1
|
Hong XY, Li S, Li T, Chen W, Li Y, Wang Z, Luo Y. Differential involvement of central and peripheral catecholamines between Alzheimer's disease and vascular dementia. Heliyon 2024; 10:e38843. [PMID: 39398044 PMCID: PMC11471233 DOI: 10.1016/j.heliyon.2024.e38843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim The important role of catecholamines has been gradually emphasized in the pathogenesis of neurodegenerative process. As the most prevalent form of cognitive dysfunction, Alzheimer's disease (AD) and vascular dementia (VaD) have the distinct pathological features and pathogenic mechanisms, however, the differential involvement of central and peripheral catecholamines between AD and VaD was still unclear. Methods Triple-transgenic AD (3 × Tg-AD) mice and chronic cerebral hypoperfusion (CCH) in rats induced by two-vessel occlusion (2VO) were used as the AD and VaD model in this study, respectively. The concentrations of catecholamines (dopamine, epinephrine and norepinephrine) and their metabolites (3-methoxytyramine, metanephrine and normetanephrine) in serum and five brain regions (hippocampus, cortex, corpus striatum, thalamus and pons) from 3 × Tg-AD mice and 2VO rats were quantitatively determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. Results High expression and distribution of hippocampal dopamine, and epinephrine and norepinephrine in the cortex and thalamus were found in the early 3 × Tg-AD model, whereas chronic cerebral hypoperfusion induced by 2VO mainly affected the central noradrenergic and noradrenergic system, but not dopaminergic system. The increased serum levels of catecholamines were investigated in the 2VO rats, but not in the 3 × Tg-AD mice. Conclusion The differential expression and distribution of central catecholamines and their metabolites suggests the distinct catecholamines-related pathogenesis between AD and VaD. Peripheral catecholamine surge may be involved in the development of VaD, and the treatment strategy to prevent or reverse the effects of peripheral catecholamines may be protective for VaD.
Collapse
Affiliation(s)
- Xiao-Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Siwei Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| |
Collapse
|
2
|
Tan X, Luo M, Xiao Q, Zheng X, Kang J, Zha D, Xie Q, Zhan CA. The ECG abnormalities in persons with chronic disorders of consciousness. Med Biol Eng Comput 2024; 62:3013-3023. [PMID: 38750280 DOI: 10.1007/s11517-024-03129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 09/07/2024]
Abstract
We aimed to investigate the electrocardiogram (ECG) features in persons with chronic disorders of consciousness (DOC, ≥ 29 days since injury, DSI) resulted from the most severe brain damages. The ECG data from 30 patients with chronic DOC and 18 healthy controls (HCs) were recorded during resting wakefulness state for about five minutes. The patients were classified into vegetative state (VS) and minimally conscious state (MCS). Eight ECG metrics were extracted for comparisons between the subject subgroups, and regression analysis of the metrics were conducted on the DSI (29-593 days). The DOC patients exhibit a significantly higher heart rate (HR, p = 0.009) and lower values for SDNN (p = 0.001), CVRR (p = 0.009), and T-wave amplitude (p < 0.001) compared to the HCs. However, there're no significant differences in QRS, QT, QTc, or ST amplitude between the two groups (p > 0.05). Three ECG metrics of the DOC patients-HR, SDNN, and CVRR-are significantly correlated with the DSI. The ECG abnormalities persist in chronic DOC patients. The abnormalities are mainly manifested in the rhythm features HR, SDNN and CVRR, but not the waveform features such as QRS width, QT, QTc, ST and T-wave amplitudes.
Collapse
Affiliation(s)
- Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, No. 1023, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Minmin Luo
- School of Biomedical Engineering, Southern Medical University, No. 1023, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Qiuyi Xiao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Central, Guangzhou, 510280, Guangdong Province, China
| | - Xiaochun Zheng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Central, Guangzhou, 510280, Guangdong Province, China
| | - Jiajia Kang
- School of Biomedical Engineering, Southern Medical University, No. 1023, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong Province, China
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Central, Guangzhou, 510280, Guangdong Province, China.
