1
|
Becker A, Röhrich K, Leske A, Heinicke U, Knape T, Kannt A, Trümper V, Sohn K, Wilken-Schmitz A, Neb H, Adam EH, Laux V, Parnham MJ, Onasch V, Weigert A, Zacharowski K, von Knethen A. Identification of CRTH2 as a New PPARγ-Target Gene in T Cells Suggested CRTH2 Dependent Conversion of T h2 Cells as Therapeutic Concept in COVID-19 Infection. Immunotargets Ther 2024; 13:595-616. [PMID: 39507298 PMCID: PMC11539866 DOI: 10.2147/itt.s463601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background COVID-19 is a serious viral infection, which is often associated with a lethal outcome. Therefore, understanding mechanisms, which affect the immune response during SARS-CoV2 infection, are important. Methods To address this, we determined the number of T cells in peripheral blood derived from intensive care COVID-19 patients. Based on our previous studies, evaluating PPARγ-dependent T cell apoptosis in sepsis patients, we monitored PPARγ expression. We performed a next generation sequencing approach to identify putative PPARγ-target genes in Jurkat T cells and used a PPARγ transactivation assay in HEK293T cells. Finally, we translated these data to primary T cells derived from healthy donors. Results A significantly reduced count of total CD3+ T lymphocytes and the CD4+ and CD8+ subpopulations was observed. Also, the numbers of anti-inflammatory, resolutive Th2 cells and FoxP3-positive regulatory T cells (Treg) were decreased. We observed an augmented PPARγ expression in CD4+ T cells of intensive care COVID-19 patients. Adapted from a next generation sequencing approach in Jurkat T cells, we found the chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) as one gene regulated by PPARγ in T cells. This Th2 marker is a receptor for prostaglandin D and its metabolic degradation product 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), an established endogenous PPARγ agonist. In line, we observed an increased PPARγ transactivation in response to 15d-PGJ2 treatment in HEK293T cells overexpressing CRTH2. Translating these data to primary T cells, we found that Th2 differentiation was associated with an increased expression of CRTH2. Interestingly, these CRTH2+ T cells were prone to apoptosis. Conclusion These mechanistic data suggest an involvement of PPARγ in Th2 differentiation and T cell depletion in COVID-19 patients.
Collapse
Affiliation(s)
- Antonia Becker
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Karoline Röhrich
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Amanda Leske
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Ulrike Heinicke
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, 60590, Germany
| | - Verena Trümper
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Sohn
- Innovation Field in-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, 70569, Germany
| | - Annett Wilken-Schmitz
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Holger Neb
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Elisabeth H Adam
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Valerie Onasch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Zacharowski
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Andreas von Knethen
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| |
Collapse
|
2
|
Garcia Lopez A, Schäuble S, Sae-Ong T, Seelbinder B, Bauer M, Giamarellos-Bourboulis EJ, Singer M, Lukaszewski R, Panagiotou G. Risk assessment with gene expression markers in sepsis development. Cell Rep Med 2024; 5:101712. [PMID: 39232497 PMCID: PMC11528229 DOI: 10.1016/j.xcrm.2024.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Infection is a commonplace, usually self-limiting, condition but can lead to sepsis, a severe life-threatening dysregulated host response. We investigate the individual phenotypic predisposition to developing uncomplicated infection or sepsis in a large cohort of non-infected patients undergoing major elective surgery. Whole-blood RNA sequencing analysis was performed on preoperative samples from 267 patients. These patients developed postoperative infection with (n = 77) or without (n = 49) sepsis, developed non-infectious systemic inflammatory response (n = 31), or had an uncomplicated postoperative course (n = 110). Machine learning classification models built on preoperative transcriptomic signatures predict postoperative outcomes including sepsis with an area under the curve of up to 0.910 (mean 0.855) and sensitivity/specificity up to 0.767/0.804 (mean 0.746/0.769). Our models, confirmed by quantitative reverse-transcription PCR (RT-qPCR), potentially offer a risk prediction tool for the development of postoperative sepsis with implications for patient management. They identify an individual predisposition to developing sepsis that warrants further exploration to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
