1
|
Palmer CS, Perdios C, Abdel-Mohsen M, Mudd J, Datta PK, Maness NJ, Lehmicke G, Golden N, Hellmers L, Coyne C, Moore Green K, Midkiff C, Williams K, Tiburcio R, Fahlberg M, Boykin K, Kenway C, Russell-Lodrigue K, Birnbaum A, Bohm R, Blair R, Dufour JP, Fischer T, Saied AA, Rappaport J. Non-human primate model of long-COVID identifies immune associates of hyperglycemia. Nat Commun 2024; 15:6664. [PMID: 39164284 PMCID: PMC11335872 DOI: 10.1038/s41467-024-50339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperglycemia, and exacerbation of pre-existing deficits in glucose metabolism, are manifestations of the post-acute sequelae of SARS-CoV-2. Our understanding of metabolic decline after acute COVID-19 remains unclear due to the lack of animal models. Here, we report a non-human primate model of metabolic post-acute sequelae of SARS-CoV-2 using SARS-CoV-2 infected African green monkeys. Using this model, we identify a dysregulated blood chemokine signature during acute COVID-19 that correlates with elevated and persistent hyperglycemia four months post-infection. Hyperglycemia also correlates with liver glycogen levels, but there is no evidence of substantial long-term SARS-CoV-2 replication in the liver and pancreas. Finally, we report a favorable glycemic effect of the SARS-CoV-2 mRNA vaccine, administered on day 4 post-infection. Together, these data suggest that the African green monkey model exhibits important similarities to humans and can be utilized to assess therapeutic candidates to combat COVID-related metabolic defects.
Collapse
Affiliation(s)
- Clovis S Palmer
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Chrysostomos Perdios
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Joseph Mudd
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasun K Datta
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Linh Hellmers
- Tulane National Primate Research Center, Covington, LA, USA
| | - Carol Coyne
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Rafael Tiburcio
- Division of Experimental Medicine, Department of Medicine, University of San Francisco, CA, USA
| | | | - Kyndal Boykin
- Tulane National Primate Research Center, Covington, LA, USA
| | - Carys Kenway
- Tulane National Primate Research Center, Covington, LA, USA
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Rudolf Bohm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tracy Fischer
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ahmad A Saied
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Amjadi MF, Parker MH, Adyniec RR, Zheng Z, Robbins AM, Bashar SJ, Denny MF, McCoy SS, Ong IM, Shelef MA. Novel and unique rheumatoid factors cross-react with viral epitopes in COVID-19. J Autoimmun 2024; 142:103132. [PMID: 37956528 PMCID: PMC10957334 DOI: 10.1016/j.jaut.2023.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Rheumatoid factors (RFs), polyreactive antibodies canonically known to bind two conformational epitopes of IgG Fc, are a hallmark of rheumatoid arthritis but also can arise in other inflammatory conditions and infections. Also, infections may contribute to the development of rheumatoid arthritis and other autoimmune diseases. Recently, RFs only in rheumatoid arthritis were found to bind novel linear IgG epitopes as well as thousands of other rheumatoid arthritis autoantigens. Specific epitopes recognized by infection-induced polyreactive RFs remain undefined but could provide insights into loss of immune tolerance. Here, we identified novel linear IgG epitopes bound by RFs in COVID-19 but not rheumatoid arthritis or other conditions. The main COVID-19 RF was polyreactive, binding two IgG and multiple viral peptides with a tripeptide motif, as well as IgG Fc and SARS-CoV-2 spike proteins. In contrast, a rheumatoid arthritis-specific RF recognized IgG Fc, but not tripeptide motif-containing peptides or spike. Thus, RFs have disease-specific IgG reactivity and distinct polyreactivities that reflect the broader immune response. Moreover, the polyreactivity of a virus-induced RF appears to be attributable to a very short peptide motif. These findings refine our understanding of RFs and provide new insights into how viral infections may contribute to autoimmunity.