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, No. 1023, Shatainan Road, Baiyun District, Guangzhou, 510515, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Central, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
3
|
Prandin G, Furlanis G, Mancinelli L, Palacino F, Vincis E, Scali I, Caruso P, Naccarato M, Manganotti P. Stroke heart injury: the effect of cerebral reperfusion treatment. A 3-year retrospective study. J Neurol 2024; 271:5969-5975. [PMID: 39008034 DOI: 10.1007/s00415-024-12531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Cardiac involvement following an acute stroke (Stroke Heart Syndrome-SHS) is an established complication and it is linked to the involvement of sympathetic activation, inflammation, and neuro-endocrine response. Troponin "rise and fall pattern" > 30% is one marker of SHS. The aim of this study was to evaluate the role of reperfusion treatments in the prevention/pathogenesis of SHS with different stroke sizes and locations (OCSP classification). METHODS We retrospectively analyzed data of 890 patients admitted to the Stroke Unit of Trieste (Italy) between 2018 and 2020. Out of them, 411 met the inclusion criteria (acute ischemic non-lacunar stroke). Clinical data were collected for each patient, imaging characteristics, and markers of cardiac injury [troponin I (TnI), NT-proBNP, "rise and fall pattern" > 30%]. We compared different stroke subtypes according to OCSP, while evaluating any differences in patients with and without SHS. RESULTS In treated total anterior circulation infarct (TACI) patients, the rate of SHS is lower than in non-treated TACI. Similar SHS rate was found in partial anterior (PACI) and posterior stroke (POCI), and between treated and non-treated patients. Focusing on TACI group, we compared SHS-TACI and non-SHS-TACI, we performed a univariate and multivariate analysis; treatment (OR 0.408 CI95% 0.185-0.900; p = 0.026) and diabetes (OR 2.618 CI95% 1.181-5.803; p = 0.018) were significantly associated to SHS. No clear insular effect was found in SHS development. CONCLUSIONS In severe anterior stroke (TACI), reperfusion treatment may be effective in preventing SHS. Conversely, diabetes is an independent risk factor for SHS. PACI and POCI have similar troponin elevation rate.
Collapse
Affiliation(s)
- Gabriele Prandin
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy.
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Laura Mancinelli
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Federica Palacino
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Emanuele Vincis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Ilario Scali
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Marcello Naccarato
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di fiume, 447, 34149, Trieste, Italy
| |
Collapse
|
4
|
Wang Q, Deng T, Xie Y, Lu H, Zhang T, Gao D. Association of α-HBDH levels with the severity and recurrence after acute ischemic stroke. Eur J Med Res 2024; 29:347. [PMID: 38926868 PMCID: PMC11201310 DOI: 10.1186/s40001-024-01944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE α-HBDH serves as a biomarker of myocardial damage and is implicated in adverse outcomes across various critical illnesses. Our study aimed to assess the correlation between α-HBDH levels, and severity and recurrence of acute ischemic stroke (AIS). METHODS We enrolled patients with mild-to-moderate AIS within 72 h of onset. Based on the baseline score of the National Institutes of Health Stroke Scale (bNIHSS) at registration, patients were categorized into mild (bNIHSS ≤ 4 points) and moderate AIS groups (4 < bNIHSS ≤ 10 points). Subsequently, based on the normal upper limit of α-HBDH, patients were divided into low-level α-HBDH (≤ 180 U/L) and high-level α-HBDH (> 180 U/L) groups. Multivariate logistic regression analysis and Cox proportional hazard regression analysis were employed to evaluate the relationship between α-HBDH levels and bNIHSS scores as well as the risk of recurrent AIS within 90 days. RESULTS We observed a significant association between higher baseline levels of α-HBDH and increased bNIHSS scores, indicating a more severe AIS (odds ratio = 24.449; 95% confidence interval [CI], 8.749-68.324; p < 0.01). Additionally, the risk of recurrent AIS within 90 days was 4.666 times higher in the high-level α-HBDH group compared to the low-level group (hazard ratio = 4.666; 95% CI, 2.481-8.777; p < 0.01). CONCLUSIONS The baseline level of α-HBDH is significantly correlated with the severity of AIS and the risk of recurrent AIS within 90 days.