- Albert Garcia Lopez
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Tongta Sae-Ong
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Bastian Seelbinder
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | | | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Roman Lukaszewski
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Faculty of Biological Sciences, 07743 Jena, Germany; Department of Medicine, University of Hong Kong, Hong Kong SAR, China; Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
3
|
Atreya MR, Banerjee S, Lautz AJ, Alder MN, Varisco BM, Wong HR, Muszynski JA, Hall MW, Sanchez-Pinto LN, Kamaleswaran R. Machine learning-driven identification of the gene-expression signature associated with a persistent multiple organ dysfunction trajectory in critical illness. EBioMedicine 2024; 99:104938. [PMID: 38142638 PMCID: PMC10788426 DOI: 10.1016/j.ebiom.2023.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) disproportionately drives morbidity and mortality among critically ill patients. However, we lack a comprehensive understanding of its pathobiology. Identification of genes associated with a persistent MODS trajectory may shed light on underlying biology and allow for accurate prediction of those at-risk. METHODS Secondary analyses of publicly available gene-expression datasets. Supervised machine learning (ML) was used to identify a parsimonious set of genes associated with a persistent MODS trajectory in a training set of pediatric septic shock. We optimized model parameters and tested risk-prediction capabilities in independent validation and test datasets, respectively. We compared model performance relative to an established gene-set predictive of sepsis mortality. FINDINGS Patients with a persistent MODS trajectory had 568 differentially expressed genes and characterized by a dysregulated innate immune response. Supervised ML identified 111 genes associated with the outcome of interest on repeated cross-validation, with an AUROC of 0.87 (95% CI: 0.85-0.88) in the training set. The optimized model, limited to 20 genes, achieved AUROCs ranging from 0.74 to 0.79 in the validation and test sets to predict those with persistent MODS, regardless of host age and cause of organ dysfunction. Our classifier demonstrated reproducibility in identifying those with persistent MODS in comparison with a published gene-set predictive of sepsis mortality. INTERPRETATION We demonstrate the utility of supervised ML driven identification of the genes associated with persistent MODS. Pending validation in enriched cohorts with a high burden of organ dysfunction, such an approach may inform targeted delivery of interventions among at-risk patients. FUNDING H.R.W.'s NIHR35GM126943 award supported the work detailed in this manuscript. Upon his death, the award was transferred to M.N.A. M.R.A., N.S.P, and R.K were supported by NIHR21GM151703. R.K. was supported by R01GM139967.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Shayantan Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew N Alder
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, 43205, OH, USA; Department of Pediatrics, Ohio State University, Columbus, 43205, OH, USA
| | - Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, 43205, OH, USA; Department of Pediatrics, Ohio State University, Columbus, 43205, OH, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA; Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, 30322, GA, United States; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30322, GA, United States
| |
Collapse
|
4
|
Yang JO, Zinter MS, Pellegrini M, Wong MY, Gala K, Markovic D, Nadel B, Peng K, Do N, Mangul S, Nadkarni VM, Karlsberg A, Deshpande D, Butte MJ, Asaro L, Agus M, Sapru A. Whole blood transcriptomics identifies subclasses of pediatric septic shock. Crit Care 2023; 27:486. [PMID: 38066613 PMCID: PMC10709863 DOI: 10.1186/s13054-023-04689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. METHODS The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. RESULTS Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. CONCLUSIONS Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.