Collapse
Affiliation(s)
- Maya F Amjadi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Maxwell H Parker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan R Adyniec
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Zihao Zheng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Alex M Robbins
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - S Janna Bashar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael F Denny
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sara S McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Irene M Ong
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
4
|
Olvera-Collantes L, Moares N, Fernandez-Cisnal R, Muñoz-Miranda JP, Gonzalez-Garcia P, Gabucio A, Freyre-Carrillo C, Jordan-Chaves JDD, Trujillo-Soto T, Rodriguez-Martinez MP, Martin-Rubio MI, Escuer E, Rodriguez-Iglesias M, Fernandez-Ponce C, Garcia-Cozar F. Development and Validation of a Highly Sensitive Multiplex Immunoassay for SARS-CoV-2 Humoral Response Monitorization: A Study of the Antibody Response in COVID-19 Patients with Different Clinical Profiles during the First and Second Waves in Cadiz, Spain. Microorganisms 2023; 11:2997. [PMID: 38138141 PMCID: PMC10746014 DOI: 10.3390/microorganisms11122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
There is still a long way ahead regarding the COVID-19 pandemic, since emerging waves remain a daunting challenge to the healthcare system. For this reason, the development of new preventive tools and therapeutic strategies to deal with the disease have been necessary, among which serological assays have played a key role in the control of COVID-19 outbreaks and vaccine development. Here, we have developed and evaluated an immunoassay capable of simultaneously detecting multiple IgG antibodies against different SARS-CoV-2 antigens through the use of Bio-PlexTM technology. Additionally, we have analyzed the antibody response in COVID-19 patients with different clinical profiles in Cadiz, Spain. The multiplex immunoassay presented is a high-throughput and robust immune response monitoring tool capable of concurrently detecting anti-S1, anti-NC and anti-RBD IgG antibodies in serum with a very high sensitivity (94.34-97.96%) and specificity (91.84-100%). Therefore, the immunoassay proposed herein may be a useful monitoring tool for individual humoral immunity against SARS-CoV-2, as well as for epidemiological surveillance. In addition, we show the values of antibodies against multiple SARS-CoV-2 antigens and their correlation with the different clinical profiles of unvaccinated COVID-19 patients in Cadiz, Spain, during the first and second waves of the pandemic.
Collapse
Affiliation(s)
- Lucia Olvera-Collantes
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
| | - Ricardo Fernandez-Cisnal
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Juan P. Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
| | | | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
| | | | | | | | | | | | - Eva Escuer
- Jerez University Hospital, 11407 Jerez de la Frontera, Spain;
| | - Manuel Rodriguez-Iglesias
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
- Microbiology Service, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health, School of Medicine, University of Cadiz, 11003 Cadiz, Spain (A.G.); (M.R.-I.)
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
| |
Collapse
|
5
|
Swanepoel J, van der Zalm MM, Preiser W, van Zyl G, Whittaker E, Hesseling AC, Moore DAJ, Seddon JA. SARS-CoV-2 infection and pulmonary tuberculosis in children and adolescents: a case-control study. BMC Infect Dis 2023; 23:442. [PMID: 37386354 DOI: 10.1186/s12879-023-08412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic has had an impact on the global tuberculosis (TB) epidemic but evidence on the possible interaction between SARS-CoV-2 and TB, especially in children and adolescents, remains limited. We aimed to evaluate the relationship between previous infection with SARS-CoV-2 and the risk of TB in children and adolescents. METHODS An unmatched case-control study was conducted using SARS-CoV-2 unvaccinated children and adolescents recruited into two observational TB studies (Teen TB and Umoya), between November 2020 and November 2021, in Cape Town, South Africa. Sixty-four individuals with pulmonary TB (aged < 20 years) and 99 individuals without pulmonary TB (aged < 20 years) were included. Demographics and clinical data were obtained. Serum samples collected at enrolment underwent quantitative SARS-CoV-2 anti-spike immunoglobulin G (IgG) testing using the Abbott SARS-CoV-2 IgG II Quant assay. Odds ratios (ORs) for TB were estimated using unconditional logistic regression. RESULTS There was no statistically significant difference in the odds of having pulmonary TB between those who were SARS-CoV-2 IgG seropositive and those who were seronegative (adjusted OR 0.51; 95% CI: 0.23-1.11; n = 163; p = 0.09). Of those with positive SARS-CoV-2 serology indicating prior infection, baseline IgG titres were higher in individuals with TB compared to those without TB (p = 0.04) and individuals with IgG titres in the highest tertile were more likely to have pulmonary TB compared to those with IgG levels in the lowest tertile (OR: 4.00; 95%CI: 1.13- 14.21; p = 0.03). CONCLUSIONS Our study did not find convincing evidence that SARS-CoV-2 seropositivity was associated with subsequent pulmonary TB disease; however, the association between magnitude of SARS-CoV-2 IgG response and pulmonary TB warrants further investigation. Future prospective studies, evaluating the effects of sex, age and puberty on host immune responses to M. tuberculosis and SARS-CoV-2, will also provide more clarity on the interplay between these two infections.