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurology, Beijing Bo'ai Hospital, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Ting Deng
- Department of Infectious Diseases, Beijing Bo'ai Hospital, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Yuanyuan Xie
- Department of Emergency, Beijing Bo'ai Hospital, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Haitao Lu
- Department of Neurology, Beijing Bo'ai Hospital, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
| | - Tong Zhang
- Department of Neurology, Beijing Bo'ai Hospital, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
| | - Daiquan Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
5
|
Yao ZJ, Jiang YP, Yuan D, Hong P, He MJ, Li FX, Xu SY, Lin HB, Zhang HF. Decreased connexin 40 expression of the sinoatrial node mediates ischemic stroke-induced arrhythmia in mice. Exp Neurol 2024; 376:114773. [PMID: 38599368 DOI: 10.1016/j.expneurol.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Arrhythmia is the most common cardiac complication after ischemic stroke. Connexin 40 is the staple component of gap junctions, which influences the propagation of cardiac electrical signals in the sinoatrial node. However, the role of connexin 40 in post-stroke arrhythmia remains unclear. METHODS In this study, a permanent middle cerebral artery occlusion model was used to simulate the occurrence of an ischemic stroke. Subsequently, an electrocardiogram was utilized to record and assess variations in electrocardiogram measures. In addition, optical tissue clearing and whole-mount immunofluorescence staining were used to confirm the anatomical localization of the sinoatrial node, and the sinoatrial node tissue was collected for RNA sequencing to screen for potential pathological mechanisms. Lastly, the rAAV9-Gja5 virus was injected with ultrasound guidance into the heart to increase Cx40 expression in the sinoatrial node. RESULTS We demonstrated that the mice suffering from a permanent middle cerebral artery occlusion displayed significant arrhythmia, including atrial fibrillation, premature ventricular contractions, atrioventricular block, and abnormal electrocardiogram parameters. Of note, we observed a decrease in connexin 40 expression within the sinoatrial node after the ischemic stroke via RNA sequencing and western blot. Furthermore, rAAV9-Gja5 treatment ameliorated the occurrence of arrhythmia following stroke. CONCLUSIONS In conclusion, decreased connexin 40 expression in the sinoatrial node contributed to the ischemic stroke-induced cardiac arrhythmia. Therefore, enhancing connexin 40 expression holds promise as a potential therapeutic approach for ischemic stroke-induced arrhythmia.
Collapse
Affiliation(s)
- Zhi-Jun Yao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yan-Pin Jiang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Anesthesiology, The First Hospital Affiliated to the Army Medical University, Chongqing 400038, China
| | - Dan Yuan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Pu Hong
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Meng-Jiao He
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
6
|
Lin HB, Hong P, Yin MY, Yao ZJ, Zhang JY, Jiang YP, Huang XX, Xu SY, Li FX, Zhang HF. Monocyte-Derived Macrophages Aggravate Cardiac Dysfunction After Ischemic Stroke in Mice. J Am Heart Assoc 2024; 13:e034731. [PMID: 38700011 PMCID: PMC11179859 DOI: 10.1161/jaha.123.034731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.
