1
|
Sheng Z, Song H, Gao X, Shu B, You Y, Liu Z. Exosomal miR-146a-5p Derived from HSCs Accelerates Sepsis-induced Liver Injury by Suppressing KLF-4. Inflammation 2024:10.1007/s10753-024-02172-6. [PMID: 39589633 DOI: 10.1007/s10753-024-02172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
This study aimed to investigate whether and how lipopolysaccharide (LPS) activated hepatic stellate cells (HSCs) regulate macrophage activity and to explore the impact of microRNAs (miRNAs) in exosomes from HSCs on this process. Mice subjected to LPS or cecal ligation and puncture (CLP) were used to explore sepsis-induced liver injury. Liver injury was evaluated using HE staining, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. LPS-Exo or N-LPS-Exo from HSCs were added to hepatic macrophages, and iNOS, IL-1β, and TNF-α expression was detected via Western blotting. miRNA microarray analysis and PCR were used to evaluate differentially expressed miRNAs between LPS-Exo and N-LPS-Exo. Target genes were screened using the TargetScan database and verified with luciferase assays and WB. Inflammation and macrophage activity were observed in vivo using HE and CD86 staining in mice injected with PKH67-labeled LPS-Exo or N-LPS-Exo. Sepsis-related liver injury activates hepatic stellate cells, which regulate macrophage activity through exosomes. Specifically, exosomal miR-146a-5p secreted by hepatic stellate cells targets KLF-4, regulating the macrophage inflammatory response through the JNK signaling pathway. Exosomes containing miRNA-146a-5p released from HSCs following LPS treatment may increase macrophage sensitivity to LPS and trigger an inflammatory response. Exosomal miR-146a-5p derived from HSCs accelerates sepsis-induced liver injury by suppressing KLF-4 expression.
Collapse
Affiliation(s)
- Ziyi Sheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Hua Song
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Xianzhi Gao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Bian Shu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Yu You
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| |
Collapse
|
2
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2024:S0091-6749(24)00942-4. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
4
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
5
|
Shi Y, Yao M, Shen S, Wang L, Yao D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon 2024; 10:e28292. [PMID: 38560274 PMCID: PMC10979174 DOI: 10.1016/j.heliyon.2024.e28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer still is one of the most common malignancy tumors in the world. However, the mechanisms of its occurrence and development have not been fully elucidated. Zinc finger protein family (ZNFs) is the largest transcription factor family in human genome. Recently, the more and more basic and clinical evidences have confirmed that ZNFs/Krüppel-like factors (KLFs) refer to a group of conserved zinc finger-containing transcription factors that are involved in lung cancer progression, with the functions of promotion, inhibition, dual roles and unknown classifications. Based on the recent literature, some of the oncogenic KLFs are promising molecular biomarkers for diagnosis, prognosis or therapeutic targets of lung cancer. Interestingly, a novel computational approach has been proposed by using machine learning on features calculated from primary sequences, the XGBoost-based model with accuracy of 96.4 % is efficient in identifying KLF proteins. This paper reviews the recent some progresses of the oncogenic KLFs with their potential values for diagnosis, prognosis and molecular target in lung cancer.
Collapse
Affiliation(s)
- Yang Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, First People's Hospital of Yancheng, Yancheng 224001, China
| | - Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Shuijie Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Pestal K, Slayden LC, Barton GM. Krüppel-like Factor (KLF) family members control expression of genes required for serous cavity and alveolar macrophage identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582578. [PMID: 38464159 PMCID: PMC10925242 DOI: 10.1101/2024.02.28.582578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Kruppel-like Factor 2 (KLF2) in the development of embryonically derived Large Cavity Macrophages (LCM) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity, such as retinoic acid receptors and GATA6, but also is required for induction of many other transcripts that define the identity of these cells. We identify a similar role for KLF4 in regulating the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors, such as Group 2 KLFs, can play important roles in the specification of distinct identities of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Leianna C Slayden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
7
|
Horn KJ, Fulte S, Yang M, Lorenz BP, Clark SE. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J Leukoc Biol 2024; 115:4-15. [PMID: 37381945 PMCID: PMC10768920 DOI: 10.1093/jleuko/qiad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The early immune response to bacterial pneumonia requires a careful balance between pathogen clearance and tissue damage. The anti-inflammatory cytokine interleukin (IL)-10 is critical for restraining otherwise lethal pulmonary inflammation. However, pathogen-induced IL-10 is associated with bacterial persistence in the lungs. In this study, we used mice with myeloid cell specific deletion of IL-10R to investigate the cellular targets of IL-10 immune suppression during infection with Streptococcus pneumoniae, the most common bacterial cause of pneumonia. Our findings suggest that IL-10 restricts the neutrophil response to S. pneumoniae, as neutrophil recruitment to the lungs was elevated in myeloid IL-10 receptor (IL-10R)-deficient mice and neutrophils in the lungs of these mice were more effective at killing S. pneumoniae. Improved killing of S. pneumoniae was associated with increased production of reactive oxygen species and serine protease activity in IL-10R-deficient neutrophils. Similarly, IL-10 suppressed the ability of human neutrophils to kill S. pneumoniae. Burdens of S. pneumoniae were lower in myeloid IL-10R-deficient mice compared with wild-type mice, and adoptive transfer of IL-10R-deficient neutrophils into wild-type mice significantly improved pathogen clearance. Despite the potential for neutrophils to contribute to tissue damage, lung pathology scores were similar between genotypes. This contrasts with total IL-10 deficiency, which is associated with increased immunopathology during S. pneumoniae infection. Together, these findings identify neutrophils as a critical target of S. pneumoniae-induced immune suppression and highlight myeloid IL-10R abrogation as a mechanism to selectively reduce pathogen burdens without exacerbating pulmonary damage.
