system with the downregulation of pro-inflammatory and the upregulation of anti-inflammatory messengers represent a promising adjuvant treatment in psoriasis therapies. Vitamin D receptors and vitamin D-mediated signaling pathways function in the skin and are essential in maintaining the skin homeostasis. The active forms of vitamin D act as powerful immunomodulators of clinical response in psoriatic patients and represent the effective and safe adjuvant treatments for psoriasis, even when high doses of vitamin D are administered. The phototherapy of psoriasis, especially UVB-based, changes the serum level of 25(OH)D, but the correlation of 25(OH)D changes and psoriasis improvement need more clinical trials, since contradictory data have been published. Vitamin D derivatives can improve the efficacy of psoriasis phototherapy without inducing adverse side effects. The anti-psoriatic treatment could include non-calcemic CYP11A1-derived vitamin D hydroxyderivatives that would act on the VDR or as inverse agonists on RORs or activate alternative nuclear receptors including AhR and LXRs. In conclusion, vitamin D signaling can play an important role in the natural history of psoriasis. Selective targeting of proper nuclear receptors could represent potential treatment options in psoriasis.
Collapse
Affiliation(s)
- Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Correspondence: (A.A.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bogusław Nedoszytko
- Department of Dermatology, Allergology and Venerology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
- Cytogeneticr Laboratory, Invicta Fertility and Reproductive Centre, 80-850 Gdańsk, Poland
| | - Michal A. Zmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Laboratory Service, VA Medical Center at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (A.A.B.); (A.T.S.)
| |
Collapse
|
25
|
Alwehaidah MS, AlFadhli S, Al-Kafaji G. Leukocyte mitochondrial DNA copy number is a potential non-invasive biomarker for psoriasis. PLoS One 2022; 17:e0270714. [PMID: 35767552 PMCID: PMC9242485 DOI: 10.1371/journal.pone.0270714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Abnormalities in the mitochondria have been linked to psoriasis, a chronic immune-mediated inflammatory skin disease. The mitochondrial DNA (mtDNA) is present in thousands of copies per cell and altered mtDNA copy number (mtDNA-CN), a common indicator of mitochondrial function, has been proposed as a biomarker for several diseases including autoimmune diseases. In this case–control study, we investigated whether the mtDNA-CN is related to psoriasis, correlates with the disease duration and severity, and can serve as a disease biomarker. Relative mtDNA-CN as compared with nuclear DNA was measured by a quantitative real-time polymerase chain reaction in peripheral blood buffy coat samples from 56 patients with psoriasis and 44 healthy controls. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the value of mtDNA-CN as a biomarker. We found that the mtDNA-CN was significantly decreased in patients with psoriasis compared to healthy controls (93.6±5.3 vs. 205±71; P = 0.04). Sub-group analyses with stratification of patients based on disease duration under or over 10 years and disease severity indicated that the mtDNA-CN was significantly lower in patients with longer disease duration (74±4.3 in disease duration >10 years vs. 79±8.3 in disease duration <10 years, P = 0.009), and higher disease severity (72±4.3 in moderate-to-severe index vs. 88.3 ± 6 in mild index, P = 0.017). Moreover, the mtDNA-CN was negatively correlated with the disease duration and disease severity (r = -0.36, P = 0.006; r = -0.41, P = 0.003 respectively). The ROC analysis of mtDNA-CN showed an area under the curve (AUC) of 0.84 (95% confidence interval: 0.69–0.98; P = 0.002) for differentiating patients from healthy controls. Our study suggests that low mtDNA-CN may be an early abnormality in psoriasis and associates with the disease progression. Our study also suggests that mtDNA-CN may be a novel blood-based biomarker for the early detection of psoriasis.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Faculty of Allied Health, Department of Medical Laboratory, Kuwait University, State of Kuwait
- * E-mail: ,
| | - Suad AlFadhli
- Faculty of Allied Health, Department of Medical Laboratory, Kuwait University, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
26
|
Orlando G, Molon B, Viola A, Alaibac M, Angioni R, Piaserico S. Psoriasis and Cardiovascular Diseases: An Immune-Mediated Cross Talk? Front Immunol 2022; 13:868277. [PMID: 35686132 PMCID: PMC9170986 DOI: 10.3389/fimmu.2022.868277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease, characterized by well-demarcated scaly, erythematous, infiltrated plaques. The cutaneous-to-systemic expansion of the inflammation in psoriasis leads to the concept of “psoriatic march” or “inflammatory skin march”. Accordingly, psoriasis is thought to be a systemic inflammatory disease associated with numerous comorbidities. Indeed, it’s currently considered an independent risk factor for cardiovascular diseases. Here, we discuss the current knowledge on TNF-α and IL-23/IL-17 mediated pathways linking the psoriatic plaque to the cardiovascular compartment. We further argue the possible involvement of the endothelial compartment in the psoriatic plaque- cardiovascular system crosstalk.