Collapse
MESH Headings
- Animals
- Macrophages/metabolism
- Disease Models, Animal
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Ischemic Stroke/physiopathology
- Ischemic Stroke/metabolism
- Ischemic Stroke/pathology
- Mice, Inbred C57BL
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Male
- Mice, Knockout
- Mice
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/pathology
- Sympathetic Nervous System/physiopathology
- Myocardium/pathology
- Myocardium/metabolism
- Heart Diseases/etiology
- Heart Diseases/physiopathology
- Heart Diseases/pathology
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- CX3C Chemokine Receptor 1/deficiency
Collapse
Affiliation(s)
- Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Pu Hong
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Meng-Yu Yin
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhi-Jun Yao
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Jin-Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou Guangdong China
| | - Yan-Pin Jiang
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Xuan-Xuan Huang
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
7
|
Ding P, Chen G, Yang Y, Zhang T, Li W, Yang L, Liu X, Yu D, Yue W. Ischemic insular damage and stress ulcer in patients of acute ischemic stroke. Brain Behav 2024; 14:e3529. [PMID: 38747741 PMCID: PMC11095302 DOI: 10.1002/brb3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND AND AIMS Stress ulcer (SU) is a common complication in patients with acute ischemic stroke. The relationship of infarction location and the incidence of SU was unclear. Herein, we aim to investigate the association between ischemic insular damage and the development of SU. METHODS Data were retrieved from the SPARK study (Effect of Cardiac Function on Short-Term Functional Prognosis in Patients with Acute Ischemic Stroke). We included the patients who had experienced an ischemic stroke within 7 days. The diagnosis of SU was based on clinical manifestations, including hematemesis, bloody nasogastric tube aspirate, or hematochezia. Evaluation of ischemic insular damage was conducted through magnetic resonance imaging. Cyclo-oxygenase regression analysis and Kaplan-Meier survival curves were used to assess the relationship between ischemic insular damage and the occurrence of SU. RESULTS Among the 1357 patients analyzed, 110 (8.1%) developed SUs during hospitalization, with 69 (6.7%) experiencing infarctions in the anterior circulation. After adjusting for potential confounders, patients with ischemic insular damage exhibited a 2.16-fold higher risk of developing SUs compared to those without insular damage (p = .0206). Notably, among patients with infarctions in the anterior circulation, those with insular damage had a 2.21-fold increased risk of SUs (p = .0387). Moreover, right insular damage was associated with a higher risk of SUs compared to left insular damage or no insular damage (p for trend = .0117). Kaplan-Meier curves demonstrated early separation among groups, persisting throughout the follow-up period (all p < .0001). CONCLUSIONS This study identified a significant independent correlation between ischemic insular damage, particularly on the right side, and the development of SU during hospitalization, indicating the need to consider prophylactic acid-suppressive treatment for patients with ischemic insular damage.
Collapse
Affiliation(s)
- Peng Ding
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
| | - Guojuan Chen
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
- Department of NeurologyTangshan Gongren HospitalTangshanChina
| | - Yuling Yang
- Department of NeurologyTangshan Gongren HospitalTangshanChina
| | - Tong Zhang
- College of Traditional Chinese MedicineNorth China University of Science and TechnologyTangshanChina
| | - Wenxia Li
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
| | - Liqin Yang
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
| | - Xueqing Liu
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
| | - Delin Yu
- Department of UltrasonicTianjin Huanhu HospitalTianjinChina
| | - Wei Yue
- Department of Neurology, Clinical College of Neurology, Neurosurgery, and NeurorehabilitationTianjin Medical University, Tianjin Huanhu HospitalTianjinChina
| |
Collapse
|
8
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
9