Collapse
Affiliation(s)
- Jeremi Swanepoel
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
- TB Centre, London School of Hygiene and Tropical Medicine, London, UK.
| | - Marieke M van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Gert van Zyl
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Academic Hospital, Cape Town, South Africa
| | | | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - David A J Moore
- TB Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - James A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
6
|
Serra N, Andriolo M, Butera I, Mazzola G, Sergi CM, Fasciana TMA, Giammanco A, Gagliano MC, Cascio A, Di Carlo P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines (Basel) 2023; 11:1136. [PMID: 37514952 PMCID: PMC10384738 DOI: 10.3390/vaccines11071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND With SARS-CoV-2 antibody tests on the market, healthcare providers must be confident that they can use the results to provide actionable information to understand the characteristics and dynamics of the humoral response and antibodies (abs) in SARS-CoV-2-vaccinated patients. In this way, the study of the antibody responses of healthcare workers (HCWs), a population that is immunocompetent, adherent to vaccination, and continuously exposed to different virus variants, can help us understand immune protection and determine vaccine design goals. METHODS We retrospectively evaluated antibody responses via multiplex assays in a sample of 538 asymptomatic HCWs with a documented complete vaccination cycle of 3 doses of mRNA vaccination and no previous history of infection. Our sample was composed of 49.44% males and 50.56% females, with an age ranging from 21 to 71 years, and a mean age of 46.73 years. All of the HCWs' sera were collected from April to July 2022 at the Sant'Elia Hospital of Caltanissetta to investigate the immunologic responses against anti-RBD, anti-S1, anti-S2, and anti-N IgG abs. RESULTS A significant difference in age between HCWs who were positive and negative for anti-N IgG was observed. For anti-S2 IgG, a significant difference between HCWs who were negative and positive compared to anti-N IgG was observed only for positive HCWs, with values including 10 (U/mL)-100 (U/mL); meanwhile, for anti-RBD IgG and anti-S1 IgG levels, there was only a significant difference observed for positive HCWs with diluted titers. For the negative values of anti-N IgG, among the titer dilution levels of anti-RBD, anti-S1, and anti-S2 IgG, the anti-S2 IgG levels were significantly lower than the anti-RBD and anti-S1 levels; in addition, the anti-S1 IgG levels were significantly lower than the anti-RBD IgG levels. For the anti-N IgG positive levels, only the anti-S2 IgG levels were significantly lower than the anti-RBD IgG and anti-S1 IgG levels. Finally, a logistic regression analysis showed that age and anti-S2 IgG were negative and positive predictors of anti-N IgG levels, respectively. The analysis between the vaccine type and mixed mRNA combination showed higher levels of antibodies in mixed vaccinated HCWs. This finding disappeared in the anti-N positive group. CONCLUSIONS Most anti-N positive HCWs showed antibodies against the S2 domain and were young subjects. Therefore, the authors suggest that including the anti-SARS-CoV-2-S2 in antibody profiles can serve as a complementary testing approach to qRT-PCR for the early identification of asymptomatic infections in order to reduce the impact of potential new SARS-CoV-2 variants. Our serological investigation on the type of mRNA vaccine and mixed mRNA vaccines shows that future investigations on the serological responses in vaccinated asymptomatic patients exposed to previous infection or reinfection are warranted for updated vaccine boosters.
Collapse
Affiliation(s)
- Nicola Serra
- Department of Public Health, University Federico II of Naples, 80131 Napoli, Italy
| | - Maria Andriolo
- Clinical Pathology Laboratory, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Ignazio Butera
- Degree Course in Medicine and Surgery, Medical Scholl of Hypatia, University of Palermo, 93100 Caltanissetta, Italy
| | - Giovanni Mazzola
- Infectious Disease Unit, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Consolato Maria Sergi
- Department of Pathology and Laboratory Medicine, University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Teresa Maria Assunta Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Gagliano
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Paola Di Carlo
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Soares SR, da Silva Torres MK, Lima SS, de Sarges KML, Santos EFD, de Brito MTFM, da Silva ALS, de Meira Leite M, da Costa FP, Cantanhede MHD, da Silva R, de Oliveira Lameira Veríssimo A, Vallinoto IMVC, Feitosa RNM, Quaresma JAS, Chaves TDSS, Viana GMR, Falcão LFM, Santos EJMD, Vallinoto ACR, da Silva ANMR. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses 2023; 15:v15040898. [PMID: 37112878 PMCID: PMC10141342 DOI: 10.3390/v15040898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19.