Collapse
Affiliation(s)
- Jamie O Yang
- UCLA Department of Internal Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Matt S Zinter
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Matteo Pellegrini
- UCLA Department of Molecular, Cell, and Developmental Biology, Los Angeles, CA, USA
| | - Man Yee Wong
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Kinisha Gala
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Daniela Markovic
- UCLA Department of Medicine Statistics Core, Los Angeles, CA, USA
| | - Brian Nadel
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Kerui Peng
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Nguyen Do
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Serghei Mangul
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Karlsberg
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Dhrithi Deshpande
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, UCLA Department of Pediatrics, Los Angeles, CA, USA
| | - Lisa Asaro
- Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Agus
- Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anil Sapru
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yang JO, Zinter MS, Pellegrini M, Wong MY, Gala K, Markovic D, Nadel B, Peng K, Do N, Mangul S, Nadkarni VM, Karlsberg A, Deshpande D, Butte MJ, Asaro L, Agus M, Sapru A. Whole Blood Transcriptomics Identifies Subclasses of Pediatric Septic Shock. RESEARCH SQUARE 2023:rs.3.rs-3267057. [PMID: 37693502 PMCID: PMC10491329 DOI: 10.21203/rs.3.rs-3267057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Sepsis is a highly heterogeneous syndrome, that has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. Methods The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA-sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. Results Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells, and less diverse T-Cell receptor repertoires. Conclusions Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF PINT ancillary of the HALF PINT study (NCT01565941). Registered 29 March 2012.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nguyen Do
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Neves FL, Amaral MNGA, da Silva SFD, Silva IMM, Laranjeira PMDS, Pinto CRDJ, Paiva AA, Dias ASDS, Coelho MLACV. Immunoparalysis in critically ill children. Immunology 2023; 168:597-609. [PMID: 36279244 DOI: 10.1111/imm.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoparalysis is associated with poorer outcomes in the paediatric intensive care unit (PICU) setting. We aimed to determine the group of patients with higher chances of immunoparalysis and correlate this status with increased risks of nosocomial infection and adverse clinical parameters. We conducted an exploratory study with prospective data collection in a university-affiliated tertiary medical, surgical, and cardiac PICU. Fifteen patients with multiple organ dysfunction syndrome were included over a period of 6 months. Monocyte's human leucocyte antigen (HLA)-DR expression and tumour necrosis factor (TNF)-α and interleukin (IL)-6 production were measured by flow-cytometry at three time points (T1 = 1-2 days; T2 = 3-5 days; T3 = 6-8 days). Using the paediatric logistic organ dysfunction-2 score to assess initial disease severity, we established the optimal cut-off values of the evaluated parameters to identify the subset of patients with a higher probability of immunoparalysis. A comparative analysis was performed between them. Sixty per cent were males; the median age was 4.1 years. Considering the presence of two criteria in T1 (classical monocytes mean fluorescence intensity [MFI] for HLA-DR ≤ 1758.5, area under the curve (AUC) = 0.775; and frequency of monocytes producing IL-6 ≤ 68.5%, AUC = 0.905) or in T3 (classical monocytes MFI of HLA-DR ≤ 2587.5, AUC = 0.675; and frequency of monocytes producing TNF-α ≤ 93.5%, AUC = 0.833), a variable to define immunoparalysis was obtained (100% sensitivity, 81.5% specificity). Forty per cent of patients were assigned to the immunoparalysis group. In this: a higher frequency of nosocomial infection (p = 0.011), vasoactive inotropic score (p = 0.014) and length of hospital stay (p = 0.036) was observed. In the subgroup with the diagnosis of sepsis/septic shock (n = 5), patients showed higher percentages of non-classical monocytes (p = 0.004). No mortality was recorded. A reduction in classical monocytes HLA-DR expression with lower frequencies of monocytes producing TNF-α and IL-6 during the first week of critical illness, appears to be a good marker of immunoparalysis; these findings relate to an increased risk of nosocomial infection and deleterious outcomes. The increased frequency of non-classical monocytes in patients with sepsis/septic shock is suggestive of a better prognosis.
Collapse
Affiliation(s)
- Filipa Loureiro Neves
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Children and Women Department, Centro Hospitalar do Médio Tejo, Torres Novas, Portugal
| | | | - Sandra Filomena Durães da Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Isabel Maria Melo Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Paula Margarida Dos Santos Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment, Genetics and Oncobiology (CIMAGO) - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carla Regina de Jesus Pinto
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Artur Augusto Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment, Genetics and Oncobiology (CIMAGO) - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal
| | - Andrea Sofia da Silva Dias
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
7
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|