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Golubnitschaja O, Polivka J, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, Lackova L, Kubatka P, Kropp M, Thumann G, Erb C, Fröhlich H, Wang W, Baban B, Kapalla M, Shapira N, Richter K, Karabatsiakis A, Smokovski I, Schmeel LC, Gkika E, Paul F, Parini P, Polivka J. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J 2024; 15:1-23. [PMID: 38463624 PMCID: PMC10923756 DOI: 10.1007/s13167-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Holger Fröhlich
- Artificial Intelligence & Data Science Group, Fraunhofer SCAI, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT (B-It), University of Bonn, 53115 Bonn, Germany
| | - Wei Wang
- Edith Cowan University, Perth, Australia
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Babak Baban
- The Dental College of Georgia, Departments of Neurology and Surgery, The Medical College of Georgia, Augusta University, Augusta, USA
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Niva Shapira
- Department of Nutrition, School of Health Sciences, Ashkelon Academic College, Ashkelon, Israel
| | - Kneginja Richter
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders Skopje, University Goce Delcev, Faculty of Medical Sciences, Stip, North Macedonia
| | - Leonard Christopher Schmeel
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | | | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Kuang X, Su M, Li H, Sheng X, Cai H, Xie S, Liu Z. Preparation of Menthyl 3-amino-4-(2,4,5-trifluorophenyl) Butyrate and Investigation of its Hypoglycemic Activity. Curr Mol Med 2024; 24:1550-1556. [PMID: 39420727 PMCID: PMC11497135 DOI: 10.2174/0115665240256416231120105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2024]
Abstract
BACKGROUND 3-Amino-4-(2,4,5-trifluorophenyl) butyric acid has potential pharmacological effects in promoting insulin secretion. Menthol promotes drug transdermal absorption and hypoglycemic effects. OBJECTIVE The objective of the study was to combine the 3-amino-4-(2,4,5- trifluorophenyl) butyric acid and menthol to develop a new candidate drug molecule that can be used as a hypoglycemic drug in type II diabetes. METHODS In this study, the molecular structure of 3-amino-4-(2,4,5-trifluorophenyl) butyric acid in sitagliptin was modified by replacing pyrazine imidazole with menthol. The structure of the target compound was characterized by nuclear magnetic resonance (NMR). The anti-diabetic activity of BHF in N000180 BKS.Cg-Dock7m+/ +Leprdb/Nju mice with spontaneous diabetes was preliminarily studied. RESULTS A potential multi-target drug molecule, 3-amino-4-(2,4,5-trifluorophenyl) butyrate (BHF), was synthesized by combining 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol. BHF is suitable for hyperglycemic mice and has a significant hypoglycemic effect; the low dose of 10 mg/kg-1 started to be effective, and the high dose of 40 mg/kg-1 was more effective than the positive drug metformin. CONCLUSION In this study, BHF has been synthesized and presented significant antidiabetic activities.
Collapse
Affiliation(s)
- Xinmou Kuang
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Minru Su
- SGS-CSTC Standards Technical Services (Ningbo) Co., Ltd. Ningbo Branch, Ningbo Zhejiang 315103, China
| | - Hao Li
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Xiaolan Sheng
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Huan Cai
- Department of Rehabilitation, Zhongshan People’s Hospital, Zhongshan Guangdong 528403, China
| | - Shuilin Xie
- School of Biology and Biological, Engineering, South China University of Technology, Guangzhou Guangdong 510006, China
| | - Zhonghua Liu
- Department of Rehabilitation, Zhongshan People’s Hospital, Zhongshan Guangdong 528403, China
| |
Collapse
|
13
|
Jafari Karegar S, Aryaeian N, Hajiluian G, Suzuki K, Shidfar F, Salehi M, Ashtiani BH, Farhangnia P, Delbandi AA. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: a multicentral-triple blind randomized clinical trial. Front Nutr 2023; 10:1238846. [PMID: 37794975 PMCID: PMC10546207 DOI: 10.3389/fnut.2023.1238846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease. Ellagic acid is a natural polyphenol and affects the fate of neurons through its anti-inflammatory and antioxidant properties. The present study aimed to investigate ellagic acid effects on disease severity, the expression of involved genes in the pathogenesis of MS, and the levels of related cytokines. Methods The present study was a triple-blind clinical trial. Eligible patients were randomly assigned to two groups: Ellagic acid (25 subjects) for 12 weeks, receiving 180 mg of Ellagic acid (Axenic, Australia) and the control group (25 subjects) receiving a placebo, before the main