Collapse
Affiliation(s)
- Sinei Ramos Soares
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Maria Karoliny da Silva Torres
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Sandra Souza Lima
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Kevin Matheus Lima de Sarges
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Erika Ferreira dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Luciana Soares da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Mauro de Meira Leite
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Flávia Póvoa da Costa
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Rosilene da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Izaura Maria Vieira Cayres Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Juarez Antônio Simões Quaresma
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Giselle Maria Rachid Viana
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Luiz Fábio Magno Falcão
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Eduardo José Melo dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Nazaré Monteiro Rangel da Silva
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
8
|
Serum Fc-Mediated Monocyte Phagocytosis Activity Is Stable for Several Months after SARS-CoV-2 Asymptomatic and Mildly Symptomatic Infection. Microbiol Spectr 2022; 10:e0183722. [PMID: 36374040 PMCID: PMC9769986 DOI: 10.1128/spectrum.01837-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.
Collapse
|
9
|
Gao X, Fan L, Zheng B, Li H, Wang J, Zhang L, Li J, Zhu F. Binding and neutralizing abilities of antibodies towards SARS-CoV-2 S2 domain. Hum Vaccin Immunother 2022; 18:2055373. [PMID: 35417303 PMCID: PMC9225664 DOI: 10.1080/21645515.2022.2055373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants have been reported to be resistant to several neutralizing antibodies (NAbs) targeting Receptor Binding Domain (RBD) and N Terminal Domain (NTD) of spike (S) protein and thus inducing immune escape. However, fewer studies were carried out to investigate the neutralizing ability of S2-specific antibodies. In this research, 10 monoclonal antibodies (mAbs) targeting SARS-CoV-2 S2 subunit were generated from Coronavirus Disease 2019 (COVID-19) convalescent patients by phage display technology and molecular cloning technology. The binding activity of these S2-mAbs toward SARS-CoV-2 S, SARS-CoV-2 S2, SARS-CoV-2 RBD, SARS-CoV-2 NTD, severe acute respiratory syndrome coronavirus (SARS-CoV) S, SARS-CoV S2 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) S proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). Their neutralizing potency toward SARS-CoV-2 wild-type (WT), B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.1 and B.1.621 variants were determined by pseudo-virus-based neutralization assay. Results showed that S2E7-mAb had cross-activity to S or S2 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, while with limited neutralizing activity to pseudo-viruses of SARS-CoV-2 WT and variants. It is undeniable that the binding and neutralizing activities of the S2-targeting mAbs are significantly weaker than the previously reported antibodies targeting RBD and NTD, but our study may provide some evidences for understanding immune protection and identifying targets for vaccine design based on the conserved S2 subunit.
Collapse
Affiliation(s)
- Xingsu Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Linlin Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Binyang Zheng
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Haoze Li
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Jiwei Wang
- Vazyme Biotech Co, Ltd., Nanjing, PR China
| | - Li Zhang
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jingxin Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Fengcai Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, PR China
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|
10
|
Impact of COVID-19 Pandemic Control Measures on Infection of Other Respiratory Pathogens: A Real-world Data Research in Guangzhou, China. J Transl Int Med 2022; 10:272-276. [PMID: 36776242 PMCID: PMC9901559 DOI: 10.2478/jtim-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Rowntree LC, Nguyen THO, Kedzierski L, Neeland MR, Petersen J, Crawford JC, Allen LF, Clemens EB, Chua B, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Tan HX, Wheatley AK, Jia X, Amanat F, Krammer F, Allen EK, Sonda S, Flanagan KL, Jumarang J, Pannaraj PS, Licciardi PV, Kent SJ, Bond KA, Williamson DA, Rossjohn J, Thomas PG, Tosif S, Crawford NW, van de Sandt CE, Kedzierska K. SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity 2022; 55:1299-1315.e4. [PMID: 35750048 PMCID: PMC9174177 DOI: 10.1016/j.immuni.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Abstract
As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαβ repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαβ motifs in unvaccinated seroconverted children after their first virus encounter.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia; Royal Children's Hospital Melbourne, Immunisation Service, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
12
|
Nishimura M, Sugawa S, Ota S, Suematsu E, Shinoda M, Shinkai M. Detection of silent infection of severe acute respiratory syndrome coronavirus 2 by serological tests. PLoS One 2022; 17:e0267566. [PMID: 35594509 PMCID: PMC9122508 DOI: 10.1371/journal.pone.0267566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Background To control COVID-19 pandemic is of critical importance to the global public health. To capture the prevalence in an accurate and timely manner and to understand the mode of nosocomial infection are essential for its preventive measure. Methods We recruited 685 healthcare workers (HCW’s) at Tokyo Shinagawa Hospital prior to the vaccination with COVID-19 vaccine. Sera of the subjects were tested by assays for the titer of IgG against S protein’s receptor binding domain (IgG (RBD)) or IgG against nucleocapsid protein (IgG (N)) of SARS-CoV-2. Together with PCR data, the positive rates by these methods were evaluated. Results Overall positive rates among HCW’s by PCR, IgG (RBD), IgG (N) with a cut-off of 1.4 S/C (IgG (N)1.4), and IgG (N) with a cut-off of 0.2 S/C (IgG (N)0.2) were 3.5%, 9.5%, 6.1%, and 27.7%, respectively. Positive rates of HCW’s working in COVID-19 ward were significantly higher than those of HCW’s working in non-COVID-19 ward by all the four methods. Concordances of IgG (RBD), IgG (N)1.4, and IgG (N)0.2 against PCR were 97.1%, 71.4%, and 88.6%, respectively. By subtracting the positive rates of PCR from that of IgG (RBD), the rate of overall silent infection and that of HCW’s in COVID-19 ward were estimated to be 6.0% and 21.1%, respectively. Conclusions For the prevention of nosocomial infection of SARS-CoV-2, identification of silent infection is essential. For the detection of ongoing infection, periodical screening with IgG (RBD) in addition to PCR would be an effective measure. For the surveillance of morbidity in the population, on the other hand, IgG (N)0.2 could be the most reliable indicator among the three serological tests.