Collapse
Affiliation(s)
- Kadi J Horn
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, 12631 East 17th Avenue, Aurora, CO80045, United States
| | - Brian P Lorenz
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
8
|
Shi SX, Xiu Y, Li Y, Yuan M, Shi K, Liu Q, Wang X, Jin WN. CD4 + T cells aggravate hemorrhagic brain injury. SCIENCE ADVANCES 2023; 9:eabq0712. [PMID: 37285421 DOI: 10.1126/sciadv.abq0712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Leukocyte infiltration accelerates brain injury following intracerebral hemorrhage (ICH). Yet, the involvement of T lymphocytes in this process has not been fully elucidated. Here, we report that CD4+ T cells accumulate in the perihematomal regions in the brains of patients with ICH and ICH mouse models. T cells activation in the ICH brain is concurrent with the course of perihematomal edema (PHE) development, and depletion of CD4+ T cells reduced PHE volumes and improved neurological deficits in ICH mice. Single-cell transcriptomic analysis revealed that brain-infiltrating T cells exhibited enhanced proinflammatory and proapoptotic signatures. Consequently, CD4+ T cells disrupt the blood-brain barrier integrity and promote PHE progression through interleukin-17 release; furthermore, the TRAIL-expressing CD4+ T cells engage DR5 to trigger endothelial death. Recognition of T cell contribution to ICH-induced neural injury is instrumental for designing immunomodulatory therapies for this dreadful disease.
Collapse
Affiliation(s)
- Samuel X Shi
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Yuan
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoying Wang
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wei-Na Jin
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Song J, Jiang Z, Wei X, Zhang Y, Bian B, Wang H, Gao W, Si N, Liu H, Cheng M, Zhao Z, Zhou Y, Zhao H. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R.Br.) and its representative component. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154758. [PMID: 37001296 DOI: 10.1016/j.phymed.2023.154758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Loropetalum chinensis (R.Br) Oliv (Bhjm), a Chinese folk herbal medicine, was traditionally used in the treatment of wound bleeding and skin ulcers. A new drug named JIMUSAN granules used for gastrosia was developed by our group, and clinical trials have been approved. However, as the principal herb, the material basis and underlying mechanisms of Bhjm in attenuating gastrointestinal mucosa damage (GMD) remain to be systemically illuminated. PURPOSE An integrated strategy was used to explore the therapeutic effects and mechanisms of Bhjm and ellagic acid (EA) on GMD zebrafish, using network pharmacology, transcriptomics, lipidomics, and real-time quantitative PCR (RT-qPCR) verification. METHODS First, network pharmacological analysis was used to infer the major effective constituents and targets of Bhjm. Ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap HRMS) and ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) were employed to identify the chemical constituents and quantify the different types of constituents. Second, zebrafish model of GMD was established by using 2,4,6-trinitrobenzenesulfonic acid (TNBS) to evaluate the efficacy of Bhjm and EA. The potential mechanism was examined by integrated transcriptomics and lipidomics analysis. Finally, validation tests were implemented using RT-qPCR. RESULTS In this study, targets indentified by network pharmacology were related to inflammation and mucosal damage. Ten representative components that interacted with these targets were simultaneously determined by UHPLC-MS/MS. Sixty four compounds were identified or tentatively characterized, most of which were flavonoids and polyphenols. Bhjm and EA alleviated mucosal damage and reduced inflammation in a TNBS-induced zebrafish GMD model, indicating that EA was the main active compounds. Eight common differentially expressed genes were downregulated by Bhjm and EA, as determined by transcriptomics analysis. Lipidomics analysis confirmed 12 differential lipids, including phosphatidylcholine (PC) and triglyceride (TG). Further network enrichment analysis demonstrated that differential lipid metabolism was regulated by klf4 and hist1h2ba, and were validated by RT-qPCR. CONCLUSION In our study, the chemical profile of Bhjm was clarified. Moreover, the GMD repair effect and the mechanism of Bhjm and EA was comprehensively analyzed for the first time, involving inflammation and lipid metabolism. Collectively, these findings will be significantly helpful for deeply exploring the clinical application value of Bhjm.