meals. Before and after the study, the data including general information, foods intake, physical activity, anthropometric data, expanded disability status scale (EDSS), general health questionnaire (GHQ) and pain rating index (PRI), fatigue severity scale (FSS) were assessed, as well as serum levels of interferon-gamma (IFNγ), interleukin-17 (IL-17), interleukin-4 (IL-4) and transforming growth factor-beta (TGF-β), nitric-oxide (NO) using enzyme-linked immunoassay (ELISA) method and expression of T-box transcription factor (Tbet), GATA Binding Protein 3 (GATA3), retinoic acid-related orphan receptor-γt (RORγt) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were determined using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) method. Findings Ellagic acid supplementation led to a reduction in IFNγ, IL-17, NO and increased IL-4 in the ellagic acid group, however in the placebo group no such changes were observed (-24.52 ± 3.79 vs. -0.05 ± 0.02, p < 0.01; -5.37 ± 0.92 vs. 2.03 ± 1.03, p < 0.01; -18.03 ± 1.02 vs. -0.06 ± 0.05, p < 0.01, 14.69 ± 0.47 vs. -0.09 ± 0.14, p < 0.01, respectively). Ellagic acid supplementation had no effect on TGF-β in any of the study groups (p > 0.05). Also, the Tbet and RORγt genes expression decreased, and the GATA3 gene expression in the group receiving ellagic acid compared to control group significantly increased (0.52 ± 0.29 vs. 1.51 ± 0.18, p < 0.01, 0.49 ± 0.18 vs. 1.38 ± 0.14, p < 0.01, 1.71 ± 0.39 vs. 0.27 ± 0.10, p < 0.01). Also, ellagic acid supplementation led to significant decrease in EDSS, FSS and GHQ scores (p < 0.05), and no significant changes observed in PRI score (p > 0.05). Conclusion Ellagic acid supplementation can improve the health status of MS patients by reduction of the inflammatory cytokines and Tbet and RORγt gene expression, and increment of anti-inflammatory cytokines and GATA3 gene expression.Clinical trial registration: (https://en.irct.ir/trial/53020), IRCT20120415009472N22.
Collapse
Affiliation(s)
- Sahar Jafari Karegar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Hajiluian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Statistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Leo DG, Ozdemir H, Lane DA, Lip GYH, Keller SS, Proietti R. At the heart of the matter: how mental stress and negative emotions affect atrial fibrillation. Front Cardiovasc Med 2023; 10:1171647. [PMID: 37408656 PMCID: PMC10319071 DOI: 10.3389/fcvm.2023.1171647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, affecting 2%-3% of the world's population. Mental and emotional stress, as well as some mental health conditions (e.g., depression) have been shown to significantly impact the heart and have been suggested to act both as independent risk factors and triggers in the onset of AF. In this paper, we review the current literature to examine the role that mental and emotional stress have in the onset of AF and summarise the current knowledge on the interaction between the brain and heart, and the cortical and subcortical pathways involved in the response to stress. Review of the evidence suggests that mental and emotional stress negatively affect the cardiac system, potentially increasing the risk for developing and/or triggering AF. Further studies are required to further understand the cortical and sub-cortical structures involved in the mental stress response and how these interact with the cardiac system, which may help in defining new strategies and interventions to prevent the development of, and improve the management of AF.
Collapse
Affiliation(s)
- Donato Giuseppe Leo
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hizir Ozdemir
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
| | - Deirdre A. Lane
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Simon S. Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Riccardo Proietti
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Prakash R, Kumari N, Siddiqui AJ, Khan AQ, Khan MA, Khan R, Haque R, Robertson AA, Boltze J, Raza SS. MCC950 Regulates Stem Cells Destiny Through Modulating SIRT3-NLRP3 Inflammasome Dynamics During Oxygen Glucose Deprivation. Stem Cell Rev Rep 2023:10.1007/s12015-023-10520-6. [PMID: 36811746 DOI: 10.1007/s12015-023-10520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1β and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, 140306, Mohali, Punjab, India
| | - Rizwanul Haque
- Departmenyt of Biotechnology, Central University of South Bihar, 824236, Gaya, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India.