Collapse
Affiliation(s)
- Gloria Orlando
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy.,Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Stefano Piaserico
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Xu J, Chen H, Chu Z, Li Z, Chen B, Sun J, Lai W, Ma Y, He Y, Qian H, Wang F, Xu Y. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J Nanobiotechnology 2022; 20:155. [PMID: 35331238 PMCID: PMC8943972 DOI: 10.1186/s12951-022-01368-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Background Psoriasis is a chronic relapsing immunological skin disease characterized by multiple cross-talk inflammatory circuits which are relevantly associated with abnormal cross-reactivity between immune cells and keratinocytes (KCs). It may be inadequate to eradicate complicated pathogenesis only via single-mode therapy. To provide optimal combinatory therapeutics, a nanocomposite-based hydrogel was constructed by loading methotrexate (MTX) into ZnO/Ag to realize combined multiple target therapy of psoriasis. Results In this composite hydrogel, ZnO hybrid mesoporous microspheres were utilized both as drug carriers and reactive oxygen species (ROS)-scavenging nanoparticles. A proper amount of Ag nanoparticle-anchored ZnO nanoparticles (ZnO/Ag) was functionalized with inherent immunoregulatory property. The experiments showed that ZnO/Ag nanoparticles could exhibit a self-therapeutic effect that was attributed to reducing innate cytokine profiles by inactivating p65 in proinflammatory macrophages and abrogating secretion of adaptive cytokines in KCs by downregulating ROS-mediated STAT3-cyclin D1 signaling. A preferable antipsoriatic efficacy was achieved via topical administration of this hydrogel on the imiquimod (IMQ)-induced psoriasis mice model, demonstrating the superior transdermal delivery and combined enhancement of therapeutic efficacy caused by intrinsic nanoparticles and extrinsic MTX. Conclusion This composite hydrogel could serve as a multifunctional, nonirritating, noninvasive and effective transcutaneous nanoagent against psoriasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01368-y.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hao Chen
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Zhaoyou Chu
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Zhu Li
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Benjin Chen
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Jianan Sun
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Wei Lai
- Department of Dermatovenerology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Ma
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China
| | - Yulong He
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Haisheng Qian
- School of Basic Medical Sciences, School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
29
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
30
|
Wang J, Huang CLH, Zhang Y. Complement C1q Binding Protein (C1QBP): Physiological Functions, Mutation-Associated Mitochondrial Cardiomyopathy and Current Disease Models. Front Cardiovasc Med 2022; 9:843853. [PMID: 35310974 PMCID: PMC8924301 DOI: 10.3389/fcvm.2022.843853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Complement C1q binding protein (C1QBP, p32) is primarily localized in mitochondrial matrix and associated with mitochondrial oxidative phosphorylative function. C1QBP deficiency presents as a mitochondrial disorder involving multiple organ systems. Recently, disease associated C1QBP mutations have been identified in patients with a combined oxidative phosphorylation deficiency taking an autosomal recessive inherited pattern. The clinical spectrum ranges from intrauterine growth restriction to childhood (cardio) myopathy and late-onset progressive external ophthalmoplegia. This review summarizes the physiological functions of C1QBP, its mutation-associated mitochondrial cardiomyopathy shown in the reported available patients and current experimental disease platforms modeling these conditions.
Collapse
Affiliation(s)
- Jie Wang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | | | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
- Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Yanmin Zhang
| |
Collapse
|
31
|
Nakashima Y, Gotoh K, Mizuguchi S, Setoyama D, Takata Y, Kanno T, Kang D. Attenuating Effect of Chlorella Extract on NLRP3 Inflammasome Activation by Mitochondrial Reactive Oxygen Species. Front Nutr 2021; 8:763492. [PMID: 34692754 PMCID: PMC8531207 DOI: 10.3389/fnut.2021.763492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1β transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|