Collapse
Affiliation(s)
- Jianfang Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyuan Liu
- Beijing Gushen Life Health Science and Technology Co., Ltd, Beijing, China
| | - Meng Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Kotlyarov S, Kotlyarova A. Participation of Krüppel-like Factors in Atherogenesis. Metabolites 2023; 13:metabo13030448. [PMID: 36984888 PMCID: PMC10052737 DOI: 10.3390/metabo13030448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is an important problem in modern medicine, the keys to understanding many aspects of which are still not available to clinicians. Atherosclerosis develops as a result of a complex chain of events in which many cells of the vascular wall and peripheral blood flow are involved. Endothelial cells, which line the vascular wall in a monolayer, play an important role in vascular biology. A growing body of evidence strengthens the understanding of the multifaceted functions of endothelial cells, which not only organize the barrier between blood flow and tissues but also act as regulators of hemodynamics and play an important role in regulating the function of other cells in the vascular wall. Krüppel-like factors (KLFs) perform several biological functions in various cells of the vascular wall. The large family of KLFs in humans includes 18 members, among which KLF2 and KLF4 are at the crossroads between endothelial cell mechanobiology and immunometabolism, which play important roles in both the normal vascular wall and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
11
|
Zhu L, Yu Y, Wang H, Wang M, Chen M. LncRNA HCG18 loaded by polymorphonuclear neutrophil-secreted exosomes aggravates sepsis acute lung injury by regulating macrophage polarization. Clin Hemorheol Microcirc 2023; 85:13-30. [PMID: 37355886 DOI: 10.3233/ch-221624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) exert significant roles in septic acute lung injury (ALI). Accumulating evidence suggests that PMN-derived exosomes (PMN-exo) are a novel subcellular entity that is the fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-exo in septic ALI and the underlying mechanisms remain unclear. Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in septic ALI, was used to induce PMN activation in vitro. Using an in vitro co-culture system, the rat alveolar macrophage cell line NR8383 was co-cultured with TNF-α-stimulated PMN-released exosomes (TNF-α-exo) to further confirm the results of the in vitro studies and explore the underlying mechanisms involved. A septic lung injury model was established by cecal ligation and puncture surgery, and PMN-exo were injected into septic mice through the tail vein, and then lung injury, inflammatory release, macrophage polarization, and apoptosis were examined. The results reported that TNF-α-exo promoted the activation of M1 macrophages after i.p. injection in vivo or co-culture in vitro. Furthermore, TNF-α-exo affected alveolar macrophage polarization by delivering HCG18. Mechanistic studies indicated that HCG18 mediated the function of TNF-α-exo by targeting IL-32 in macrophages. In addition, tail vein injection of si-HCG18 in septic mice significantly reduced TNF-α-exo-induced M1 macrophage activation and lung macrophage death, as well as histological lesions. In conclusion, TNF-α-exo-loaded HCG18 contributes to septic ALI by regulating macrophage polarization. These findings may provide new insights into novel mechanisms of PMN-macrophage polarization interactions in septic ALI and may provide new therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- LiJun Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - YuLong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - HuiJun Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - MingCang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - MinJuan Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Kotlyarov S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int J Mol Sci 2022; 23:ijms23179770. [PMID: 36077168 PMCID: PMC9456046 DOI: 10.3390/ijms23179770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the key problems of modern medicine, which is due to the high prevalence of atherosclerotic cardiovascular diseases and their significant share in the structure of morbidity and mortality in many countries. Atherogenesis is a complex chain of events that proceeds over many years in the vascular wall with the participation of various cells. Endothelial cells are key participants in vascular function. They demonstrate involvement in the regulation of vascular hemodynamics, metabolism, and innate immunity, which act as leading links in the pathogenesis of atherosclerosis. These endothelial functions have close connections and deep evolutionary roots, a better understanding of which will improve the prospects of early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|