| |
Collapse
|
16
|
Ischemic Stroke Induces Skeletal Muscle Damage and Alters Transcriptome Profile in Rats. J Clin Med 2023; 12:jcm12020547. [PMID: 36675476 PMCID: PMC9865444 DOI: 10.3390/jcm12020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
To establish pathological features of skeletal muscle post-stroke and to provide a background for promising interventions. Adult male SD rats were selected and randomly divided into a control group, a sham group, and a middle cerebral artery occlusion (MCAO) group. The tolerance and capability of exercise were separately collected on days 1, 3, 5, and 7 after the MCAO operation. The neurological deficits, brain infarct volume, soleus histopathology, mRNA-seq analysis, flow cytometry, immunofluorescence, and protein expression analysis were performed on the seventh day. Rats in the MCAO group showed that soleus tissue weight, pulling force, exercise capacity, endurance, and muscle structure were significantly decreased. Moreover, the RNA sequencing array revealed that mitochondrial-mediated autophagy was the critical pathological process, and the result of transcriptomic findings was confirmed at the translational level. The mitochondrial membrane potential and the mfn2 and p62 protein expression were decreased, and the Beclin-1, ATG5, Parkin, PINK1, LC3B, and Drp1 expression were upregulated; these results were consistent with immunohistochemistry. This is the first report on the pathological features of limbic symptoms on day 7 after MCAO surgery in rats. In addition, we further confirmed that autophagy is one of the main causative mechanisms of reduced muscle function after stroke.
Collapse
|
17
|
Xu X, Xu H, Zhang Z. Cerebral amyloid angiopathy-related cardiac injury: Focus on cardiac cell death. Front Cell Dev Biol 2023; 11:1156970. [PMID: 36910141 PMCID: PMC9998697 DOI: 10.3389/fcell.2023.1156970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a kind of disease in which amyloid β (Aβ) and other amyloid protein deposits in the cerebral cortex and the small blood vessels of the brain, causing cerebrovascular and brain parenchymal damage. CAA patients are often accompanied by cardiac injury, involving Aβ, tau and transthyroxine amyloid (ATTR). Aβ is the main injury factor of CAA, which can accelerate the formation of coronary artery atherosclerosis, aortic valve osteogenesis calcification and cardiomyocytes basophilic degeneration. In the early stage of CAA (pre-stroke), the accompanying locus coeruleus (LC) amyloidosis, vasculitis and circulating Aβ will induce first hit to the heart. When the CAA progresses to an advanced stage and causes a cerebral hemorrhage, the hemorrhage leads to autonomic nervous function disturbance, catecholamine surges, and systemic inflammation reaction, which can deal the second hit to the heart. Based on the brain-heart axis, CAA and its associated cardiac injury can create a vicious cycle that accelerates the progression of each other.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical care medicine, Hangzhou, China
| |
Collapse
|
18
|
Venkat P, Gao H, Findeis EL, Chen Z, Zacharek A, Landschoot-Ward J, Powell B, Lu M, Liu Z, Zhang Z, Chopp M. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front Neurosci 2023; 17:1061485. [PMID: 36968490 PMCID: PMC10033607 DOI: 10.3389/fnins.2023.1061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 μg/200 μl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1β, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Poornima Venkat,
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
19
|
Lv X, Lu X. Significance of Edaravone Combined with Emotion Management Model in Promoting the Recovery Process and Improving Negative Psychology in Patients with Type 2 Diabetes Mellitus Combined with Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8099997. [PMID: 36262976 PMCID: PMC9576390 DOI: 10.1155/2022/8099997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Methods Eighty-one patients with T2DM combined with CS who attended our hospital and received rehabilitation treatment from March 2020 to May 2021 were enrolled to a prospective nonrandomized controlled analysis. Among them, 46 patients received EDA combined with emotional management model and were regarded as the observation group (OG), and 35 received EDA combined with conventional care and were seen as the control group (CG). The clinical efficacy and glycemic function of the two groups were compared, and the scores of the Activities of Daily Living (ADL), Pittsburgh Sleep Quality Index (PSQI), and Self-Assessment Scale for Anxiety and Depression (SAS and SDS) were investigated before and after treatment. At the time of discharge, patient satisfaction with care was counted. Within six months after prognosis, T2DM self-management behavior and CS self-management behavior score surveys were conducted. Results There was no difference in clinical efficacy between both groups (P > 0.05); The posttreatment glucose, PSQI, SAS, and SDS scores were lower in the OG than in the CG, while ADL and emotional management scores were higher than in the CG (P < 0.05). In addition, both nursing satisfaction and prognosis disease self-management behavior scores were also higher in the OG than in the CG (P < 0.05). Conclusion The EDA combined with emotion management model can effectively promote the recovery process of patients with type II T2DM combined with CS, while improving their negative psychology and enhancing their self-management ability, which has high potential for clinical application.