Collapse
Affiliation(s)
- Masashi Nishimura
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa-Ku, Tokyo, Japan
| | - Satoshi Sugawa
- Core Diagnostics, Abbott Japan LLC, Minato-Ku, Tokyo, Japan
- * E-mail:
| | - Shinichiro Ota
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa-Ku, Tokyo, Japan
- Department of physiology, Showa University School of Medicine, Shinagawa-Ku, Tokyo, Japan
| | - Etsuko Suematsu
- Department of Clinical Laboratory Medicine, Tokyo Shinagawa Hospital, Shinagawa-Ku, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa-Ku, Tokyo, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Shinagawa-Ku, Tokyo, Japan
| |
Collapse
|
13
|
Kosiorek P, Kazberuk DE, Hryniewicz A, Milewski R, Stróż S, Stasiak-Barmuta A. Systemic COVID-19 Vaccination Enhances the Humoral Immune Response after SARS-CoV-2 Infection: A Population Study from a Hospital in Poland Criteria for COVID-19 Reimmunization Are Needed. Vaccines (Basel) 2022; 10:vaccines10020334. [PMID: 35214792 PMCID: PMC8875391 DOI: 10.3390/vaccines10020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic vaccination with the BNT162b2 mRNA vaccine stimulates the humoral response. Our study aimed to compare the intensity of the humoral immune response, measured by SARS-CoV-2 IgG, SARS-CoV-2 IgM, and S-RBD-neutralizing IgG antibody levels after COVID-19 vaccination versus after SARS-CoV-2 infection. We analyzed 1060 people in the following groups: convalescents; healthy unvaccinated individuals; individuals vaccinated with Comirnaty, AstraZeneca, Moderna, or Johnson & Johnson; and vaccinated SARS-CoV-2 convalescents. The concentrations of SARS-CoV-2 IgG, SARS-CoV-2 IgM, and S-RBD-neutralizing antibodies were estimated in an oncology hospital laboratory by chemiluminescent immunoassay (CLIA; MAGLUMI). Results: (1) We observed a rise in antibody response in both the SARS-CoV-2 convalescent and COVID-19-vaccinated groups. (2) The levels of all antibody concentrations in vaccinated COVID-19 convalescents were significantly higher. (3) We differentiated asymptomatic SARS-CoV-2 convalescents from the control group. Our analysis suggests that monitoring SARS-CoV-2 IgG antibody concentrations is essential as an indicator of asymptomatic COVID-19 and as a measure of the effectiveness of the humoral response in convalescents and vaccinated people. Considering the time-limited effects of post-SARS-CoV-2 infection recovery or vaccination and the physiological half-life, among other factors, we suggest monitoring IgG antibody levels as a criterion for future vaccination.
Collapse
Affiliation(s)
- Piotr Kosiorek
- Department of Emergency, Maria Sklodowska-Curie Bialystok Oncology Centre, Ogrodowa 12, 15-027 Białystok, Poland
- Department of Clinical Immunology, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland; (S.S.); (A.S.-B.)
- Correspondence:
| | - Dorota Elżbieta Kazberuk
- Department of Radiotherapy, Maria Sklodowska-Curie Bialystok Oncology Centre, Ogrodowa 12, 15-027 Białystok, Poland;
| | - Anna Hryniewicz
- Department of Rehabilitation, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland;
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland;
| | - Samuel Stróż
- Department of Clinical Immunology, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland; (S.S.); (A.S.-B.)
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland; (S.S.); (A.S.-B.)
| |
Collapse
|