Collapse
Affiliation(s)
- Xiaoyun Lv
- Department of Nephrology, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215400, China
| | - Xiaolan Lu
- Department of Encephalopathy, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215400, China
| |
Collapse
|
20
|
Kalani M, Shinde P. Diabetic Retinopathy May Covariate With Stroke in Diabetes Mellitus. Cureus 2022; 14:e28227. [PMID: 36158371 PMCID: PMC9491626 DOI: 10.7759/cureus.28227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder with increasing prevalence per hour. Cataracts are one of the most common eye complications, and they affect all structures of the eye. The incidence of cataracts is increasing in patients with diabetes by several mechanisms. With the advancement of technology, cataract surgery is now a necessary procedure for diabetic patients. High-risk complications, like diabetic macular oedema, diabetic retinopathy (DR), phakic, postoperative cyst, and postoperative macular oedema, and macular oedema and endophthalmitis following surgery for a pseudocyst, could result in blindness. The importance of preoperative, intraoperative, and postoperative factors cannot be overestimated in managing complications and improving visual outcomes. DR can be a severe problem if it worsens and causes non-proliferative or proliferative DR or if fluid accumulation in the eye is diagnosed as macular oedema. A woman progressing to sight-threatening DR during childbearing age experiences distress and often requires ocular treatment. Diabetes that has been present for a more extended period, as well as more significant hyperglycaemia, hypertension, cardiovascular diseases, and elevated blood pressure, substantially predict the development of DR. Oxidative stress can be caused by hyperglycaemia, irregular metabolic processes, and people with DR developing neurodegeneration. Therefore, controlling postprandial hyperglycaemia is crucial for preventing DR. Femtosecond laser technology, multifocal intraocular lenses, and other surgical innovations are popularly referred to as surgical management; it will be engaged in the coming era to determine whether there will be a continued reduction in the complication of cataract surgery. This article aims to review the correlation of DR with stroke and its screening and to outline the critical management strategies.
Collapse
|
21
|
Analysis of Rehabilitation Effect of Neurology Nursing on Stroke Patients with Diabetes Mellitus and Its Influence on Quality of Life and Negative Emotion Score. DISEASE MARKERS 2022; 2022:1579928. [PMID: 35308141 PMCID: PMC8930257 DOI: 10.1155/2022/1579928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Objective. To explore and analyze the rehabilitation effect of neurology nursing on stroke patients with diabetes mellitus (DM) and its influence on quality of life and negative emotion score. Methods. In this experiment, 110 stroke patients with DM diagnosed and treated in our hospital from 2018 to 2020 were randomly selected and assigned to the study group (SG) and the control group (CG) according to different nursing methods, with 55 cases in each group. In SG, they were given neurology nursing. In CG, they were given routine nursing. The rehabilitation efficacy, quality of life, and negative emotion scores were compared between the two groups. Results. Compared with the CG, the levels of fasting blood glucose, 2 h postprandial blood glucose, and urinary microalbumin in SG were obviously better after treatment. In SG, the proportion of patients with basic recovery and significant improvement after treatment was higher, and the proportion of patients without treatment effect was significantly lower. Overall, the nursing effect of the SG after treatment was better than that of the CG. There was no striking difference in the quality of life and Morisky scores between the two groups before nursing intervention (
), but the quality of life and Morisky scores of patients in SG were obviously higher than those in CG after nursing intervention. After nursing intervention, SAS and SDS scores of patients in SG were obviously lower than those of patients in CG, and patients in SG were less affected by negative emotions. Questionnaires were used to investigate the satisfaction of patients in both groups, and the results showed that the satisfaction of patients in SG was higher (all
). Conclusion. Neurology nursing has better clinical efficacy for stroke patients with DM and has obvious rehabilitation effect. The quality of life and negative emotion score of patients are better, which is worthy of extensive clinical promotion and application.
Collapse
|